Owatea, a Theoretical Physics Group, Department of Physics, University of Port Harcourt, Nigeria b Department of Physics, Shahrood University of Technology, Shahrood, Iran Received 9 Aug
Trang 1Solutions of Dirac equation for a new improved pseudo-Coulomb
ring-shaped potential
A.N Ikota,* , M.C Onyeajua, M.I Ngwuekea, H.P Obonga, I.O Owatea,
a Theoretical Physics Group, Department of Physics, University of Port Harcourt, Nigeria
b Department of Physics, Shahrood University of Technology, Shahrood, Iran Received 9 August 2016; revised 10 November 2016; accepted 10 November 2016
Abstract
We proposed a new solvable novel pseudo-Coulomb ring-shaped potential and investigate its pseudospin symmetry by solving the Dirac equation under the condition of an equal mixing of scalar and vector potentials using the factorization techniques We determine in closed form the energy eigenvalues and eigenfunctions of the bound states of the Dirac equation analytically We also discuss the non-relativistic limits
© 2016 The Authors Production and hosting by Elsevier B.V on behalf of University of Kerbala This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
PACSnumbers: 03.65Ge; 03.65Pm; 03.65Db
Keywords: Dirac equation; Pseudospin symmetry; Pseudo-Coulomb potential; Bound state; Eigenvalues
1 Introduction
The pseudospin symmetry of the Dirac Hamiltonian
was discovered many years ago, however, this
sym-metry has recently been recognized empirically in
nuclear and hadronic spectroscopic [1] Within the
theory of Dirac equation, the concept of pseudospin
symmetry is used in deformed nuclei,
super-deformation, and effective shell model [2,3] It was
shown that the exact pseudospin symmetry occurs in
the Dirac equation when dSðrÞ
dr ¼ 0, i.e
SðrÞ ¼ VðrÞ þ SðrÞ ¼ const, where VðrÞ; SðrÞ are repulsive and attractive scalar potentials, respectively The pseudospin symmetry usually refers to as a quasi-degeneracy of single nucleon doublets with the non-relativistic quantum number
n; l; j ¼ l þ1
2
and
n 1; l þ 2; j ¼ l þ3
2
, where n; l and j are single nucleon radial, orbital and total angular quantum numbers, respectively The total angular momentum is
j¼ ~lþ ~s, where ~l¼ l þ 1 is a pseudo-angular mo-mentum and~s is pseudospin angular momentum The Dirac equation with different potentials in relativistic
* Corresponding author.
E-mail address: ndemikotphysics@gmail.com (A.N Ikot).
Peer review under responsibility of University of Kerbala.
http://dx.doi.org/10.1016/j.kijoms.2016.11.002
2405-609X/© 2016 The Authors Production and hosting by Elsevier B.V on behalf of University of Kerbala This is an open access article under the CC BY-NC-ND license ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ).
ScienceDirect
http://www.journals.elsevier.com/karbala-international-journal-of-modern-science/
Trang 2quantum mechanics with pseudospin symmetry has
been investigated in recent years [4e10] In order to
fully understand the origin of the concept of
pseudo-spin symmetry, the motion of the nucleons in a
rela-tivistic mean field theory has to be taken into
consideration which considered the Dirac equation
[11] Zhou et al.[12]have studied the Dirac equation
for Makarov potential with pseudospin symmetry Guo
et al.[13]studied the bound states of relativistic
par-ticles for ring-shaped non-spherical harmonic
oscil-lator potential under pseudospin symmetry The
ring-shaped molecular potentials are non-central potentials
and have many applications in physics and quantum
chemistry Non-central potentials have also been
studied extensively in the literature since it provides a
useful theoretical background for describing the
interaction between the ring-shaped molecules and that
between the deformed nucleus [14e16] In a similar
development, the ring-shaped potentials have found
many useful applications in quantum chemistry and are
also important in nuclear physics to study
ro-vibrational energy level of molecules, atoms and
deformed nucleus and to describe ring-shaped
molec-ular benzene in chemistry [17e20] In recent years,
considerable efforts have been made by many authors
to obtain the exact analytical solutions of the
Schr€odinger equation with ring-shaped potentials
[21e23] Also, different kinds of ring-shaped like
po-tential have been investigated such as the non-spherical
harmonic oscillator (NHO) [24], the ring-shaped
oscillator (RHO) [25], the double ring-shaped
har-monic oscillator (DRHO) [26] among others Dong
et al.[27]studied a ring-shape non-spherical harmonic
(RNHO) potential and obtained the non-relativistic
energy spectra and wave function Berkdemir [28] in
his paper proposed the novel angle-dependent (NAD)
potential where the potential VðrÞ contains a Coulomb
potential or a harmonic potential in addition to NAD
potential Zhang et al [29] extended the work of
Berkdemir and proposed the harmonic novel angle
dependent (HNAD) potential by simply replacing sin q
by cos q in the numerator of NAD and obtain HNAD
Another form of the ring shaped potential investigated
is the double ring-shaped oscillator (DRSO) [30]
which reduces on special cases to the ring-shaped
oscillator (RSO) and spherical oscillator (SO),
respectively In addition, Zhang [31] proposed new
RNHO and study the energy spectra and wave function
for the potential Very recently, Chen et al [32,33]
studied the ring-shaped potentials using the universal
associated Legendre polynomials and they went further
to discussed the super-universal associated Legendre
polynomials Even though solutions of the Dirac equation with different potential model have attracted a great attention in recent years, the exact solutions of the Dirac equation are only possible for a few simple systems such as harmonic and hydrogen atom[34,35] Various analytical techniques have been employed to find the bound state solution of the Schrodinger, KleineGordon and Dirac equations such as
Nikifor-oveUvarov method (NU) and formula method
[36e38], supersymmetric quantum mechanics
Consequently, the recent advances in the search for the solutions of Dirac equation with physical motivated potential models will lead to the discovery of a new phenomenon in addition to the spin and pseudospin symmetry discover many years ago in the nuclei of atom in the Dirac theory The investigated potentials include but not limited to Coulomb-like potentials
[43], ManningeRosen potential [44], DengeFan po-tential[45], Mobius potential[6], shifted Hulthen po-tential[46]and others[47e49]
Motivated by the study of the ring-shaped-like po-tential [50] we proposed the novel pseudo-Coulomb ring-shaped potential of the form,
Vðr; qÞ ¼A
r þB
r2þ C þ1
r2
D cos2qþ t sin q cos q
2
þ1
r2
b sin2qþ g cos2qþ l sin q cos q
2
where A; B and C are the potential depths and b; g; l; t and D are the five dimensionless ring-shaped parame-ters The plots of the behaviour of this potential are illustrated in Figs 1e3 The purpose of the present paper is to investigate the above potential under the
Fig 1 The plot of the behaviour of novel pseudo-Coulomb potential for a fixed r and various values of q ¼ 30; 60 and 90 respectively.
Trang 3pseudospin symmetry limit and study the quantum
behaviour arising from it
The organization of the paper is as follows In
Section 2, we review the Dirac theory under
pseudo-spin symmetry limit Section3is devoted to the exact
solution of the Dirac equation with pseudo-Coulomb
ring-shaped potential Finally, we give a brief
conclu-sion in Section4
2 Theory of Dirac equation
The Dirac equation for spin- 1
2 particles moving in
an attractive scalar potential SðrÞ and repulsive vector
potential VðrÞ in the relativistic unit ðZ ¼ c ¼ 1Þ is
½ a!$ p!þ bðM þ SðrÞÞjðrÞ ¼ ½E VðrÞjðrÞ; ð2Þ
where E is the relativistic energy of the system, p
! ¼ iV! is the three-dimensional momentum oper-ator and M is the mass of the fermionic particle a!;b are the 4 4 Dirac matrices given as
a
! ¼ 0 !si
s
!
i 0
; b ¼
0 I
where I is 2 2 unitary matrix and s!i are the Pauli three-vector matrices:
s1¼
0 I
I 0
; s2¼
0 i
i 0
; s3¼
0 I
and I is the 2 2 unitary matrix In addition, we can write the Dirac wave function as
jðrÞ ¼
4ð r!Þ
cð r!Þ
ð5Þ
where 4ð r!Þ;cð r!Þ represent the upper and lower components of the Dirac wavefunctions and
s
!$ p!cð r!Þ ¼ ½ε M SðrÞ4ð r!Þ ð6Þ s
!$ p!4ð r!Þ ¼ ½ε þ M DðrÞcð r!Þ ð7Þ where
SðrÞ ¼ VðrÞ þ SðrÞ ¼ Cps; DðrÞ ¼ VðrÞ SðrÞ ¼ Cs
In the limiting case, that is under the condition of pseudospin symmetry, Eqs.(6) and (7)become
s
whereεsM i.e only real negative energy states exist when Cps ¼ 0 (exact pseudospin symmetry) and the energy eigenvaluesε depends on the quantum numbers
n and L and also on the pseudo-orbital angular mo-mentum quantum number ~l
Combining Eqs.(7) and (8)and taking DðrÞ as the pseudo-Coulomb potential, we obtain the Schr €odinger-like equation for the lower component as,
V2ε2 M2
ðε MÞ
A
r þB
r2þ C
þ 1
r2
D cos2qþ t sin q cos q
2
þ1
r2
b sin2qþ g cos2qþ l sin q cos q
2)#
cnlmðr; q; fÞ ¼ 0
ð10Þ
Fig 2 The plot of the novel pseudo-Coulomb potential with various
values of r ranging from r ¼ 5; 25 and 40 with fixed q.
Fig 3 The 3D plot of novel pseudo-Coulomb ring shaped potential
as a function of r and q Here we have choose A ¼ B ¼ C ¼ b ¼ g ¼
l ¼ 1; D ¼ 4 and t ¼ 3.
Trang 4V2¼1
r2
v
vr
r2v
vr
sin q
v vq
sin q v vq
sin2q
v2
vf2
ð11Þ Now since the Eq.(10) has a decoupling of
pseu-dospin and pseudo-orbital momentum, then the lower
component of the spinor wave function has spin up or
spin down i.e.,
1 0
or
0 1
multiplying by the component of the spherical co-ordinate, thus the lower
component of the wave function can be written as,
cn~ ðr; q; fÞ ¼Rn~ lðrÞH~lmðqÞFmðfÞ
where m¼ ±1
2and cmis the spin up or spin down
two-component spinors
Now after substituting Eqs.(11) and (12) into Eq
(10)and making a separation of variable, we obtain the
following sets of second order Schr€odinger-like
dif-ferential equations:
d2Rn~lðrÞ
dr2 þ
ε2 M2
ðε MÞC
þAðε MÞ
r Lþ Bðε MÞ
r2
Rn~lðrÞ ¼ 0
ð13Þ
d2H~lmðqÞ
dq2 þcotqdH~lmðqÞ
"
L m2 sin2qðεMÞ
D cos2qþt
sin q cos q
2
ðεMÞ
b sin2qþgcos2qþl
sin q cos q
2#
H~lmðqÞ¼0;
ð14Þ
d2FðfÞ
where L and m2 are the separation constants The
so-lutions of Eq (15) satisfy the boundary
Fðf þ 2pÞ ¼ FðfÞ whose solution is given as,
FðfÞ ¼ 1ffiffiffiffiffiffi
2p
In the following subsection, we will give the solu-tion of the radial part (Eq.(13)) and polar angular part
of Eq.(14)
3 Solutions of the Dirac equation with the novel pseudo-Coulomb ring-shaped potential
3.1 Solution of the angular part
In order to obtain the energy eigenvalues and the corresponding wave function for the angular part of Dirac equation under the pseudospin symmetry limit,
we take a new variable transformation of the form, x¼ cos2q in Eq.(13)and after a little algebra we obtain,
xð1xÞd2H~lmðxÞ
dx2 þ
13x 2
dH~lmðxÞ
xð1xÞ
u1x2þu2xu3
H~lmðxÞ¼0
ð17Þ
where,
u1¼Lþ ðε MÞ
D2þ ðg þ bÞ2
u2¼Lm22DtðεMÞþ2bðεMÞðbgþlÞ
u3¼ðε MÞ
ðb þ lÞ2þ t2
We take the physically acceptable ansatz for the wave function as,
H~lmðxÞ ¼ xpð1 xÞq
and substituting it into Eq.(17)yields,
xð1 xÞf00
ðxÞ þ
2pþ1
2
2pþ 2q þ3
2
x
f0ðxÞ
pþ q þ1
4 s
pþ q þ1
4þ s
fðxÞ ¼ 0 ð22Þ
p¼1
4
1þqffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi1þ 4ðε MÞðb þ lÞ2þ t2
;
q¼1
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðε MÞD2þ ðg þ bÞ2
þ ðε MÞðb þ lÞ2þ t2
þ m2þ 2Dtðε MÞ 2bðε MÞðb g þ lÞ
q
;
s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
16þLþ ðε MÞ
D2þ ðg þ bÞ2 4
Trang 5Now comparing Eq.(22)with the standard form of
the second order differential of hypergeometric
func-tion [51]
zð1 zÞ400
ðzÞ þ ½c ða þ b þ 1Þx40ðzÞ ab4ðzÞ ¼ 0
ð24Þ
we get the parameters a; b; c as follows,
a¼ p þ q þ1
4 s;
b¼ p þ q þ1
4þ s;
c¼1
2þ 2p
ð25Þ
The solutions of Eq.(22)can be expressed in terms
of the Gauss's hypergeometric function as
H~lmðqÞ ¼cos2qp
sin2qq
2F1
nr; nrþ 2p þ 2q þ1
2; 2p þ1
2; cos2q
ð26Þ However, when pþ q þ1
4þ s ¼ nr or
pþ q þ1
4 s ¼ nr for nr¼ 0; 1; 2:::, then the
hy-pergeometric function in Eq (26) reduces to a
poly-nomial of degree nr In order to obtain the relationship
between the separation constant L and the
non-negative integer nr, we used the quantization
condi-tion pþ q þ1
4 s ¼ nr with Eq.(24), we obtain
Eq (26)is the contribution of the angle-dependent
part of pseudo-Coulomb plus ring-shaped like
poten-tial However, when the ring-shaped term potential
vanishes, that is g¼ b ¼ l ¼ D ¼ t ¼ 0, then the
constant of separation becomes L¼ ~lð~lþ 1Þ, where ~l
is the orbital angular momentum is defined as
~l¼ 2nrþ 1 þ jmj; m ¼ 0; 1; 2::: It can be observed that the angular part of the Pseudo-Coulomb ring-shaped potential has singularities at q¼ tpðt ¼ 0; 1; 2:::Þ when ðD; t; b; g; lÞ are taken as positive values and also at very small and very large values of r However, it is known that the angular wave function HlmðqÞ exist as
an odd and even function [52e55] So in order to remove this singularities then the combination of the ring shaped parameters ðD; t; b; g; lÞ ¼ nð4n 2Þ or ðD; t; b; g; lÞ ¼ nð4n þ 2Þ For instance when
g¼ nð4n 2Þ and similarly for other terms, the rest of the parameters being zero would reduced the HlmðqÞ to the associated legendre polynomials Pm
lðqÞ which is an odd or an even function [52e55] thus removing the singularities The complete angular wave function can
be written as,
H~lmðqÞ ¼ Nn
cos2qp
sin2qq
2F1
nr; nrþ 2p þ 2q
þ1
2; 2p þ1
2; cos2q
ð28Þ where Nn is the normalization constant of the angular wave function HlmðqÞ In order to determine the normalized angular wave function, we used the following normalization conditions[51e54],
Z2p 0
sinðqÞjH~lmðqÞj2
dq¼ 2
Z1 0
jH~lmðqÞj2
Z1 0
zg1ð1 zÞs g½2F1ð n; n þ s; g; zÞ2
dz
¼ n!
ðs þ 2nÞ
GðgÞ2
Gðn þ s g þ 1Þ
L¼
0
B
B
B
1
2
1þqffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi1þ 4ðε MÞðb þ lÞ2þ t2
þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðε MÞD2þ ðg þ bÞ2
þ ðε MÞðb þ lÞ2þ t2
þm2þ 2Dtðε MÞ 2bðε MÞðb g þ lÞ
v u t
þ1
2þ 2nr
1 C C C
2
ðε MÞD2þ ðg þ bÞ2
1 4
ð27Þ
Trang 6Now substituting Eq.(28)into Eq.(29), we obtain,
2N2
n
Z1
0
xpð1xÞq
2F1
nr;nrþ2pþ2qþ1
2;2pþ1
2;x
2dx
¼1
ð31Þ Thus, we obtain the normalization constant as,
Nn¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2nrþpþqþ1Þ
2nr!
Gðnrþpþqþ1ÞGðpþ2qþ2Þ
Gð1þpÞ2
Gðnrþqþ1Þ s
ð32Þ 3.2 Solutions of the radial part
Now for the radial equation, we let the following
parameters
k¼pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiε2 M2
; L ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 1
4þ L þ Bðε MÞ
r
1
2;
q¼A
2
ffiffiffiffiffiffiffiffiffiffiffiffi
ε M
ε þ M
r
; h2¼1
4ðε þ MÞ
ð33Þ
and using the new coordinate transformationr ¼ 2kr,
Eq.(13)becomes
d2RðrÞ
dr2 þ
h2þqrLðL þ 1Þr2
where L is given in Eq.(27) Based on the behaviour of
the wave function at the origin and at infinity, we define
RðrÞ ¼ rLþ 1
By substituting Eq.(35)into Eq.(33), we find that
the wave function 4ðrÞ satisfies the following second
order differential equation,
r400 ðrÞ þ ½2ðL þ 1Þ 2hr40ðrÞ þ ðq 2hðL þ 1ÞÞ4ðrÞ
¼ 0
ð36Þ
If we let z¼ 2hr in Eq.(36), we obtain
z400ðzÞ þ ½2ðL þ 1Þ z40
Lþ 1 q 2h
4ðzÞ ¼ 0
ð37Þ The solution of Eq.(37)is nothing but the confluent hypergeometric function F
Lþ 1 q
2h; 2ðL þ 1Þ; z
However, for the bound states the confluent function are terminated by a polynomial[52]such that,
Lþ 1 q
where n is the node of the radial wave function Using
Eq.(33), we obtain the energy eigenvalues as,
½ðε þ MÞ C2
ðε2 M2Þ ¼
4A2
where n0¼ 1 þ n þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi1
4þ L þ Bðε MÞ
q
As a special case in the non-relativistic limit, if we set ε þ M/ Enl; ε M/2m
Z 2; C ¼ B ¼ 0, we obtain the eigenvalues for the Coulomb potential plus a ring shaped potential as,
En~l¼ 8mA2
where L0¼1
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4L0
p
, L¼ ~l0ð~l0þ 1Þ with ~l0 repre-senting the non-relativistic orbital angular momentum quantum number and
L0¼
0
B
B
B
B
B
@
1
2 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4
2m
Z 2
ðb þ lÞ2þ t2
þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m
Z 2
D2þ ðg þ bÞ2
þ2m
Z 2
ðb þ lÞ2þ t2
þm2þ4m
Z 2Dt4mb
Z 2ðb g þ lÞ
v u u
þ1
2þ 2nr
1 C C C C C A
2
2m
Z2
D2þ ðg þ bÞ2
1 4
ð40bÞ
Trang 7One can observe that the angular orbital momentum
quantum in the non-relativistic limits differ from the
relativistic case by the factorε M/2m
Z 2 This is a new result which has not been reported
before to the best of our knowledge However, if we
choose D¼ t ¼ B ¼ C ¼ b ¼ l ¼ 0 then the
poten-tial (1) turns to the Coulomb potenpoten-tial plus a new
ring-shaped potential [53],
Vðr; qÞ ¼A
r þ a cos2q
where a¼ g2: Making the corresponding replacement
of parameters in Eq.(40), we obtain the energy spectra
and the corresponding wave function for the Coulomb
plus new ring-shaped potential in the non-relativistic
limit as,
Where l0¼ 2nrþ3
2þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi2ma
Z 2 þ m2
q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi2ma
Z 2 þ1 4
q
and when a¼ 0, then the angular momentum quantum
number becomes l0¼ 2nrþ 1 þ jmj This result is
consistent with that given in Ref [53] when
m¼ Z ¼ 1
The corresponding radial eigen functions are
expressed as,
RnLðrÞ¼BnLð2krÞLþ1e2khrF
Lþ1q 2h;2ðLþ1Þ;2hkr
ð43Þ
where BnL is the normalization constant Using the orthogonality of radial wave function,
Z∞ 0
jRnLj2
and the following known relations[53,54],
Z∞ 0
zmezLmnðzÞLm
n 0ðzÞ ¼Gðm þ n þ 1Þ
LmnðzÞ ¼Gðn þ m þ 1Þ
n!Gðm þ 1Þ Fðn; m þ 1; zÞ ð46Þ and we obtain the normalized radial wave function as,
Rn;LðrÞ ¼ 2hn!
ðn0Þ2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n0þ L þ 1 p
!1 4khr
n0
L þ1
e 4khrn0 L2Lþ1n
4khr
n0
Finally, using Eqs.(5) and (8), we obtain the spinor wave function as,
1þ n þ1
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 42nrþ3
2þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi2ma
Z 2 þ m2
q
þ ffiffiffiffiffiffiffiffiffiffiffiffiffi2ma
Z 2 þ1 4
q
2nrþ3
2þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi2ma
Z 2 þ m2
q
ffiffiffiffiffiffiffiffiffiffiffiffiffi2ma
Z 2 þ1 4
q
jð r!Þ ¼ 1ffiffiffiffiffiffi
2p
p
!$ p!s
ε M~cm
1 r
2hn!
ðn0Þ2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n0þ L þ 1 p
!1 4khr
n0
L þ1
e 4khrn0 L2Lþ1n
4khr
n0
Nn
cos2q1
sin2qm 2
2F1
nr;1 2
1þ m þ
l0þ1 2
þ1
4þ s;3
2; cos2q
eim4
ð42bÞ
jð r!Þ ¼ 1ffiffiffiffiffiffi
2p
p
!$ p!s
ε M~cm
1 r
2hn!
ðn0Þ2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n0þ L þ 1 p
!1 4khr
n0
L þ1
e 4khrn0 L2Lþ1n
4khr
n0
Nn
cos2qp
sin2qq
2F1
nr; p þ q þ1
4þ s; 2p þ1
2; cos2q
eim4
ð48Þ
Trang 8The positive energy solutions for the spin symmetry
can be obtain directly from the pseudospin symmetric
solutions by using the following mapping,
~l/l; Vðr; qÞ/ Vðr; qÞ; Cps/ Cs; ε/ ~ε
4 Conclusions
In this article, we have proposed a novel
Pseudo-Coulomb ring-shaped potential and investigate its
exact solutions completely In the limit of the
pseu-dospin symmetry, we solved the Dirac equation and
obtain the energy eigenvalues and eigenfunction using
the traditional factorization method Special cases of
this potential have been discussed Now rescaling the
potential parameter of our ring shaped like parameter
as follows: a/b2; b/g2; c/l2; p/2bg; 2bl/
q; 2gl/f ; a0¼ q þ c; b0¼ f þ c, then the novel
pseudo-Coulomb plus ring shaped like potential
becomes,
Vðr; qÞ ¼ A
rþB
r2þ C þ Z2
2Mr2
ða sin2
qþ a0Þ cos2q
þðb cos2qþ b0Þ
sin2q þ p
ð49Þ
Many useful ring-shaped potentials can be deduced
from Eq.(49)as special cases It is important for us to
point out at this point that these results will have many
applications in nuclear physics and quantum chemistry
[56]
Acknowledgement
The authors wish to thank the kind reviewers for
their positive comments on the manuscript
References
[1] J.N Ginocchio, Phys Rep 414 (2005) 165
[2] J.N Ginocchio, A Leviathan, Phys Lett Scr B 425 (1998) 1
(2001) 204
Phys Scr 85 (2012) 055007
S Zarrinkamar, Eur Phys J Plus 128 (2013) 111
[6] Akpan N Ikot, B.H Yazarloo, S Zarrinkamar, H Hassanabadi,
Eur Phys J Plus 129 (2014) 79
[7] Akpan N Ikot, H Hassanabadi, B.H Yazarloo, S Zarrinkamar,
Int J Mod Phys E 22 (2013) 1350048
889
813
126 (2014) 647
876
(in Chinese)
(2013) 100302
(2005) 299
(2013) 1521
(2004) 299 [28] C Berkdemir, J Math Phys 46 (2009) 139
704
(2005) 94 [31] M.C Zhang, Int J Theor Phys 48 (2009) 2625
(2013) 100302
Letts 40 (2015) 90
Springer, Netheland, 2007
Non-relativistic Theory, Pergamon, New York, 1977 [36] A.F Nikiforov, V.B Uvarov, Special Functions of Mathematical Physics, Birkhauser, Basel, 1988
(2015) 63 [38] A.N Ikot, T.M Abbey, E.O Chukwuocha, M.C Onyeaju, Can J Phys 94 (5) (2016) 517 e521, http://dx.doi.org/
[39] C.S Jia, X.P Li, L.H Zhang, Few-Body Syst 52 (2012) 11 [40] J.Y Liu, J.F Du, C.S Jia, Eur Phys J Plus 128 (2013) 139
Lett A 371 (2007) 180 [42] H Ciftci, R.L Hall, N Saad, J Phys A Math Gen 38 (2005)
1147
1350036
Phys J Plus 128 (2013) 79
[47] P Alberto, R Lisboa, M Malheiro, A.S de Castro, Phys Rev.
[48] G.F Wei, S.H Dong, Eur Phys J A 46 (2010) 207
Trang 9[49] P Alberto, A.S de Castro, M Malheiro, Phys Rev C 87 (2013)
031301
Theor Phys 65 (2016) 569
[54] C.Y Chen, C.L Liu, F.L Lu, Phys Letts A 374 (2010) 1345
371 (2016) 183 [56] B.J Falaye, J Math Phys 53 (2012) 082107
...this potential have been discussed Now rescaling the
potential parameter of our ring shaped like parameter
as follows: a/ b2; b/g2; c/l2;... Zarrinkamar, H Hassanabadi,
Eur Phys J Plus 129 (2014) 79
[7] Akpan N Ikot, H Hassanabadi, B.H Yazarloo, S Zarrinkamar,
Int J Mod Phys...
Phys Scr 85 (2012) 055007
S Zarrinkamar, Eur Phys J Plus 128 (2013) 111
[6] Akpan N Ikot, B.H Yazarloo, S Zarrinkamar, H Hassanabadi,