Even though 2D TMDs exhibit a breadth of new properties that are distinct from traditional bulk materials or thin films, but also are comparable in performance to the atomic layers produ
Trang 1Recent development of two-dimensional
1DepartmentofMaterialsScienceandEngineering,MechanicalandEnergyEngineering,UniversityofNorthTexas,Denton,TX76207,UnitedStates
2CenterforIntegratedNanostructurePhysics,InstituteforBasicScience(IBS),Suwon16419,RepublicofKorea
3DepartmentofEnergyScience,SungkyunkwanUniversity(SKKU),Suwon16419,RepublicofKorea
4DepartmentofElectricalandComputerEngineering,TheUniversityofTexasatAustin,Austin,TX78758,UnitedStates
detail.
Introduction
The great successofgraphene hasbeen followed by anequally
impressivesurgeforthedevelopmentofother2Dmaterialsthatcan
formatomicsheetswithextraordinaryproperties.Interestingly,the
2D library grows every year and feature more than 150 exotic
layeredmaterialsthatcanbeeasilysplitintoasubnanometer-thick
materials[1–3].Theseinclude2DTMDs(e.g.molybdenum
disul-fide(MoS2), molybdenumdiselenide (MoSe2), tungstendisulfide
(WS2),andtungstendiselenide(WSe2)),hexagonalboronnitride
(h-BN),borophene(2D boron), silicene(2D silicon),germanene
(2D germanium), and MXenes (2D carbides/nitrides) [4–11]
Figure 1 is a year-wise publication list of 2D materials that
showtheincreasingtrendofstudyingTMDs.Dependingontheir
chemicalcompositionsand structuralconfigurations, atomically
thin 2D materials canbe categorized asmetallic, semi-metallic,
semiconducting, insulating, or superconducting The first gra-phenedescendantsthatsparkedintenseresearchactivityareTMDs, which arealmost as thin,transparent and flexible asgraphene [12,13].Unlikegraphene, many2DTMDsaresemiconductorin natureandpossesshugepotentialtobemadeintoultra-smalland lowpowertransistorsthataremoreefficientthanstate-of-the-art silicon based transistors fighting to cope with ever-shrinking devices [14,15].Besidessharingthesimilaritiesofabandgapin the visible-nearIRrange,high carriermobility,and on/offratio with ubiquitous silicon, TMDs can be deposited onto flexible substratesandsurvivethestressandstraincomplianceofflexible supports[16,17]
2DTMDsexhibituniqueelectricaland opticalpropertiesthat evolvefromthequantumconfinementandsurfaceeffectsthatarise duringthetransitionofanindirectbandgaptoadirectbandgap whenbulkmaterialsarescaleddowntomonolayers.Thistunable bandgapinTMDsisaccompaniedbyastrongphotoluminescence
*Corresponding authors: Choi, W ( wonbong.choi@unt.edu ), Lee, Y.H ( leeyoung@skku.edu )
Trang 2(PL) and large excitonbinding energy, making thempromising
candidateforavarietyofopto-electronicdevices,includingsolar
cells,photo-detectors,light-emittingdiodes,andphoto-transistors
[18–22].For example, unique propertiesof MoS2 include direct
bandgap(1.8eV), good mobility(700cm2V1s1), high
cur-renton/offratioof107–108,largeopticalabsorption(107m1in
thevisiblerange)andagiantPLarisingfromthedirectbandgap
(1.8eV)inmonolayer;thus,ithasbeenstudiedwidelyfor
elec-tronicsandoptoelectronicsapplications[23]
vanderWaals(vdW)gapsbetweeneachneighboringlayerand
largespecificsurfaceareaduetosheet-likestructuresaredistinct
featuresthatmake2DTMDshighlyattractiveforcapacitiveenergy
storage (e.g.supercapacitors and batteries)and sensing
applica-tions[24,25].Thelargesurface-to-volumeratiobestows2DTMDs
basedsensorswithimprovedsensitivity,selectivityandlowpower
consumption.Unlikedigitalsensors,TMDsbasedsensorsdonot
have physical gates for selectively reacting to the targeted gas
moleculesorbiomolecules[26,27].MoS2-basedFETdeviceshave
potentialapplicationsingas,chemical,andbio-sensors.Another
aspectoftheweaklybonded2DTMDsatomiclayersisthatthey
canbeeasilyisolatedandstackedwithotherTMDstoconstructa
wide range of vdW heterostructures without the limitation of
latticematching[28,29].Stackingtogetherone-atom-thicksheets
of dissimilar TMDs,forexample,vertically stacked
heterostruc-turesallowsfortherealizationofuniquefunctionsandsuperior
propertiesthatcannotbeobtainedotherwise.Byexploitingsuch
novelpropertiesinthesevdWheterostructuresasbandalignment,
tunnelingtransports,andstronginterlayercoupling,severalnew
electronic/opto-electronic devicessuchastunnelingtransistors,
barristers, photodetectors, LEDs and flexible electronicscan be
fabricated[30,31].Figure2depictsthediversedevicesconstructed
fromthe2DTMDsbyusingtheiruniquephysical,chemical,and
opto-electronicproperties[32–37]
Even though 2D TMDs exhibit a breadth of new properties
that are distinct from traditional bulk materials or thin films,
but also are comparable in performance to the atomic layers producedbythestandardexfoliationmethod
Thefieldof2Dmaterialsisanever-expandingresearcharea,and the search for other 2D materials beyond graphene is not just limitedtoTMDs.New2Dmaterialssuchassiliceneand phosphor-enearestrongcontendersintherapidlyemergingrealmsof2D materials [43,44].Several theoretical studiesaddress the funda-mentalpropertiesofthesenew2Dmaterials;however, experimen-talperspectivesarestillintheirinfancyduetostabilityissues Thisreviewhighlightstherecentadvancesinthesynthesisof large-scaleand defect-free2DTMDs.Moreover,wefocusonthe recentprogressinelectronic,opto-electronic,andelectrochemical propertiesofnewlystudiedTMDswithrationaldesignsandnew structuresforpotentialapplications in electronics,sensors, and energystorages.Additionally,wediscussrecentbreakthroughsin thenewestfamiliesof2Dmaterialslikesiliceneandphosphorene Thewiderangeofinterestingpropertiesandpotentialforusein emergent technologies suggest TMDs are likely to remain an importantresearchareaforyearstocome
TMDsarelayeredmaterialsinwhicheachunit(MX2)iscomposed
ofatransitionmetal(M)layersandwichedbetweentwochalcogen (X)atomiclayers.Dependingonthearrangementoftheatoms, thestructuresof2DTMDscanbecategorizedastrigonalprismatic (hexagonal, H), octahedral (tetragonal, T) and their distorted phase (T0) as shown in Fig 3a Typical atomic ratio in layered TMDsexhibitsone transitionmetalto two chalcogenatomsto createMX2exceptseveralcasessuchas2:3quintuplelayers(M2X3) [45]and1:1metalchalcogenides(MX)[46].InH-phasematerial, eachmetalatomputssixbranchesouttotwotetrahedronsin+z andzdirectionswhilethehexagonalsymmetrycanbeseenin the top view (Fig 3a) Therefore, chalcogen–metal–chalcogen arrangementalong z-directionisconsideredassinglelayer,and weakvdWinteractionsbetweeneachlayer(chalcogen–chalcogen) enablemechanicalexfoliationfrombulkTMDstoobtain single layerflake.T-phasehasatrigonalchalcogenlayeronthetopand
180degreerotatedstructure(so-calledtrigonalantiprism)atthe bottominasinglelayerandresultsinhexagonalarrangementof chalcogenatomsinthetopview.Metalatomsaredistortedfurther (ordimerizedinonedirection),calledT0-phase[47,48],resultingin the modification of atomic displacement of chalcogen atoms alongz-direction(d)
Despite the extraordinary mobility of electrons (i.e
15,000cm2V1s1atroomtemperature)ingraphene,thelack
ofa bandgaprestrictsitsuse asanactive elementin FETs[49]
FIGURE1
Year-wisepublicationplotsfor2DTMDsincludingMoS2,MoSe2,black
phosphorus,MXenes,andtotal2DTMDsintheperiodof2005–2016
(searchedbySciFinderScholar(https://scifinder.cas.org),AmericanChemical
Societydatabase(https://www.acs.org/content/acs/en.html),August10th,
2016)
2
Trang 3nanor-ibbons,AB-stackedbilayergraphene, andchemical dopinghave
metwithmarginalsuccessprovidingthebandgapopeningupto
200meVinmostcases[50–52]
Thisremainsachallengingissueandhasbeenadrivingforcein
developing2DTMDswithafinitebandgap.AslistedinFig.3b,2D
TMDs reveal a wide range of bandgap covering all visible and
infraredrangewiththechoiceofmaterial[53].Most
semiconduct-ing2DTMDsrevealdirectbandgapinmonolayer,whereastheyare
indirectbandgapinbulkformexceptfewcasesofGaSeandReS2
[54,55].For example,monolayer dichalcogenides suchasMoS2
(1.8eV),MoSe2 (1.5eV),(2H)-MoTe2 (1.1eV),WS2 (2.1eV)and
WSe2(1.7eV)showdirectbandgap,whereasbulkphasesexhibit
indirectgapwithsmallerenergies.MostMX2materialshaveboth
metallicphaseandsemiconductingphase[56].Thestablephaseof
MX2materialatroomtemperatureis2Hphase,whereas1Tphase
canbeobtainedbyLi-intercalation[57]orelectronbeam
irradia-tion[58].Thechemicallyexfoliated1TMoS2phaseisknowntobe
107 timesmore conductivethan thesemiconducting 2H phase [59].IncaseofWTe2,1Tor1T0phaseismorestablethan2Hphase
atroomtemperature[60].Both2Hand1T0phaseinMoTe2canbe easily modulated into each other because the cohesive energy differencebetweenbothphasesissimilartoeachother.Besides, thedichalocogenidesoftitanium(Ti),chromium(Cr),nickel(Ni), zinc(Zn),vanadium(V),niobium(Nb),andtantalum(Ta)simply exhibitmetallicbehavior[61]
SincemostoftheMX2arefreefromdanglingbonds,andsome
ofthemexhibithighmobility,dependingonthechoiceof appro-priatesubstrateandmetalcontactsaswellasmobilitysuppression throughgrainboundaries,etc.Forexample,MoS2givesamobility
of700cm2V1s1onSiO2/Sisubstratewithscandium(Sc)contact and33–151cm2V1s1onBN/Sisubstrate(encapsulated)atroom temperature[62,63]
Besides excellentelectrical transport,TMDs aremechanically flexible and strongsimilar to graphene An exceptionally high Young’s modulus(E) of 0.330.07TPa has been reported in
FIGURE2
Electronic,opto-electronicandenergydevicesbasedon2Dtransitionmetaldichalcogenides(TMDs).(ReprintedwithpermissionfromRef.[32].2015,Nature PublishingGroup;Ref.[33].2014,NaturePublishingGroup;Ref.[34].2015,RoyalSocietyofChemistry;Ref.[35].2012,JohnWileyandSons;Ref.[36].2015, NaturePublishingGroup;andRef.[37].2014,AmericanChemicalSociety.)
3
Trang 4suspendedfew-layerMoS2 nanosheets[64].Bertolazzietal.[65]
reportedhighin-planestiffnessandEofsingle-layerMoS2,thatis,
18060Nm1and270100GPa,respectively.TheYoung’s
modulus of monolayer MoS2 outperforms the stainless steel
(204GPa)andgrapheneoxide(207GPa)[66],whichareattributed
totheabsenceofstackingfaults,highcrystallinityanddefect-free
natureoftheatomicallythinTMDs
Morerecentprogressinsinglecomponent2Dlayersisexpanded
to the group III and V elements Atomically thin boron layer
‘borophene’ synthesis was recently carried out in an ultrahigh
vacuum system withthe evaporationofpure boronelement at
hightemperature (450–7008C) onsilver (Ag)(111) Anisotropic
metallicity is confirmed by scanning tunneling spectroscopy,
whilebulkboronallotropesaresemiconductors[67].Bulkblack
phosphorous(BP)wassynthesizedbychemicalvaportransportof
redphosphorinthepresenceoftransportagent[68]or
pressuri-zation(>1.2GPa,2008C)[69,70].BPfilmisastrongcandidatefor
applications to electronic devices due to their high mobility
(1000cm2V1S1) with ambipolarity [71–73] Layered metal
carbides/nitrides,MXenes[74],arelocatedatthebottominthe
schematicwithgraphenealsoshowmetallicbehavior
The structure and properties such as charge density wave
(CDW),magnetism(ferromagneticandanti-ferromagnetic),and
superconductivityof2DTMDsaresummarizedinFig.4.Thedetail
descriptionofallthesepropertiesineachmaterialisbeyondthe
scopeofthisreview
In addition to TMDs, borophene, silicene, germanene and
stanene are predicted as exotic2D materials that could show
many intriguing properties However, these materials are
quite unstablein air[75]andtherefore needencapsulation or
hydrogen termination to generate SiH or GeH in silicene or germanene.Boropheneischaracterizedasametal.Siliceneopens
abandgapslightly by1.9meVandgermaneneby33meVand staneneby 101meV, which is an opposite trendwith atomic number[76].Recentworkrevealstheperformanceofsiliceneas
a field effect transistor (FET), which is promising for future
FIGURE3
(a)Typicalstructuresoflayeredtransitionmetaldichalcogenides.Cleavable2H,1Tand1T0structuresinlayeredTMDareshown.(b)Bandgapof2Dlayered materialsvaryingfromzerobandgapofgraphene(whitecolor)towidebandgapofhBN.Thecolorinthecolumnispresentingthecorresponding wavelengthofbandgap,forexample,thebandgapforMoS2(1.8eV)isredcolorandWS2(2.0eV)isorangecolor.Indirectmaterialsarerepresentedatleft (SnS2,ZrS2,HfS3,ZrS3,ZrSe3,HfS2,HfSe3,HfSe2,ZrSe2andZrTe2)anddirectbandgapmaterialsarerepresentedatrightsideofthecolumn(h-BN,WS2,MoS2, WSe2,MoSe2,2H-MoTe2,TiS3andTiSe3)
FIGURE4 Tableforvarious2DTMDsandother2Dmaterialsexhibitingvarious physicalpropertiessuchasmagnetism(ferromagnetic (F)/anti-ferromagnetic(AF)),superconductivity(s)andchargedensitywave(CDW) andcrystalstructures(2H,1T)
4
Trang 5topo-logicallayer
Considerableeffortshave beendevotedtothesynthesis of
con-trollable, large-scale, and uniform atomic layers of diverse 2D
TMDsusingvarioustop-downandbottom-upapproaches,
includ-ingmechanical exfoliation, chemicalexfoliation, and chemical
vapordeposition(CVD).Mostofthereporteddataandtheoryon
thefundamentalphysicsanddeviceson2D TMDshavelargely
reliedontheexfoliationmethodduetoitshighquality.However,
thecriticallimitationsoftheflakesizeandfilmuniformityhave
draggeditsdevelopmentbeyondthefundamentalstudies.Onthe
contrary, the CVD process has been studied for scalable and
reliable production of large area 2D TMDs Nevertheless, CVD
grownTMDsshowpoorqualityascomparedtotheirexfoliated
counterparts
Veryrecently,attemptshavebeenmadetoobtainhighquality
TMDswith thickness controllabilityand wafer-scaleuniformity
using atomic layer deposition (ALD), metal-organic-CVD
(MOCVD),anddirectdepositionmethods(sputtering,pulsedlaser
deposition(PLD), e-beam) The 2D materials forming chemical
reactionsgenerallyuseeitherthermalenergyfromaheated
sub-strateornon-thermalenergysuchasmicrowaveorphotonenergy
intothereactionprocessand the 2Dmaterialsforming process
depends on lattice parameter of substrates, temperatures, and
atomic gas flux [78,79] Here, we will focus our discussion on
the2DTMDsgrowthbyCVD,MOCVD,andALDmethodswith
theirprosandcons
TheCVDisoneofthemosteffectivemethodstoachievelargearea
growth of atomically thin 2D TMDs for the successful device
applications.ThesimplestformofCVDtogrow2DTMDsisthe
co-evaporationofmetaloxidesandchalcogenprecursorsthatlead
tovaporphasereactionfollowedbytheformationofastable2D
TMDovera suitablesubstrate The growth mechanismofCVD
methoddiffersineachsynthesisprocessasthematerialsforming
processalsodependson(1)propertiesofsubstrate,(2)temperature
and(3)atomicgasfluxasbrieflydiscussedinthefollowingsection
(1) Properties of substrate: the atomic layer of 2D materials is
influenced by nanoscale surface morphology and terminating
atomic planes of substrates as well as lattice mismatching It
wasreportedthatthe surfaceenergyofsubstrateaffectsthe
nu-cleationandgrowthof2DTMDs[80].(2)Temperature:thereaction
process islimited by the growth temperature Normally,if the
growthtemperature ishigh,that is,thesurface diffusionisfast
enough,arandomlydepositedadatomwillmovetothe
energeti-callymostfavorableplacesandresultsina3Dislandgrowth.On
theotherhand,ifthesubstratetemperatureistoolow,an
amor-phousorpolycrystallinefilmwillformsinceadatomswillnothave
enough kineticenergy to diffuseand find the lowest potential
energysite [81] (3) Atomic gasflux: atomic gasflux is another
importantparametertoachievehighquality2Dmaterialsgrowth
Onlyasufficient highvaporpressure enablesmixing ofatomic
gases and transport the atomic species to the substrate The
stability of vaporizedatomsis required toprevent unnecessary
reactionduringvaporizedatom transport to the substrate The
vaporizedatomsaretransportedbyacarriergastothesubstrate and theflowrateofvaporedatomisgovernedbytheClausius– Clapeyronequation:d(lnP)/dT=DH/kT,whereDHistheenthalpy
ofevaporation,Pisthe partialpressure oftheevaporatedatom [82].Leeetal.[83]reportedlarge-scaleMoS2layersby chemical vaporreactionofmolybdenumtrioxide(MoO3)andsulfurpowder
atelevatedtemperatures(6508C).MoO3isinitiallyreducedintoa suboxideMoO3x,whichreactswithvaporizedsulfurfurtherto forma2DlayeredMoS2film
Thissimpleprocessiscapableofproducinglarge-scaleMS2; how-ever,itoftenresultsintheformationofrandomlydistributedflakes ratherthanacontinuousfilm.TheinhibitionofthegrowthofMoS2 wasattributedtothepresenceofinterfacialoxidelayerasa signifi-cantobstacle.Inasimilarapproach,Najmaeietal.[84]synthesized MoS2atomiclayersonSi/SiO2substratesbyusingthevapor-phase reactionofMoO3 andS powdersand reportedthe formationof MoS2monolayertriangularflakesonthesubstratesratherthanthe formationofacontinuousMoS2layer.Theaveragemobilityand maximum current on/off ratio of the MoS2 flakes showed 4.3cm2V1s1 and 106
, respectively Wang et al [85] found
aninterestingshapeevolutioninCVDgrownMoS2domainsfrom triangular to hexagonal geometriesdepending upon the spatial locationofthesiliconsubstrateasshowninFig.5a.Yuetal.[86] developedanewmethodthatpreciselycontrolthenumberofMoS2 layersoveralargeareabyusingMoCl5andsulfurasprecursors.But, themobilityofchargecarriersinMoS2-FETwasfoundtobevery low(0.003–0.03cm2V1s1)
Anotherfacilemethodforgrowinglargeareaandcontinuous TMDsisusingthe‘two-stepmethod,depositingtransitionmetal thin film (e.g Mo, W, Nb, etc.) on substrate (usually Si/SiO2) followed by thermalreactionwith chalcogen (S,Se, Te) vapor Thefollowingreactionoccurstoformastable2DTMDduringthe CVD processathightemperatures (300–7008C)and inert atmo-sphere
This ‘two-stepmethod’hasdemonstratedwafer scale fabrica-tion(2in.)andsuccessfulthicknessmodulationofMoS2layers (multilayertomonolayer)onSiO2/Sisubstrates(Fig.5b)[87].After metaldeposition(W,Mo)with controlledthickness,the metal-coatedsubstrateand sulfurpowderwereplaced insidethe CVD furnace, and the reactionenvironment was kept inert under a constantflowof200sccmArat6008Cfor90min.However,in monolayerMoS2grown,pointdefectsanddoublelayers’domains werepresentasconfirmedbyhigh-resolutiontransmission elec-tronmicroscopy(HRTEM)andRamananalysis.Electrical measure-ments on MoS2 FETs revealed a semiconductor behavior with much higherfieldeffectmobility(12.24cm2V1s1) and cur-renton/offratio(106)ascomparedtopreviouslyreported CVD-grownMoS2-FETsandamorphoussilicon(a-Si)ororganicthinfilm transistors Zhanet al [88] usede-beam evaporation and CVD methodstogrowlargeareaMoS2filmsandfoundap-type con-duction but with very poor mobilities in the range of 0.004– 0.04cm2V1s1.ThepresenceofMo-containingseedshasbeen
5
Trang 6ofhighlycrystallinemonolayer MoS2[89].Thepatternsor seed
moleculesonthesubstratescanprovidethecontrollednucleation
of2DTMDsinpredefinedlocations.Thegrowthsoflarge
crystal-lineislandofMoS2 witha sizeof100mmwerereported.Device
measurements exhibited carrier mobility and on/off ratio that
exceeded10cm2V1s1and106,respectively.However,the
met-al-sulfurization methodoffers controllable thickness with large
scaleproduction,butitisstilllimitedtotheproductionofsmall
grainsizewithdefects.Inadditiontometalfilmapproach,direct
sulfurization/selenization of various metal oxide and chloride
precursorssuchas(NH4)2MoS4,MoO3,WO3andMoO2havebeen
widely employedtogrow TMDs.Eliasetal [90]controlled the
thicknessoftheWO3coatingforthelarge-areagrowthof
single-layerand few-layerWS2sheets.(NH4)2MoS4 and similarsulfide
precursorshavebeenused,butwithuncontrolledlayerthicknesses
[91].Duringselenizationofoxideandchloridecoatings,hydrogen
gasisusuallyintroducedtoassistthereactionand toithelpin
tailoringthecrystallineshapeofTMDs[92]
TheMOCVDissimilartoaconventionalCVDexceptthat
metal-organic or organic compoundprecursor are used asthe source
materials [93,94] In MOCVD reaction, the desired atoms are
combined with complex organic molecules and flown over a
substratewherethemolecules aredecomposedbyheatand the
target atomsaredepositedonthe substrateatomby atom The
qualityoffilmscanbeengineeredbyvaryingthecompositionof
atomsatatomicscale,whichresultsinthedesiredthinfilmwith
highcrystallinity.Figure6istherepresentativeschematicofthe
MOCVDmethodshowingvariousstepsinvolvedduringthe
syn-thesis of 2D materials As shown in Fig 6, a series of surface
reactionsoccurduringMOCVDprocessincludingadsorptionof
precursormoleculesfollowedbysurfacekinetics(i.e.surface
dif-fusion), nucleationand growthofdesiredmaterialwith the
de-sorptionofthevolatileproductmolecules
MOCVDhasbeenusedtogrow2DTMDsonlyvery recently
The advantagesof MOCVD in 2D TMDs growth are: (i) itcan
achievelarge-scaleanduniformgrowthof2DTMDs,(ii)itprovides
aprecisecontroloverbothmetaland chalcogenprecursorsand therebycontrolsthecompositionandmorphologyof2DTMDs.In thisregard,Kangetal.[95]synthesizedwafer-scale(4-in.) mono-layerand fewlayersMoS2 andWS2 filmson SiO2 substratesby usingmolybdenumhexacarbonyl(Mo(CO)6),tungsten hexacar-bonyl(W(CO)6),ethylenedisulfide((C2H5)2S),andH2gas-phase precursorswithArgascarrier Theteamshowslarge-scaleMoS2 andWS2filmson4-in.fusedsilicasubstrates(Fig.7a),andabout
8000MoS2FETdevicesfabricatedbyastandardphotolithography process(Fig.7b).TheMoS2-FETsshowedhighelectronmobilityof
30cm2V1s1atroomtemperatureand114cm2V1s1at90K (Fig.7c).Figure7disthetimeevolutionofthemonolayercoverage overtheentiresubstrateasafunctionofcriticaltime(t0) Recently,Eichfeldetal.[96]claimedthefirstreportonthe large-area growth of mono and few-layer WSe2 via MOCVD using W(CO)6 and dimethylselenium ((CH3)2Se) precursors They showedthatthetemperature,pressure,Se:Wratio,andsubstrate choicethathavesignificantimpactonthemorphologyofWSe2 films.ItisclearfromFig.8athatWSe2hasdistinctmorphologyon differentsubstratesincludingepitaxialgraphene,CVDgraphene, sapphireand BN.WSe2 grew with large nucleation density on
FIGURE6 DepositionprocessonthesubstrateandsurfaceprocessesinMOCVDwhile growingactivelayersonthesubstrate.Thegaseousprecursorsare thermallydecomposedandadsorbedonthesubstratefollowedbysurface diffusionkineticstoformhighqualitythinfilms
FIGURE5
(a)SchematicdiagramofCVDprocessandAFMimagesshowingshapeevolutionofMoS2crystalsfromtriangulartohexagonaldependingonthespatial locationofsiliconsubstrate.(ReprintedwithpermissionfromRef.[85].2014,AmericanChemicalSociety.)(b)Largeareagrowthof2–3layersofMoS2using
MoseedlayersulfurizedinaCVDfurnace.(ReprintedwithpermissionfromRef.[87].2015,AmericanInstituteofPhysics.)
6
Trang 7graphene, while the largest domain size of about 5–8mm was
observedon sapphire.Figure 8 showsthe influenceof thegas
flowrateonthedomainsizeandshapeofWSe2grownonepitaxial
graphene.Besides flowrate, the domain size increaseswith
in-creasingtotalpressureandtemperature.A200%incrementinthe
grainsize(700nmto1.5mm)occurredastemperaturerosefrom
800 to 9008C The results weresimilar on sapphire substrates
Besidespressure andtemperature,the Se:Wratioand totalflow
throughthesystemgreatlyimpactthedomainsizeofWSe2films
AnincreaseinSe:Wratiofrom100to2000allowsanincreasein
thedomainsizefrom1to5mm.Anincreaseintotalgasflowfrom
100 to 250sccm enhances domain size up to 8mm The I-V
characteristicsconfirmthepresenceofatunnelbarriertovertical
transportcreatedbytheWSe2andtherebyevidencesthata
pris-tinevanderWaalsgapexistsinWSe2/grapheneheterostructures
Furthermore,thismethodisusedtogrow MoS2/WSe2/graphene
andWSe2/MoS2/grapheneheterostructures(Fig.8c)[97]
Interest-ingly, they discovered that directly grown heterostructures by
MOCVDexhibitresonanttunnelingofchargecareersthatleads
tolargenegativedifferentialresistance(NDR)atroomtemperature
as shown in Fig 8d The MOCVD method is versatile, highly
scalable, and provides significant stoichiometric control over
thefilms,buttheuse oftoxicprecursors,slowfilmgrowthrate
andhighproductioncostsetitbackforthewidespreaduse
ALDisa gasphasechemicalprocess todeposit atomicallythin
filmsofvariousmaterialslayerbylayerbyusingprecursorstoreact
themwithsubstrate.AlthoughALDhasbeenusedwidelyforoxide materials,severalbinarysulfidematerialshavebeenstudied suc-cessfully by several research groups These include TiS2, WS2, MoS2,tin(II)sulfide(SnS),andlithiumsulfide(Li2S).However,
inthescopeofthecurrentarticle,wesummarizeonlyimportant resultsofthe2DTMDsbyALDmethod.Tanetal.[98]provided precisecontrolovertheMoS2filmthicknesspreparedbythe self-limiting reactions of molybdenum pentachloride (MoCl5) and hydrogen sulfide (H2S) on sapphire substrate However, high-temperature(8008C)annealingwasperformedtogrowlargesize (2mm)triangular MoS2crystals Songetal.[99]demonstrated thewaferscalegrowthofWS2usingtheALDgrowthoftungsten oxide(WO3)withsubsequentconversionviaH2Sannealing Fig-ure 9a shows the ALD growth steps for the synthesis of WS2 nanosheets.The numberofMoS2layerscanbecontrolled effec-tivelybytuningthenumberofALDcyclesforMoO3growth.The camera image of large-area (approximately 13cm in length) mono-, bi-, and tetralayer WS2 nanosheets onSiO2 substrateis showninFig.9b
Monolayer WS2 FETs fabricated in the top-gate geometry showed n-type conduction with an electron mobility of
3.9cm2V1s1 (Fig 9c) Furthermore, the high conformal growthabilityofALDhelpedthemtorealizethicknesscontrolled growthof1DWS2 nanotubes(WNTs)bysulfurizingWO3layers deposited onSi nanowires(NWs) Followingthe firstreporton ALD growth of2D materials,Jinet al [100]presentedanother chemical route to deposit MoS2 on SiO2/Si substrate using Mo(CO)6 anddimethyldisulfide (CH3SSCH3,DMDS)as Moand
FIGURE7
LargescaleMOCVDgrowthofcontinuous(a)MoS2monolayersonfusedsilicausingall-gasphaseprecursors.(b)Thescalablegrowthenablesmass
productionof8000ofFETdevices.(c)Fieldeffectmobility(mFE)measuredfromfiveFETdeviceswithdifferentlengthscales.Aconsistentmobilityof
30cm2V1s1wasobserved.(d)OpticalimagesofMoS2filmsatdifferentgrowthtimes,wheret0istheoptimalgrowthtimeforfullmonolayercoverage (scalebar:10mm).(ReprintedwithpermissionfromRef.[95].2015,NaturePublishingGroup.)
7
Trang 89008Ctocrystallizethemintoa2H-MoS2phase.Theabovestudies
revealclearlythatthegrowthtemperaturewasquitehigh(800–
10008C)andfilmsresultedincrystallitesizeinsub-10nmrange
Hence,thedevelopmentofabetterALDapproachtogrowhigh
quality,large-scalewithprecisecontrolofatomiclayerthickness
inMX2isimperative.Inthisdirection,Delabieetal.[101]
dem-onstratedthelowtemperature(300–4508C)growthofWS2atomic
layersenabledbySiandH2plasmareducingagentsforCVDand
ALD,respectively,inthepresenceofWF6andH2Sprecursors.No
template layeror postdeposition annealingtreatmentwas
per-formedontheselayers[102].ALDmethodishighlyscalablewith
precisethicknesscontrollabilityusuallyatlowsubstrate
tempera-tures;itsexpensivenatureanduseofhighlysensitiveprecursors
arebigconcerns
Applications 2DTMD materialsareconsidered attractivefordiverse applica-tions including electronics, photonics, sensing, and energy devices.Theseapplicationsareinspiredbytheuniqueproperties
oflayeredmaterialssuchasthinatomicprofilethatrepresentsthe idealconditionsformaximumelectrostaticefficiency,mechanical strength,tunableelectronicstructure,opticaltransparency,and sensorsensitivity [103].Ofparticular interestforapplications is flexiblenanotechnology,whichisconsideredforpotentially ubiq-uitouselectronicsandenergydevicesthat canbenefitfromthe rangeofoutstandingpropertiesaffordedby2Dmaterials.Flexible technologycomprisesa widearrayofscalablelarge-areadevices includingthinfilmtransistors(TFTs),displays,sensors, transdu-cers, solar cellsand energy storage onmechanically compliant substrates
FIGURE8
(a)AFMsurfacemorphologyoftheWSe2filmgrownondifferentsubstrates;epitaxialgraphene,CVDgraphene,sapphire,andboronnitride.(b)FESEM imagesofWSe2showinganevolutionofdomainsizeasafunctionofflowrate.(ReprintedwithpermissionfromRef.[96].2015,AmericanChemicalSociety.) (c)SchematicandAFMimageofdifferentheterostructures(d)I–Vcurvesfordifferentcombinationofdichalcogenide-grapheneheterostructuresindicating resonanttunnelingandNDR.(ReprintedwithpermissionfromRef.[97].2013,AmericanChemicalSociety.)
8
Trang 9Electrical and optoelectronics applications
Thescalinglimitsofconventionalsilicon-basedtechnologyover
thelastdecadessuggestthatatomicallythinsemiconductorssuch
as TMDs might be applicable for future generation large-scale electronics[104],providedmanufacturingand integration chal-lengescanberesolved.Indeed,thefirstconsumerproduct featur-inggraphenetouchpaneldisplaysinsmart-phoneswasreleasedin Chinain2014,afteronlytenyearsofglobalgrapheneresearch,a relativelyshorttime inthe innovation cycle Moreover,in this timeframe,severalarticleshavereviewedbreakthroughsand per-ceivedapplicationsof2Dmaterials[105,106].Here,wewilldiscuss progressinflexibleelectronics,particularly2DTFTs,whichisthe coredevicerequiredformanyflexibletechnologydeviceconcepts, much like the conventionalones (FET is the centraldevicefor virtuallyallusesofsemiconductortechnology)
Afterseveral yearsofactiveresearchanddevelopment, high-performance2DTFTsbasedonsynthesizedMoS2havenowbeen achieved.TheseTFTsoperatingatroomtemperaturefeaturethe characteristic high on/off current ratio and current saturation expectedfromhigh-qualityTMDs(Fig.10a,b).Inparticular, elec-tronmobility50cm2V1s1andcurrentdensity250mA/mm havebeen observed,whichisvery encouragingfor high-perfor-mance TFTs Importantly, cut-off frequencies exceeding 5GHz havebeenrealizedonflexibleplasticsubstratesatachannellength
of0.5mm(Fig.10c).Atfirst,thiswasrathersurprisinggiventhe relativelylowmobilityofMoS2;however,atthehighfieldsneeded formaximumhighfrequencyoperation,transportisdetermined
by thesaturation velocity(vsat)that turnsouttobesufficiently reasonable(2106cm/s)toachieveGHzspeedsatsub-micron channellengths[107].Inaddition,flexiblemonolayerMoS2TFTs
FIGURE9
(a)SchematicoftheALDprocessforthesynthesisoflargeareaand
thicknesscontrolledWS2filmsand(b)demonstrationofthelargearea
(approx.13cm)mono-,bi-,andtetralayerWS2fabricatedonSi/SiO2
substrates.Thegrowthareaisaboutthesizeofacellularphonedisplay
screen.(c)TransfercharacteristicsofsinglelayerWS2FETexhibitinga
n-typeconductionbehavior.(ReprintedwithpermissionfromRef.[99].2013,
AmericanChemicalSociety.)
FIGURE10
RepresentativeCVD-grownMoS2FET(L=1mm,W=2.6mm)on280nmSiO2/Si.(a)Electricaltransfercharacteristics.Theinsertshowsthelow-fieldmobility
54cm2V1s1,whichisatthehigh-endformonolayerMoS2.(b)ID–VDcharacteristicsfeaturinglinear-saturationprofileexpectedforwell-behaved
semiconductingFETs.(c)Extractedcut-offfrequencyforflexibleMoS2transistorswithintrinsicfT5.6GHz(L=0.5mm).Insetisanillustrationofthedevice structure.(d)Multi-cyclebendingtestsshowingthattheflexibleMoS2affordstrongelectricalstabilityafter10,000cyclesofbendingat1%tensilestrain
(e)SchematicofflexibleMoS2RFtransistorusedasanAMdemodulatorwithinawirelessAMreceiversystem(AMradioband0.54–1.6MHz).Insetshows
theAMreceiveroutputspectrum.(ReprintedwithpermissionfromRef.[107].2015,JohnWileyandSons.)
9
Trang 10that of CVD graphene, and on/offratios typically >10–10 at
roomtemperature[108]
Inessence,BPcanbeviewedasa2Dcrystalthatoffers
optoelec-tronic properties in between zero-bandgap high-mobility
gra-phene and large-bandgap low-mobility TMDs A primary
applicationofBPisforhigh-performancehigh-mobilityflexible
nano-optoelectronics.Inthisregard,thefirstflexibleBPTFTswas
reportedin2015[109],andofferedambipolartransportwithhole
andelectronmobilities(Fig.11b)higherthantheestablished
thin-filmmaterialsbasedonmetaloxides,organicsemiconductorsand
amorphousSi.Thisisallthemoreinterestingsincethefabricated
flexible BP TFTs were not optimized in terms of contacts and
interfaces,thereby suggesting significantroom forperformance
improvement Output characteristics of flexible BP TFTs show
strongcurrent saturation(Fig.11c) The currentsaturation and
2DTMDsaregainingsignificantattentionaselectrodematerials forenergystorages,suchassupercapacitorsandLi-ionbatteries, duetotheir atomically layeredstructure,highsurface areaand excellentelectrochemicalproperties.Suchlayeredstructures pro-vide more sites for ions in energy storage while maintaining structurestability duringchargeand dischargecycles.Thehigh surface area of 2D materials (e.g the surface area of graphene shows2630m2/g,whichisthehighestamongcarbonmaterials) whencombinedwithsurfacefunctionalityandelectrical conduc-tivity,makethemasanidealelectrodeforenergystorages[113– 115]
Asupercapacitoris a high-capacityelectrochemicalcapacitor with capacitance values one order higher than Li-ion batteries consistingoftwosymmetricelectrodesseparatedbyamembrane, andanelectrolyteionicallyconnectingbothelectrodes.Whenthe electrodesarepolarizedbyanappliedvoltage,ionsinthe electro-lyteformelectricdoublelayersofoppositepolaritytothe electro-de’s polarity In certain electrode materials, some ions may permeatethedoublelayerandbecomespecificallyadsorbedions andcontributewithpseudocapacitancetothetotalcapacitanceof the supercapacitor MoS2 exhibits large electrical double layer capacitance (EDLC) due to its stacked-sheet-like structure and largepseudo-capacitanceowingtodifferentMooxidationstates (+2to+6)andhasbecomeapromisingsupercapacitorelectrode materialinthe 2Dmaterials fraternity[116–118].However, po-tentialproblemsassociatedwithitswidespreadusearesmallflake size,productionwithlowyieldanduncontrollablethicknessand defectsbytheexfoliationandhydrothermalmethods[119,120] Tuning the surface morphology of MoS2 nanosheets is an important parameter for their superior electrochemical perfor-mance.Touretal.[121]fabricatededgeoriented/verticallyaligned MoS2 nanosheets that opened more van der Waals gaps and offeredreactivedanglingbondssites totheelectrolyteionsand therebymanifestlargecapacitiveproperties(Fig.12a).The sponge-like vertically aligned MoS2 flexible supercapacitor electrodes demonstrateda higharealcapacitanceupto12.5mFcm2.The limited electrical conductivity of the most common 2H-MoS2 phasemakesitlessattractivematerialforsupercapacitorelectrode
asreportedatinstances[122,123].ThiscompelsRutgersuniversity researcherstodevelopametallicMoS2phase(1T)whichhas107 timeshigherconductancethansemiconductingphase(Fig.12b) ThechemicallyexfoliatedMoS2nanosheets-derived supercapaci-tor electrodes demonstrated excellent capacitive performance, withcapacitance values rangingfrom 400to 700Fcm3in a variety of aqueous electrolytes [124] Choudhary et al [34] reported the direct fabrication of a large-scale and unique
FIGURE11
(a)Fieldeffectmobility(mFE)(opencircles)Ion/offratio(filledbluetriangles)
ofBPfilmswithvaryingthickness.(ReprintedwithpermissionfromRef
[108].2014,NaturePublishingGroup.)(b)Transfercharacteristicsof
encapsulatedBPambipolarTFTonpolyimide,showinglowfieldhole
mobilityof310cm2V1s1,andelectronmobilityof89cm2V1s1.The
on/offratio>103.Vd=10mV,andflakethicknessis15nmandW/
L=10.6mm/2.7mm.(c)Outputcurvesofthesamedevicedisplaying
currentsaturation.Gatebias,Vg=0to2.5Vfrombottomtotop
(ReprintedwithpermissionfromRef.[109].2015,AmericanChemical
Society.)(d)Representativeflexiblehigh-frequencynanosystemapplications
of2Dmaterialsbasedonexperimentallyachievedsaturationvelocities
Contemporaryorganicandmetal-oxide(e.g.IGZO)filmsaremostlysuitable
forlowerfrequencyfunctionssuchasdisplayTFTs.(Reprintedwith
permissionfromRef.[110].2016,AmericanChemicalSociety.)
10