1. Trang chủ
  2. » Giáo án - Bài giảng

perspective functions proximal calculus and applications in high dimensional statistics

24 0 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Perspective Functions Proximal Calculus and Applications in High Dimensional Statistics
Tác giả Patrick L. Combettes, Christian L. Mỹller
Trường học North Carolina State University
Chuyên ngành Optimization and Control
Thể loại Research article
Năm xuất bản 2016
Thành phố Raleigh
Định dạng
Số trang 24
Dung lượng 1,91 MB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

These results constitute central building blocks in the design of proximal optimization algorithms.. We showcase the versatility of the framework by designing novel proximal algorithms f

Trang 1

Contents lists available at ScienceDirectJournal of Mathematical Analysis and Applications

be computed explicitly or via straightforward numerical operations These results constitute central building blocks in the design of proximal optimization algorithms.

We showcase the versatility of the framework by designing novel proximal algorithms for state-of-the-art regression and variable selection schemes in high-dimensional statistics.

© 2016 The Authors Published by Elsevier Inc This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ).

1 Introduction

Perspectivefunctionsappear,oftenimplicitly, invariousproblems inareas as diverseas statistics,trol,computer vision,mechanics, game theory,information theory, signalrecovery, transportation theory,machinelearning,disjunctiveoptimization,andphysics(seethecompanionpaper[7]foradetailedaccount)

con-InthesettingofarealHilbertspaceG,themostusefulform ofaperspectivefunction,firstinvestigatedinEuclideanspacesin[24],isthefollowing

Definition 1.1.Let ϕ : G → ]−∞, +∞] bea properlower semicontinuous convex function and letrec ϕ be

itsrecessionfunction.Theperspective ofϕ is

Trang 2

aprominentinstanceisthemodelingofdatavia“maximumlikelihood-type”estimation(orM-estimation)with aso-calledconcomitantparameter [17].Inthis context,ϕ isalikelihoodfunction,η takestherole oftheconcomitantparameter,e.g.,anunknownscaleorlocationoftheassumedparametricdistribution,and

y comprisesunknownregressioncoefficients.Thestatisticalproblemisthentosimultaneouslyestimatetheconcomitant variableand theregressionvectorfrom dataviaoptimization.Anotherimportantexampleinstatistics[15],signalrecovery[5],andphysics[16]istheFisherinformationofafunctionx :RN → ]0, +∞[,

whichhingesontheperspective functionofthesquaredEuclideannorm(see[7]forfurtherdiscussion)

In the literature, problems involving perspective functions are typically solved with a wide range of

ad hoc methods Despite the ubiquity of perspective functions, no systematic structuringframework hasbeen available toapproach these problems Thegoalof thispaper is to fillthisgap by showingthattheyare amenable to solution byproximal methods,which offera broadarray of splitting algorithms to solvecomplex nonsmooth problems with attractive convergence guarantees [1,8,11,14] The central element inthe successful implementation of a proximal algorithm is the ability to compute the proximity operator

of the functionspresent inthe optimization problem We therefore proposea systematic investigation ofproximity operators for perspective functions and show thatthe proximalframework canefficiently solveperspective-functionbasedproblems,unveilinginparticularnewapplicationsinhigh-dimensionalstatistics

InSection2,weintroducebasicconceptsfromconvexanalysisandreviewessentialpropertiesoftive function Wethen study theproximity operatorof perspective functions inSection3 Weestablishacharacterizationoftheproximityoperatorandthenprovideexamplesofcomputationforconcreteinstances.Section4presentsnewapplicationsofperspectivefunctionsinhigh-dimensionalstatisticsanddemonstratestheflexibilityandpotencyoftheproposedframeworktobothmodelandsolvecomplexproblemsinstatis-tical dataanalysis

perspec-2 Notationandbackground

2.1 Notation and elements of convex analysis

Throughout,H, G,andK arerealHilbertspacesandH⊕G denotestheirHilbertdirectsum.Thesymbol

 · denotesthenormofaHilbertspaceand· | · theassociatedscalarproduct.Theclosedballwithcenter

x ∈ K andradiusρ ∈ ]0, +∞[ isdenotedbyB(x; ρ).

A function f : K → ]−∞, +∞] is proper if dom f = 

x ∈ K f (x) < + ∞ = ∅, coercive iflimx→+∞ f (x) = +∞, and supercoercive if limx→+∞ f (x)/ x = +∞. Denote by Γ0(K) the class

of proper lowersemicontinuous convex functionsfrom K to −∞, +∞], and letf ∈ Γ0(K). Theconjugate

of f isthefunction

f ∗:K → [−∞, +∞] : u →

sup

Trang 3

∂f : K → 2 K : x →u ∈ K (∀y ∈ dom f) y − x | u + f(x)  f(y) . (2.2)

Wehave

(∀x ∈ K)(∀u ∈ K) u ∈ ∂f(x) ⇔ x ∈ ∂f ∗ (u). (2.3)

Moreover,

(∀x ∈ K)(∀u ∈ K) f(x) + f ∗ (u)  x | u (2.4)and

(∀x ∈ K)(∀u ∈ K) u ∈ ∂f(x) ⇔ f(x) + f ∗ (u) = x | u (2.5)

Iff isGâteauxdifferentiableatx ∈ dom f withgradient∇f(x),then

Letz ∈ dom f.Therecessionfunctionoff is

(∀y ∈ K) (rec f)(y) = sup

x∈dom f f (x + y) − f(y)= lim

Trang 4

This operator wasintroduced byMoreau in1962 [20]to model problems inunilateralmechanics.In [12],

itwasshowntoplayanimportantroleintheinvestigationofvariousdataprocessingproblems, andithasbecomeincreasinglyprominentinthegeneralareaofdataanalysis[10,25].Wereviewbasicpropertiesandreferthereaderto[1]foramorecompleteaccount

Thefollowing factswillalso beneeded

Lemma 2.1 Let (Ω, F, μ) be a complete σ-finite measure space, let K be a separable real Hilbert space, and let ψ ∈ Γ0(K) Suppose that K = L2((Ω, F, μ); K) and that μ(Ω) < + ∞ or ψ  ψ(0) = 0 Set

(2.17)

Let x ∈ K and define, for μ-almost every ω ∈ Ω, p(ω)= proxψ x(ω) Then p= proxΦx.

Proof By [1, Proposition 9.32], Φ∈ Γ0(K). Now takex and p in K. Then it follows from (2.14) and [1,Proposition 16.50] that p(ω) = proxΦx(ω) μ-a.e ⇔ x(ω) − p(ω) ∈ ∂ψ(p(ω)) μ-a.e ⇔ x − p ∈ ∂Φ(p) ⇔

Trang 5

Uponcombining (2.21) and (2.22), wearrive at(2.18).Now suppose that,inaddition, D is acone Then

C = D, σ D = ι K,and(2.16) yieldsId − P D = P K.Altogether,(2.18) reducesto(2.19) 2

2.3 Perspective functions

Wereviewheresomeessentialpropertiesof perspectivefunctions

Lemma2.3 [7]Let ϕ ∈ Γ0(G) Then the following hold:

(i) ϕ is a positively homogeneous function in Γ0(R⊕ G).

(ii) Let C =

(μ, u) ∈ R × G μ + ϕ ∗ (u) 0 Then(ϕ)∗ = ι C and ϕ = σ C

(iii) Let η ∈ R and y ∈ G Then

Lemma 2.4.Let L : H → G be linear and bounded, let r ∈ G, let u ∈ H, let α ∈ ]0, +∞[, let ρ ∈ R, and let

q ∈ ]1, +∞[ Set

Trang 6

Proof Thisisaspecialcaseof[7,Example 4.2] 2

Lemma2.5.[7,Example 3.6]Let φ ∈ Γ0(R) be an even function, let v ∈ G, let δ ∈ R, and set

Theorem 3.1.Let ϕ ∈ Γ0(G), let γ ∈ ]0, +∞[, let η ∈ R, and let y ∈ G Then the following hold:

(i) Suppose that η + γϕ ∗ (y/γ)  0 Thenproxγ ϕ(η, y) = (0, 0).

(ii) Suppose that dom ϕ ∗ is open and that η + γϕ ∗ (y/γ) > 0 Then

where p is the unique solution to the inclusion

y ∈ γp + η + γϕ ∗ (p)

If ϕ ∗ is differentiable at p, then p is characterized by y = γp + (η + γϕ ∗ (p)) ∇ϕ ∗ (p).

Proof Itfollowsfrom Lemma 2.3(ii)that

(ii):Set(χ, q)= proxγ ϕ(η, y) and p = (y − q)/γ.Itfollowsfrom(2.14)that(χ, q) ∈ dom (γ∂  ϕ) andfrom

(3.4) that(χ, q) = (0,0).Hence,we deducefrom Lemma 2.3(iv) thatχ > 0. Furthermore,we derive from

(2.14) andLemma 2.3(iii)that(χ, q) ischaracterized by

Trang 7

η − χ = γϕ(q/χ) − q/χ | y − q and y − q ∈ γ∂ϕ(q/χ), (3.5)i.e.,

(η − χ)/γ = ϕ(q/χ) − q/χ | p and p ∈ ∂ϕ(q/χ). (3.6)However,(2.5)assertsthat

p ∈ ∂ϕ(q/χ) ⇔ ϕ(q/χ) + ϕ ∗ (p) = q/χ | p (3.7)Hence,wederivefrom (3.6)thatϕ ∗ (p) = (χ − η)/γ,i.e.,

isanonemptyclosedconvexset.Hence,using (2.16)and(2.15), weobtain

proxγ ϕ(η, y) = (η, y) − γprox γ −1 ϕ∗ η/γ, y/γ

= (η, y) − γP C η/γ, y/γ

= (η, y) − P γC η, y

. (3.11)Nowset (π, p) = P C (η/γ, y/γ).Wededucefrom(2.15),(2.16),and(2.12) that(π, p) ischaracterized by

η/γ − π, y/γ − p∈ N C (π, p). (3.12)(i):Wehave(η/γ, y/γ) ∈ C.Hence,(π, p) = (η/γ, y/γ) and(3.11) yieldsproxγ ϕ(η, y) = (0,0)

(ii):Seth :R⊕ G → ]−∞, +∞] : (μ, u) → μ + ϕ ∗ (u).ThenC = lev0h and dom h=R× dom ϕ ∗ isopen.

Itthereforefollows from[1,Proposition 6.43(ii)]that

Nowletz ∈ dom ϕ ∗andletζ ∈ ]−∞, −ϕ ∗ (z)[.Thenh(ζ, z) < 0.Therefore,wederivefrom[1,Lemma 26.17

andProposition 16.8]and(3.13)that

, if π = −ϕ ∗ (p);

{(0, 0)}, if π < −ϕ ∗ (p). (3.15)

Trang 8

Hence,ifπ < −ϕ ∗ (p),then (3.12)yields (η/γ − π, y/γ − p) = (0,0) andtherefore(η/γ, y/γ) = (π, p) ∈ C,

whichisimpossible since(η/γ, y/γ) ∈ C / Thus,thecharacterization(3.12)becomes

π = −ϕ ∗ (p) and (∃ ν ∈ ]0, +∞[)(∃ w ∈ ∂ϕ ∗ (p)) η/γ + ϕ ∗ (p), y/γ − p= ν(1, w) (3.16)thatis,y ∈ γp + (η + γϕ ∗ (p))∂ϕ ∗ (p).

Remark 3.3 Let ϕ ∈ Γ0(G) be such that dom ϕ ∗ is open, let γ ∈ ]0, +∞[, let η ∈ R, and let y ∈ G be

such thatη + γϕ ∗ (y/γ) > 0. Wederive from (3.5) thaty/χ − q/χ ∈ ∂(γϕ/χ)(q/χ) andthen from (2.14)

that q = χprox γϕ/χ (y/χ).Using (2.16), we canalsowrite q = y − prox χγϕ ∗(·/γ) y. Hence,we deducefrom

Theorem 3.1theimplicitrelation

Thenextexampleisbasedondistance functions

Example3.4.Letϕ = φ ◦ d D,whereD = B(0;1)⊂ G and φ ∈ Γ0(R) isanevenfunctionsuchthatφ(0)= 0andφ ∗isdifferentiableonR.Itfollowsfrom[1,Examples 13.3(iv) and 13.23]thatϕ ∗= · + φ ∗ ◦ ·.Notethat,sinceϕ and φ areeven andsatisfyϕ(0)= 0 andφ(0)= 0,ϕ ∗ andφ ∗ are evenand satisfyϕ ∗(0)= 0andφ ∗(0)= 0 aswellby[1,Propositions 13.18and13.19].Inturn,φ ∗ (0)= 0 andwethereforederivefrom

[1,Corollary 16.38(iii)andExample 16.25]that

So, for every (η, y) ∈ K, P C (η/γ, y/γ) = (0,0) and proxγ ϕ(η, y) = (η, y). Now suppose that (η, y) ∈ K /

Then p = 0 and,takingthenormintheupperlineof(3.20), weobtain

γ p +η + γ p + φ ∗ p) 1 + φ ∗ (p)=y. (3.22)Set

Trang 9

Since φ ∗ is convex, θ is strongly convex and it therefore admits a unique minimizer t. Therefore ψ(t) =

θ  (t)= 0 andp = t = ψ −1(y/γ) istheuniquesolutionto(3.22).Inturn,(3.20)yields

p = t

andweobtainproxγ ϕ(η, y) via (3.1)

Next, we compute the proximity operator of a special case of the perspective function introduced in

Proof ThisisaspecialcaseofTheorem 3.1withϕ = φ ◦ · +δ+ · | v Indeed,asshownin[7,Example 3.6],

(3.26)isaspecialcaseof(2.26).Hence,wederivefromLemma 2.5thatg = ϕ∈ Γ0(R⊕ G).Next,weobtainfrom [1,Example 13.7andProposition 13.20(iii)] that

ϕ ∗ = φ ∗ ◦  · −v − δ (3.30)andthereforethat

Trang 10

InviewofTheorem 3.1,itremainstoassumethatη + γϕ ∗ (y/γ) > 0,i.e.,η + γφ ∗ y/γ − v) > γδ,andtoshow thatthepoint(t, p) providedby(3.28)satisfies

t = p − v and y = γp + η + γϕ ∗ (p)

Weconsider twocases:

• y = γv: Since φ is an even convex function such that φ(0) = 0, φ ∗ has the same properties by [1,Propositions 13.18 and 13.19] Hence,going back to Remark 3.2, since φ ∗ is differentiable, the pointsthathave(π, p) = (δ, v) asaprojectionontoC =

(μ, u) ∈ R ⊕ G μ + φ ∗ u − v)  δ arethepoints

Consequently, ψ is strictly increasing [1, Proposition 17.13], hence invertible It follows that t =

ψ −1(y/γ − v).Inturn,(3.36)yields(3.28) 2

Trang 11

Itfollowsfrom[1,Example 13.2(vi)andCorollary 13.33]thatφ ∗ : s → √ 1 + s2.Hence,φ ∗  : s → s/ √ 1 + s2

andwederive (3.42)from(3.29) 2

Example3.7.Letv ∈ G,letδ ∈ R, letα ∈ ]0, +∞[,letq ∈ ]1, +∞[,and considerthefunction

Letγ ∈ ]0, +∞[,set q ∗ = q/(q − 1),set  = (α(1 − 1/q ∗))q −1, and takeη ∈ R and y ∈ G. Ifq ∗ γ q −1 η +

 y q > γδ and y = γv,lett betheuniquesolutionin]0, + ∞[ totheequation

s 2q ∗ −1+q

∗ (η − γδ) γ s

Trang 12

Example 3.8.Letv ∈ G,letα ∈ ]0, +∞[,letδ ∈ R,andconsider thefunction

WeobtainaspecialcaseofExample 3.7with q = q ∗= 2.Nowletγ ∈ ]0, +∞[,andtakeη ∈ R and y ∈ G.

If 4γη + α y2 2γδ, then proxγg (η, y) = (0,0).Supposethat4γη + α y2 > 2γδ. First,ify = γv, thenproxγg (η, y) = (η − γδ/2,0).Next,suppose thaty = γv and lett be theuniquesolutionin]0, + ∞[ tothedepressedcubicequation

Note that(3.49) canbesolved explicitlyviaCardano’sformula[4,Chapter 4]toobtaint.

We conclude this subsection by investigating integral functions constructed from integrands that areperspective functions

Proposition 3.9.Let (Ω, F, μ) be a measure space, let G be a separable real Hilbert space, and let ϕ ∈ Γ0(G).

Set H = L2((Ω, F, μ); R) and G = L2((Ω, F, μ); G), and suppose that μ(Ω) < + ∞ or ϕ  ϕ(0) = 0 For every x ∈ H, setΩ0(x)=

y(ω) x(ω)

Trang 13

Remark3.10.Proposition 3.9provides ageneralsettingforcomputingtheproximity operatorsofabstractintegralfunctionals by reducingitto the computationofthe proximity operatorofthe integrand Inpar-ticular,bysuitably choosingtheunderlyingmeasure spaceand theintegrand, itprovides aframework forcomputingtheproximityoperators oftheintegralfunctionbasedonperspectivefunctionsdiscussedin[7],whichincludegeneraldivergences.Forinstance,discreteN -dimensionaldivergencesareobtainedbysetting

Ω = {1, , N } and F = 2Ω, and lettingμ be the counting measure (hence H = G = R N)and G =R.While completingthe present paper, it hascome to ourattention thatthecomputation of theproximityoperatorsof discretedivergenceshasalsobeenrecentlyaddressedin[13]

3.2 Further results

AconvenientassumptioninTheorem 3.1(ii)isthatdom ϕ ∗ isopen,asitallowedusto ruleoutthecasewhen

and toreduce(3.14) to (3.15)using (3.13) Ingeneral,(3.13) hastheform N dom h (π, p)={0} × N dom ϕ ∗ p

and, ifdom ϕ ∗ issimpleenough,explicit expressionscanstill beobtained Toshed morelightonthecase

(3.53), consider thescenarioinwhich q = 0 and dom ϕ ∗ isclosed, andset p = (y − q)/γ.Then, inviewof

(2.14), (3.53)yields(η/γ, p) ∈ ∂  ϕ(0, q).Inturn,we derivefrom(2.23) that

is asimple proper closed subset of G andthe proximity operator of theperspective functionof ϕ can becomputedexplicitly

Example3.11.SupposethatD = {0} is anonemptyclosedconvex coneinG anddefine

ϕ = ϑ + ι D , where ϑ =



1 + · 2

Since dom ϑ = G, we have ϕ ∗ = (ϑ + ι D) = ϑ ∗ι D , where D is the polar cone of D and (combine

[1, Examples 13.2(vi) and 13.7])

Trang 14

Now set K = R ⊕ G and K = [0, + ∞[ × D, and let γ ∈ ]0, +∞[, η ∈ R, and y ∈ G. Then (η, y)  K =

where η+= max{0, η } and y+ isdefinedlikewisecomponentwise

Thesecond exampleprovides theproximityoperatoroftheperspective functionoftheHuberfunction.Example 3.12(perspective of the Huber function). Following[7,Example 3.2], letρ ∈ ]0, +∞[ andconsidertheperspective function

(i) Ifη + |y|2/(2γ) 0 and|y|  γρ,thenTheorem 3.13.1yields(χ, q) = (0,0)

(ii) We have χ = 0 ⇔ η/γ  −ρ2/2. Hence, if η  −γρ2/2 and |y| > γρ, (3.56) yields (χ, q) = (0, y −

P[−γρ,γρ] y) = (0, y − γρ sign(y)).

Trang 15

(iii) Ifη > −γρ2/2 and |y| > ρη + γρ(1 + ρ2/2),then(η/γ, y/γ) ∈ (−ρ2/2, ρ sign(y)) + N C(−ρ2/2, ρ sign(y))

andthereforeP C (η/γ, y/γ)= (−ρ2/2, ρ sign(y)).Hence,(3.11)yields(χ, q) = (η+γρ2/2, y −γρ sign(y)).

(iv) If η > −γρ2/2 and |y|  ρη + γρ(1 + ρ2/2), then (χ, q) = proxγ[ |·|2/2] ∼ (η, y) is obtained by setting

v = 0, δ = 0,andα = 2 inExample 3.8

ThelastexampleconcernstheVapnikloss function

Example3.13(perspective of the Vapnik function).Following[7,Example 3.4],letε ∈ ]0, +∞[ andconsidertheperspectivefunction

Nowletη ∈ R,lety ∈ R,andset (χ, q)= proxγ ϕ(η, y).Thenthefollowinghold:

(i) If η + ε |y| 0 and|y|  γ,thenTheorem 3.13.1yields(χ, q) = (0,0)

(ii) We haveχ= 0⇔ η/γ  −ε. Hence,ifη  −γε and |y| > γ,(3.56) yields(χ, q) = (0, y − P[−γ,γ] y)=

(0, y − γ sign(y)).

(iii) Ifη > −γε and |y| > εη + γ(1 + ε2), then(η/γ, y/γ) ∈ (−ε, sign(y)) + N C(−ε, sign(y)) andtherefore

P C (η/γ, y/γ)= (−ε, sign(y)).Hence,(3.11) yields(χ, q) = (η + γε, y − γ sign(y)).

(iv) If |y| > −η/ε and εη  |y|  εη + γ(1 + ε2), then P C (η/γ, y/γ) coincides with the projection of

(η/γ, y/γ) onto thehalf-space withouter normalvector (1, ε sign(y)) andwhich hastheoriginon itsboundary.Asaresult,(3.11)yields(χ, q) = ((η + ε |y|)/(1 + ε2), ε(η + ε |y|)sign(y)/(1 + ε2))

(v) Ifη 0 and|y|  εη,thenP C (η/γ, y/γ) = (0,0) and(3.11)yields(χ, q) = (η, y).

4 Applicationsinhigh-dimensionalstatistics

Sections 2 and 3 provide a unifying framework to model a variety of problems around the notion of

a perspective function By applying the results of Section 3 in existing proximal algorithms, we obtainefficientmethodstosolvecomplexproblems.Toillustratethispoint,wefocusonaspecificapplicationarea:high-dimensionalregressioninthestatisticallinearmodel

4.1 Penalized linear regression

Weconsiderthestandardstatisticallinearmodel

where z = (ζ i)1in ∈ R n is theresponse, X ∈ R n×p adesign (orfeature) matrix, b = (β

j)1jp ∈ R p avectorof regression coefficients,σ ∈ ]0, +∞[, ande = (ε i)1in the noisevector; eachε i is therealization

of arandomvariable with mean zeroand variance1.Henceforth, wedenote by X theith rowof X and

Ngày đăng: 04/12/2022, 16:02

Nguồn tham khảo

Tài liệu tham khảo Loại Chi tiết
[1] H.H. Bauschke, P.L. Combettes, Convex Analysis and Monotone Operator Theory in Hilbert Spaces, Springer, New York, 2011 Sách, tạp chí
Tiêu đề: Convex Analysis and Monotone Operator Theory in Hilbert Spaces
Tác giả: H. H. Bauschke, P. L. Combettes
Nhà XB: Springer
Năm: 2011
[5] J.M. Borwein, A.S. Lewis, D. Noll, Maximum entropy reconstruction using derivative information, part 1: Fisher informa- tion and convex duality, Math. Oper. Res. 21 (1996) 442–468 Sách, tạp chí
Tiêu đề: Maximum entropy reconstruction using derivative information, part 1: Fisher information and convex duality
Tác giả: J.M. Borwein, A.S. Lewis, D. Noll
Nhà XB: Math. Oper. Res.
Năm: 1996
[7] P.L. Combettes, Perspective functions: properties, constructions, and examples, https://arxiv.org/abs/1610.01552, 2016 Sách, tạp chí
Tiêu đề: Perspective functions: properties, constructions, and examples
Tác giả: P. L. Combettes
Nhà XB: arXiv
Năm: 2016
[9] P.L. Combettes, J.-C. Pesquet, Proximal thresholding algorithm for minimization over orthonormal bases, SIAM J. Optim.18 (2007) 1351–1376 Sách, tạp chí
Tiêu đề: Proximal thresholding algorithm for minimization over orthonormal bases
Tác giả: P. L. Combettes, J.-C. Pesquet
Nhà XB: SIAM Journal on Optimization
Năm: 2007
[12] P.L. Combettes, V.R. Wajs, Signal recovery by proximal forward–backward splitting, Multiscale Model. Simul. 4 (2005) 1168–1200 Sách, tạp chí
Tiêu đề: Signal recovery by proximal forward–backward splitting
Tác giả: P. L. Combettes, V. R. Wajs
Nhà XB: Multiscale Modeling and Simulation
Năm: 2005
[13] M. El Gheche, G. Chierchia, J.-C. Pesquet, Proximity operators of discrete information divergences, https://arxiv.org/pdf/1606.09552v1.pdf, 2016 Sách, tạp chí
Tiêu đề: Proximity operators of discrete information divergences
Tác giả: M. El Gheche, G. Chierchia, J.-C. Pesquet
Nhà XB: arXiv
Năm: 2016
[14] F. Facchinei, J.-S. Pang, Finite-Dimensional Variational Inequalities and Complementarity Problems, Springer-Verlag, New York, 2003 Sách, tạp chí
Tiêu đề: Finite-Dimensional Variational Inequalities and Complementarity Problems
Tác giả: F. Facchinei, J.-S. Pang
Nhà XB: Springer-Verlag
Năm: 2003
[15] R.A. Fisher, Theory of statistical estimation, Proc. Cambridge Philos. Soc. 22 (1925) 700–725 Sách, tạp chí
Tiêu đề: Theory of statistical estimation
Tác giả: R.A. Fisher
Nhà XB: Proceedings of the Cambridge Philosophical Society
Năm: 1925
[16] B.R. Frieden, R.A. Gatenby (Eds.), Exploratory Data Analysis Using Fisher Information, Springer, New York, 2007 Sách, tạp chí
Tiêu đề: Exploratory Data Analysis Using Fisher Information
Tác giả: B.R. Frieden, R.A. Gatenby (Eds.)
Nhà XB: Springer
Năm: 2007
[18] S. Lambert-Lacroix, L. Zwald, Robust regression through the Huber’s criterion and adaptive lasso penalty, Electron. J.Stat. 5 (2011) 1015–1053 Sách, tạp chí
Tiêu đề: Robust regression through the Huber’s criterion and adaptive lasso penalty
Tác giả: S. Lambert-Lacroix, L. Zwald
Nhà XB: Electron. J. Stat.
Năm: 2011
[19] J. Lederer, C.L. Müller, Don’t fall for tuning parameters: tuning-free variable selection in high dimensions with the TREX, in: Proc. Twenty-Ninth AAAI Conf. Artif. Intell., AAAI Press, Austin, 2015, pp. 2729–2735 Sách, tạp chí
Tiêu đề: Don’t fall for tuning parameters: tuning-free variable selection in high dimensions with the TREX
Tác giả: J. Lederer, C.L. Müller
Nhà XB: AAAI Press
Năm: 2015
[20] J.J. Moreau, Fonctions convexes duales et points proximaux dans un espace hilbertien, C. R. Acad. Sci. Paris Sér. A Math.255 (1962) 2897–2899 Sách, tạp chí
Tiêu đề: Fonctions convexes duales et points proximaux dans un espace hilbertien
Tác giả: J.J. Moreau
Nhà XB: C. R. Acad. Sci. Paris Sér. A Math.
Năm: 1962
[21] E. Ndiaye, O. Fercoq, A. Gramfort, V. Leclère, J. Salmon, Efficient smoothed concomitant lasso estimation for high dimensional regression, https://arxiv.org/pdf/1606.02702v1.pdf,2016 Sách, tạp chí
Tiêu đề: Efficient smoothed concomitant lasso estimation for high dimensional regression
Tác giả: E. Ndiaye, O. Fercoq, A. Gramfort, V. Leclère, J. Salmon
Nhà XB: arXiv
Năm: 2016
[22] B. O’Donoghue, E. Chu, N. Parikh, S. Boyd, Conic optimization via operator splitting and homogeneous self-dual embed- ding, J. Optim. Theory Appl. 169 (2016) 1042–1068 Sách, tạp chí
Tiêu đề: Conic optimization via operator splitting and homogeneous self-dual embedding
Tác giả: B. O’Donoghue, E. Chu, N. Parikh, S. Boyd
Nhà XB: Journal of Optimization Theory and Applications
Năm: 2016
[23] A.B. Owen, A robust hybrid of lasso and ridge regression, Contemp. Math. 443 (2007) 59–71 Sách, tạp chí
Tiêu đề: A robust hybrid of lasso and ridge regression
Tác giả: A.B. Owen
Nhà XB: Contemporary Mathematics
Năm: 2007
[24] R.T. Rockafellar, Convex Analysis, Princeton University Press, Princeton, NJ, 1970 Sách, tạp chí
Tiêu đề: Convex Analysis
Tác giả: R.T. Rockafellar
Nhà XB: Princeton University Press
Năm: 1970
[25] S. Sra, S. Nowozin, S.J. Wright, Optimization for Machine Learning, MIT Press, Cambridge, MA, 2012 Sách, tạp chí
Tiêu đề: Optimization for Machine Learning
Tác giả: S. Sra, S. Nowozin, S.J. Wright
Nhà XB: MIT Press
Năm: 2012
[26] T. Sun, C. Zhang, Scaled sparse linear regression, Biometrika 99 (2012) 879–898 Sách, tạp chí
Tiêu đề: Scaled sparse linear regression
Tác giả: T. Sun, C. Zhang
Nhà XB: Biometrika
Năm: 2012
[3] J. Bien, I. Gaynanova, J. Lederer, C.L. Müller, Non-convex global minimization and false discovery rate control for the TREX, http://arxiv.org/abs/1604.06815,2016 Link
[8] P.L. Combettes, J. Eckstein, Asynchronous block-iterative primal-dual decomposition methods for monotone inclusions, Math. Program. (2016), http://dx.doi.org/10.1007/s10107-016-1044-0,inpress Link

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w