1. Trang chủ
  2. » Tất cả

determination of a diffusion coefficient in a quasilinear parabolic equation

15 3 0
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Determination of a diffusion coefficient in a quasilinear parabolic equation
Tác giả Fatma Kanca
Trường học Kadir Has University
Chuyên ngành Mathematics
Thể loại Research article
Năm xuất bản 2017
Thành phố Istanbul
Định dạng
Số trang 15
Dung lượng 380,96 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

© 2017 Kanca, published by De Gruyter Open This work is licensed under the Creative Commons Attribution NonCommercial NoDerivs 3 0 License Open Math 2017; 15 77–91 Open Mathematics Open Access Researc[.]

Trang 1

Open Mathematics Open Access Research Article

Fatma Kanca*

Determination of a diffusion coefficient

in a quasilinear parabolic equation

DOI 10.1515/math-2017-0003

Received August 2, 2016; accepted October 21, 2016.

Abstract: This paper investigates the inverse problem of finding the time-dependent diffusion coefficient in

a quasilinear parabolic equation with the nonlocal boundary and integral overdetermination conditions Under some natural regularity and consistency conditions on the input data the existence, uniqueness and continuously dependence upon the data of the solution are shown Finally, some numerical experiments are presented

Keywords:Heat equation, Inverse problem, Nonlocal boundary condition, Integral overdetermination condition, Time-dependent diffusion coefficient

MSC:35K59, 35R30

1 Introduction

In this paper, an inverse problem of determining of the diffusion coefficient a.t / has been considered with extra integral conditionR1

0 u.x; t /dx which has appeared in various applications in industry and engineering [1] The mathematical model of this problem is as follows:

ut D a.t/uxxC f x; t; u/; x; t/ 2 DT WD 0; 1/  0; T / (1)

u.x; 0/D '.x/; x2 Œ0; 1 ; (2)

u.0; t /D u.1; t/; ux.1; t /D 0; t 2 Œ0; T  ; (3)

E.t /D

1

Z

0

u.x; t /dx; 0 t  T; (4)

The functions '.x/ and f x; t; u/ are given functions

The problem of a coefficient identification in nonlinear parabolic equation is an interesting problem for many scientists [2–5] In [6] the nature of (3)-type conditions is demonstrated

In this study, we consider the inverse problem (1)-(4) with nonlocal boundary conditions and integral overdeter-mination condition We prove the existence, uniqueness and continuous dependence on the data of the solution by applying the generalized Fourier method and we construct an iteration algorithm for the numerical solution of this problem

The plan of this paper is as follows: In Section 2, the existence and uniqueness of the solution of inverse problem (1)-(4) is proved by using the Fourier method and iteration method In Section 3, the continuous dependence upon the

*Corresponding Author: Fatma Kanca: Department of Management Information Systems, Kadir Has University, 34083, Istanbul,

Turkey, E-mail: fatma.kanca@khas.edu.tr

Trang 2

data of the inverse problem is shown In Section 4, the numerical procedure for the solution of the inverse problem

is given

2 Existence and uniqueness of the solution of the inverse problem

We have the following assumptions on the data of the problem (1)-(4)

(A1) E.t /2 C1Œ0; T ; E0.t / 0;

(A2)

(1) '.x/2 C4Œ0; 1; '.0/D '.1/; '0.1/D 0; '00.0/D '00.1/;

(2) '2k 0; k D 1; 2; :::

(A3)

(1) Let the function f x; t; u/ be continuous with respect to all arguments in NDT 1; 1/ and satisfy the following condition ˇ

ˇ ˇ

@.n/f x; t; u/

@xn

@.n/f x; t;Qu/

@xn

ˇ ˇ ˇ

 b.x; t/ ju Quj ; n D 0; 1; 2;

where b.x; t /2 L2.DT/; b.x; t / 0;

(2) f x; t; u/2 C4Œ0; 1; t 2 Œ0; T ; f x; t; u/jx D0D f x; t; u/jx D1; fx.x; t; u/jx D1D 0; fxx.x; t; u/jx D0D

fxx.x; t; u/jx D1;

(3) f2k.t / 0; f0.t / > 0;8t 2 Œ0; T ; where

'k D

1

Z

0

'.x/Yk.x/dx; fk.t /D

1

Z

0

f x; t; u/Yk.x/dx; kD 0; 1; 2; :::

X0.x/D 2; X2k 1.x/D 4 cos 2kx; X2k.x/D 4.1 x/ sin 2kx; kD 1; 2; ::: :

Y0.x/D x; Y2k 1.x/D x cos 2kx; Y2k.x/D sin 2kx; k D 1; 2; ::::

The systems of functions Xk.x/ and Yk.x/; kD 0; 1; 2; ::: are biorthonormal on Œ0; 1 They are also Riesz bases

in L2Œ0; 1 (see [7])

We obtain the following representation for the solution of (1)-(3) for arbitrary a.t / by using the Fourier method:

u.x; t /D

2 4'0C

t

Z

0

f0. /d 

3

5X0.x/

C

1

X

k D1

2 4'2ke

.2k/ 2 Rt

0

a.s/ds

C

t

Z

0

f2k. /d  e .2k/

2 Rt



a.s/ds

d  3

5X2k.x/

C

1

X

k D1

2 4.'2k 1 4k'2kt / e

.2k/ 2 Rt

0

a.s/ds

3

5X2k 1.x/

C

1

X

k D1

2 4

t

Z

0

.f2k 1. / 4kf2k. /.t  // e .2k/

2 Rt



a.s/ds

d  3

5X2k 1.x/ (5)

Differentiating (5) we obtain

1

Z

0

ut.x; t /dxD E0.t /; 0 t  T: (6)

Trang 3

(5) and (6) yield

a.t /D

E0.t /C 2f0.t /C P1

k D1

2

kf2k.t /

1

P

k D1

8k 2 4'2ke

.2k/ 2 t

R

0

a.s/ds

C

t

R

0

f2k. /e .2k/

2 t

R



a.s/ds

d  3 5

(7)

Definition 2.1 fu.t/g D fu0.t /; u2k.t /; u2k 1.t /; kD 1; :::; ng ;are continuous functions on Œ0; T  and satisfying the condition max

0 tTju0.t /j C P1

kD1

 max

0 tTju2k.t /j C max

0 tTju2k 1.t /j



< 1: The set of these functions is

denoted byB1and the norm inB1isku.t/k D max

0 tTju0.t /j C 1P

k D1

 max

0 tTju2k.t /j C max

0 tTju2k 1.t /j

 : It

can be shown thatB1is the Banach space

Theorem 2.2 If the assumptions.A1/ A3/ are satisfied, then the inverse coefficient problem (1)-(4) has at most one solution for small T

Proof We define an iteration for Fourier coefficient of (5) as follows:

u.N0 C1/.t /D u.0/0 t /C

t

Z

0

1

Z

0

f ; ; u.N /.;  //d d 

u.N2kC1/.t /D u.0/2k.t /C

t

Z

0

1

Z

0

f ; ; u.N /.;  // sin 2k e .2k/

2 Rt



a N / s/ds

d d 

u.N2kC1/1 t /D u.0/2k 1.t /C

t

Z

0

1

Z

0

f ; ; u.N /.;  // cos 2k e .2k/

2 Rt



a N / s/ds

d d 

4k

t

Z

0

1

Z

0

.t  /f ; ; u.N /.;  // sin 2k e .2k/

2 Rt



a N / s/ds

d d  (8)

where N D 0; 1; 2; ::: and

u.0/0 t /D '0; u.0/2k.t /D '2ke

.2k/ 2 Rt

0

a.s/ds

; u.0/2k 1.t /D '2k 4k t '2k 1/ e

.2k/ 2 Rt

0

a.s/ds

:

It is obvious that u.0/.t /2 B1and a.0/2 C Œ0; T :

For N D 0,

u.1/0 t /D u.0/0 t /C

t

Z

0

1

Z

0

Œf ; ; u.0/.;  // f ; ; 0/d d C

t

Z

0

1

Z

0

f ; ; 0/d d :

Let us apply Cauchy inequality,

ˇ

ˇu.1/0 t /

ˇ

ˇ  j'0j C

0

@

t

Z

0

d  1 A

10

B

t

Z

0

8

<

:

1

Z

0

Œf ; ; u.0/.;  // f ; ; 0/d 

9

=

;

2

d  1 C

1

C 0

@

t

Z

0

d  1 A

10

B

t

Z

0

8

<

:

1

Z

0

f ; ; 0/d 

9

=

;

2

d  1 C

1

:

Trang 4

and with Lipschitz condition we obtain

ˇ

ˇu.1/0 t /ˇ

ˇ  j'0j Cpt

0 B

t

Z

0

8

<

:

1

Z

0

b.;  /ˇ

ˇu.0/.;  /ˇ

ˇd 

9

=

;

2

d  1 C

1

Cpt 0 B

t

Z

0

8

<

:

1

Z

0

f ; ; 0/d 

9

=

;

2

d  1 C

1

:

If we take the maximum of the last inequality, we get the following estimation for u.1/0 t /:

max

0 tT

ˇ

ˇu.1/0 t / ˇ

ˇ  j'0j CpT kb.x; t/kL 2 D T / u.0/.t /

B 1

CpTkf x; t; 0/kL 2 D T /:

u.1/2k.t /D '2ke

.2k/ 2 Rt

0

a.s/ds

C

t

Z

0

1

Z

0

Œf ; ; u.0/.;  // f ; ; 0/ sin 2ke .2k/

2 Rt



a.s/ds

d d 

C

t

Z

0

1

Z

0

f ; ; 0/ sin 2ke .2k/

2 Rt



a.s/ds

d d :

Let us apply Cauchy inequality,

ˇ

ˇu.1/2k.t /

ˇ

ˇ  j'2kj C

0

@

t

Z

0

d  1 A

10

B

@

t

Z

0

8

<

:

1

Z

0

Œf ; ; u.0/.;  // f ; ; 0/ sin 2k d 

9

=

;

2

d  1 C A

1

C 0

@

t

Z

0

d  1 A

10

B

@

t

Z

0

8

<

:

1

Z

0

f ; ; 0/ sin 2k d 

9

=

;

2

d  1 C A

1

:

and take the sum of the last inequality and partial derivative of f with respect to  and apply Hölder inequality,

1

X

k D1

ˇ

ˇu.1/2k.t / ˇ

ˇ 

1

X

k D1

j'2kj C 1

2

1

X

k D1

1

k2

!1

 0 B

t

Z

0

1

X

k D1

8

<

:

1

Z

0

Œf.; ; u.0/.;  // f.; ; 0/ cos 2k d 

9

=

;

2

d  1 C

1

C 1 2

1

X

kD1

1

k2

!10 B

t

Z

0

1

X

kD1

8

<

:

1

Z

0

f.; ; 0/ cos 2k d 

9

=

;

2

d  1 C

1

:

By applying Bessel inequality we obtain

1

X

k D1

ˇ

ˇu.1/2k.t /

ˇ

ˇ 

1

X

k D1

j'2kj C

p 6T 12

0 B

t

Z

0

1

X

k D1

8

<

:

1

Z

0

Œf.; ; u.0/.;  // f.; ; 0/ d 

9

=

;

2

d  1 C

1

C

p 6T 12

0 B

t

Z

0

1

X

k D1

8

<

:

1

Z

0

f.; ; 0/d 

9

=

;

2

d  1 C

1

:

If we use Lipschitzs condition and take the maximum of the last inequality, we get the following estimation for

1

P

k D1

ˇ

ˇu.1/2k.t /

ˇ

ˇ:

1

X

k D1

max

0 tT

ˇ

ˇu.1/2k.t / ˇ

ˇ 

1

X

k D1

j'2kj C

p 6T

12 kb.x; t/kL 2 D/ u.0/.t /

p 6T

12 kfx.x; t; 0/kL 2 D/:

Trang 5

X

k D1

max

0 tT

ˇ

ˇu.1/2k.t / ˇ

ˇ 

1

X

k D1

j'2kj C

p 6T

12 kb.x; t/kL 2 D T / u.0/.t /

B 1

C

p 6T

12 M:

u.1/2k 1.t /D u.0/2k 1.t /C

t

Z

0

1

Z

0

f ; ; u.0/.;  // cos 2k e .2k/

2 Rt



a 0/ s/ds

d d 

4k

t

Z

0

1

Z

0

.t  /f ; ; u.0/.;  // sin 2k e .2k/

2 Rt



a 0/ s/ds

d d :

Similarly, let us apply Cauchy inequality,

ˇ

ˇu.1/2k 1.t /

ˇ

ˇ  j'2k 1j C 4kt j'2kj C

0

@

t

Z

0

d  1 A

10

B

t

Z

0

8

<

:

1

Z

0

Œf ; ; u.0/.;  // f ; ; 0/ cos 2k d 

9

=

;

2

d  1 C

1

C

0

@

t

Z

0

d  1 A

10

B

t

Z

0

8

<

:

1

Z

0

f ; ; 0/ cos 2kd 

9

=

;

2

d  1 C

1

C4kt

0

@

t

Z

0

d  1 A

10

B

t

Z

0

8

<

:

1

Z

0

Œf ; ; u.0/.;  // f ; ; 0/ sin 2k d 

9

=

;

2

d  1 C

1

C4kt

0

@

t

Z

0

d  1 A

10

B

t

Z

0

8

<

:

1

Z

0

f ; ; 0/ sin 2k d 

9

=

;

2

d  1 C

1

;

and take the sum of the last inequality and partial derivative of f with respect to  and apply Hölder inequality and Bessel inequality,

1

X

k D1

ˇ

ˇu.1/2k 1.t /

ˇ

ˇ 

1

X

k D1

j'2k 1j Cpt

6

1

X

k D1

ˇ

ˇ'2k00 ˇ ˇ

C

1

X

kD1

p t 2k

0 B

t

Z

0

8

<

:

1

Z

0

Œf.; ; u.0/.;  // f.; ; 0/ d 

9

=

;

2

d  1 C

1

C

1

X

kD1

p t 2k

0 B

t

Z

0

8

<

:

1

Z

0

f.; ; 0/ d 

9

=

;

2

d  1 C

1

C

1

X

k D1

4k tp t 2k/2

0 B

t

Z

0

8

<

:

1

Z

0

Œf .; ; u.0/.;  // f .; ; 0/ d 

9

=

;

2

d  1 C

1

C

1

X

k D1

4k tp t 2k/2

0 B

t

Z

0

8

<

:

1

Z

0

f .; ; 0/ d 

9

=

;

2

d  1 C

1

:

If we use Lipschitzs condition and take the maximum of the last inequality, we get the following estimation for

1

P

k D1

ˇ

ˇu.1/2k 1.t /

ˇ

ˇ:

1

X

k D1

max

0 tT

ˇ

ˇu.1/2k 1.t /

ˇ

ˇ 

1

X

k D1

j'2k 1j C

p 6T 6

1

X

k D1

ˇ

ˇ'2k00 ˇ ˇ

Trang 6

p 6T

12 C

p 6T T 6

! kb.x; t/kL 2 D T / u.0/.t /

B 1

C

p 6T 

12 C

p 6T T 6

! M:

Finally we obtain the following inequality:

u.1/.t /

B 1

D max

0 tT

ˇ

ˇu.1/0 t / ˇ

ˇ C

1

X

k D1

 max

0 tT

ˇ

ˇu.1/2k.t / ˇ

ˇ C max

0 tT

ˇ

ˇu.1/2k 1.t /

ˇ ˇ



 k'k C

p 6T 6

1

X

k D1

ˇ

ˇ'2k00 ˇ ˇ

C p

T C

p 6T

6 C

p 6T T 3

! kb.x; t/kL 2 D T / u.0/.t /

B 1

C p

T C

p 6T

6 C

p 6T T 3

! M:

wherek'k D j'0j C 4 Œj'2kj C j'2k 1j Hence u.1/.t /2 B1 In the same way, for N we have

u.N /.t /

B 1

D max

0 tT

ˇ

ˇu.N /0 t /ˇ

ˇ C

1

X

k D1

 max

0 tT

ˇ

ˇu.N /2k t /ˇ

ˇ C max

0 tT

ˇ

ˇu.N /2k 1.t /ˇ

ˇ



 k'k C

p 6T 6

1

X

k D1

ˇ

ˇ'2k00 ˇ ˇ

C p

T C

p 6T

6 C

p 6T T 3

! kb.x; t/kL2.DT/ u.N 1/.t /

B 1

C p

T C

p 6T

6 C

p 6T T 3

! M:

Since u.N 1/.t /2 B1; we have u.N /.t /2 B1;

fu.t/g D fu0.t /; u2k.t /; u2k 1.t /; kD 1; 2; :::g 2 B1:

We define an iteration for (7) as follows:

a.NC1/.t /D

E0.t /C

1

R

0

f ; ; u.N //dx

1

P

k D1

8k 2 4'2ke

.2k/ 2 t

R

0

a N / s/ds

C

t

R

0

1

R

0

f ; ; u.N // sin 2ke

.2k/ 2 t

R

0

a N / s/ds

d d  3 5

It is clear that

1

R

0

f ; ; u/dxD 2f0.t /C P1

k D1

2

kf2k.t /: For ND 0;

a.1/.t /D

E0.t /C

1

R

0

f ; ; u.0//dx

1

P

k D1

8k 2 4'2ke

.2k/ 2 t

R

0

a 0/ s/ds

C

t

R

0

1

R

0

f ; ; u.0// sin 2ke

.2k/ 2 t

R

0

a 0/ s/ds

d d  3 5

Let us add and subtract

1

R

0

f ; ; 0/d d  to the last equation and use the Cauchy inequality and take the maximum

to obtain:

a.1/.t /

C Œ0;T 

ˇ

ˇE0.t / ˇ ˇ

C2 C 1

C2kb.x; t/kL2.DT/ u.0/.t /

B 1

C 1

C2

M

Trang 7

C2D E.T / 2'0 2

T

Z

0

f0. /d :

Hence a.1/.t /2 C Œ0; T  In the same way, for N; we have

a.N /.t /

C Œ0;T 

ˇ

ˇE0.t / ˇ ˇ

C2 C 1

C2kb.x; t/kL 2 D T / u.N 1/.t /

B 1C 1

C2

M

Since u.N 1/.t /2 B1, we have a.N /.t /2 C Œ0; T :

Now let us prove that the iterations u.NC1/.t / and a.N C1/.t / converge in B1and C Œ0; T , respectively, as

N ! 1:

u.1/.t / u.0/.t /Du.1/0 t / u.0/0 t /

 C

1

X

k D1

Œ.u.1/2k.t / u.0/2k.t //C u.1/2k 1.t / u.0/2k 1.t //

D 0

@

t

Z

0

1

Z

0

h

f ; ; u.0/.;  // f ; ; 0/id d 

1

AC

t

Z

0

1

Z

0

f ; ; 0/d d 

C

1

X

k D1

t

Z

0

1

Z

0

h

f ; ; u.0/.;  // f ; ; 0/ie .2k/

2 Rt



a 0/ s/ds

sin 2kd d 

C

1

X

k D1

t

Z

0

1

Z

0

f ; ; 0/e .2k/

2 Rt



a 0/ s/ds

sin 2kd d 

C

1

X

k D1

t

Z

0

1

Z

0

h

f ; ; u.0/.;  // f ; ; 0/ie .2k/

2 Rt



a 0/ s/ds

 cos 2kd d 

C

1

X

k D1

t

Z

0

1

Z

0

f ; ; 0/e .2k/

2 Rt



a 0/ s/ds

 cos 2kd d 

16k

1

X

k D1

t

Z

0

1

Z

0

.t  /hf ; ; u.0/.;  // f ; ; 0/ie .2k/

2 Rt



a 0/ s/ds

sin 2kd d 

C16k

1

X

k D1

t

Z

0

1

Z

0

.t  / f ; ; 0/e .2k/

2 Rt



a 0/ s/ds

sin 2kd d 

Applying Cauchy inequality, Hölder inequality, Lipshitzs condition and Bessel inequality to the last equation, we obtain:

u.1/.t / u.0/.t /

B 1

 p

T C

p 6T

6 C

p 6T T 3

! kb.x; t/kL 2 D T / u.0/.t /

B 1

C p

T C

p 6T

6 C

p 6T T 3

! M:

K D p

T C

p 6T

6 C

p 6T T 3

! kb.x; t/kL 2 D T / u.0/.t /

B 1

C p

T C

p 6T

6 C

p 6T T 3

! M:

u.2/.t / u.1/.t /Du.2/0 t / u.1/0 t /C

1

X

k D1

Œ.u.2/2k.t / u.1/2k.t //C u.2/2k 1.t / u.1/2k 1.t //

D

0

@

t

Z

0

1

Z

0

h

f ; ; u.1/.;  // f ; ; u.0/.;  //

i

d d  1 A

Trang 8

1

X

k D1

t

Z

0

1

Z

0

h

f ; ; u.1/.;  // f ; ; u.0/.;  //ie .2k/

2 Rt



a 1/ s/ds

sin 2kd d 

C

1

X

k D1

t

Z

0

1

Z

0

f ; ; u.0/.;  //

0

@e .2k/

2 Rt



a 1/ s/ds

e .2k/

2 Rt



a 0/ s/ds

1

Asin 2kd d 

C

1

X

k D1

t

Z

0

1

Z

0

h

f ; ; u.1/.;  // f ; ; u.0/.;  //ie .2k/

2 Rt



a 1/ s/ds

 cos 2kd d 

C

1

X

k D1

t

Z

0

1

Z

0

f ; ; u.0/.;  //

0

@e .2k/

2 Rt



a 1/ s/ds

e .2k/

2 Rt



a 0/ s/ds

1

A cos 2kd d 

16k

1

X

kD1

t

Z

0

1

Z

0

.t  /hf ; ; u.1/.;  // f ; ; u.0/.;  //ie .2k/

2 Rt



a 1/ s/ds

sin 2kd d 

16k

1

X

kD1

t

Z

0

1

Z

0

.t  / f ; ; u.0/.;  //

0

@e .2k/

2 Rt



a 1/ s/ds

e .2k/

2 Rt



a 0/ s/ds

1

Asin 2kd d 

Applying the same estimations we obtain:

u.2/.t / u.1/.t /

B 1  p

T C

p 6T

6 C

p 6T T 3

! kb.x; t/kL 2 D T / u.1/ u.0/

B 1

C

p 6T

6 C

p 6T T 3

!

TM a.1/ a.0/

B 2

:

a.1/ a.0/D

E0.t /C

1

R

0

f ; ; u.1//d 

1

P

k D1

8k 2 4'2ke

.2k/ 2 Rt

0

a 1/ s/ds

C

t

R

0

1

R

0

f ; ; u.1// sin 2ke

.2k/ 2 Rt

0

a 1/ s/ds

d d  3 5

E0.t /C

1

R

0

f ; ; u.0//d 

1

P

k D1

8k 2 4'ske

.2k/ 2 t

R

0

a 0/ s/ds

C

t

R

0

1

R

0

f ; ; u.0// sin 2ke

.2k/ 2 t

R

0

a 0/ s/ds

d d  3 5

If we apply the Cauchy inequality, the Hölder Inequality, the Lipschitz condition and the Bessel inequality to the last equation, we obtain:

a.1/ a.0/

C Œ0;T 

0

@

ˇ

ˇE0.t / ˇ

ˇ

2p 6C2 2

1

X

k D1

ˇ

ˇ'2k.4/ˇ

ˇ C

ˇ

ˇE0.t / ˇ

ˇM

2p 6C2 2

C M

2p 6C2 2

1

X

k D1

ˇ

ˇ'2k.4/ˇ

ˇ CM2 1

AT a.1/ a.0/

C Œ0;T 

C 0

@ 2 ˇ

ˇE0.t / ˇ ˇ p 6C22 Cp2

6C22

1

X

kD1

ˇ

ˇ'2k00 ˇ

ˇ CM 1

Akb.x; t/kL 2 D T / u.1/ u.0/

B 1

AD 0

@

ˇE0.t /ˇ ˇ p 6C22 Cp2

6C22

1

X

k D1

ˇ

ˇ'002k ˇ

ˇ CM 1

A;

Trang 9

B D 0

@

ˇ

ˇE0.t / ˇ

ˇ

2p 6C2 2

1

X

k D1

ˇ

ˇ'2k.4/

ˇ

ˇ C

ˇ

ˇE0.t / ˇ

ˇM

2p 6C2 2

C M

2p 6C2 2

1

X

k D1

ˇ

ˇ'2k.4/

ˇ

ˇ CM2 1 A

a.1/ a.0/

C Œ0;T  A

1 BT kb.x; t/kL 2 D T / u.1/ u.0/

B 1

u.2/.t / u.1/.t /

B 1

" p

T C

p 6T

6 C

p 6T T 3

! C

p 6T

6 C

p 6T T 3

! MAT

1 BT

# kb.x; t/kL 2 D T /K

C D p

T C

p 6T

6 C

p 6T T 3

!

D D

p 6T

6 C

p 6T T 3

!

u.2/.t / u.1/.t /

B 1





CC D MAT

1 BT

 kb.x; t/kL 2 D T /K

If we use the same estimations, we get

u.3/.t / u.2/.t /

B 1

p1 2



CC D MAT

1 BT

2

kb.x; t/k2L2.DT/K For N W

a.NC1/ a.N /

C Œ0;T  A

1 BT kb.x; t/kL 2 D T / u.NC1/ u.N /

B 1

u.NC1/.t / u.N /.t /

B 1

 pK

N Š



CC D MAT

1 BT

N

kb.x; t/kLN2 D T / (9)

It is easy to see that if u.NC1/ ! u.N /; N ! 1; then a.NC1/ ! a.N /; N ! 1: Therefore u.N C1/.t / and

a.NC1/.t / convergence in B1and C Œ0; T ; respectively

Now let us show that there exist u and a such that

lim

N !1u.NC1/.t /D u.t/; lim

N !1a.NC1/.t /D a.t/:

If we apply the Cauchy inequality, the Hölder Inequality, the Lipshitzs condition and the Bessel inequality to ˇ

u u.N C1/ˇ

andˇa a.N /ˇ

ˇ

ˇu u.NC1/

ˇ

ˇ C 0

@

t

Z

0

1

Z

0

b2.x; t / ˇ

ˇu. / u.NC1/. /

ˇ ˇ

2

d d  1 A

1

CC 0

@

t

Z

0

1

Z

0

b2.x; t / ˇ

ˇu.NC1/. / u.N /. /

ˇ ˇ

2

d d  1 A

1

CD 0

@

t

Z

0

1

Z

0

ˇ

ˇa. / a.N /. /

ˇ ˇ

2

d d  1 A

1

ˇ

ˇa a.N /

ˇ

ˇ  A

1 BT

0

@

t

Z

0

1

Z

0

b2.x; t / ˇ

ˇu. / u.NC1/. /

ˇ ˇ

2

d d  1 A

1

Trang 10

C A

1 BT

0

@

t

Z

0

1

Z

0

b2.x; t / ˇ

ˇu.NC1/. / u.N /. /

ˇ ˇ

2

d d  1 A

1

and the Gronwall inequality to the last inequality and using inequality (9), we have

u.t / u.NC1/.t /

2

B 1

 2



CCDMAT

1 BT

N C1 K p

N Škb.x; t/kLN2C1.DT/

!2



exp 2



CCDMAT

1 BT

2

kb.x; t/kL2.DT/

Then N ! 1 we obtain u.N C1/! u; a.N C1/! a:

Let us prove the uniqueness of these solutions Assume that problem (1)-(4) has two solution pair a; u/ ; b; v/ : Applying the Cauchy inequality, the Hölder Inequality, the Lipshitzs condition and the Bessel inequality

toju.t/ v.t /j and ja.t/ b.t /j, we obtain:

ju.t/ v.t /j 

p 6 3

( 1

X

kD1

ˇ

ˇ'2k000 ˇ

ˇ C ˇ

ˇ'2k000 1 ˇ ˇ

) C

p 6T

6 M

1

X

kD1

ˇ

ˇ'2k{v 1 ˇ

ˇ C

p 6T M

3 C2

p 6T M 3

!



T 0

@

t

Z

0



Z

0

ja./ b. /j2d d 

1 A

1

C p

T C

p 6T

6 C

p 6T T 3

!0

@

t

Z

0

1

Z

0

b2.;  /ju./ v. /j2d d 

1 A

1

;

ja.t/ b.t /j  A

1 BT

0

@

t

Z

0

1

Z

0

b2.;  /ju./ v. /j2d d 

1 A

1

;

and applying the Gronwall inequality to the last inequality we have u.t /D v.t/ Hence a.t/ D b.t/; here T < B1: The theorem is proved

3 Continuous dependence of solution upon the data

Theorem 3.1 If the assumptions A1/ A3/ are satisfied, the solution (a,u) of problem (1)-(4) depends continuously upon the data'; E:

Proof Let ˆD f'; E; f g and ˆ D˚'; E; f be two sets of the data, which satisfy the assumptions A1/ A3/ : Suppose that there exist positive constants Mi; iD 0; 1; 2 such that

kEkC 1 Œ0;T  M1; E C1 Œ0;T  M1;k'kC 4 Œ0;1 M2;k'kC 4 Œ0;1 M2: Let us denotekˆk D kEkC 1 Œ0;T C k'kC 4 Œ0;1C kf kC 4;0 D T //: Let a; u/ and a; u/ be solutions of (1)-(4) corresponding to the data ˆD f'; E; f g and ˆ D˚'; E; f respectively According to (5), we have

ju uj  k' 'kC 4 Œ0;1

C 2

p 6T 3

1

X

k D1

ˇ

ˇ'2k.4/

ˇ

ˇ C ˇ

ˇ'.4/2k 1 ˇ

ˇ C4

1

X

k D1

ˇ

ˇ'2k00 ˇ ˇ

!

C2

p 6T M

3 C2

p 6T 3

!

T 0

@

t

Z

0

1

Z

0

ja./ a. /j2d d 

1 A

1

Ngày đăng: 24/11/2022, 17:44

Nguồn tham khảo

Tài liệu tham khảo Loại Chi tiết
[1] Ionkin NI., Solution of a boundary-value problem in heat conduction with a nonclassical boundary condition, Differential Equations, 1977, 13, 204-211 Sách, tạp chí
Tiêu đề: Solution of a boundary-value problem in heat conduction with a nonclassical boundary condition
Tác giả: Ionkin NI
Nhà XB: Differential Equations
Năm: 1977
[2] Cannon JR., Lin Y., Determination of parameter p(t) in Hửlder classes for some semilinear parabolic equations, Inverse Problems, 1988, 4, 595-606 Sách, tạp chí
Tiêu đề: Determination of parameter p(t) in Hửlder classes for some semilinear parabolic equations
Tác giả: Cannon JR., Lin Y
Nhà XB: Inverse Problems
Năm: 1988
[3] Pourgholia R, Rostamiana M and Emamjome M., A numerical method for solving a nonlinear inverse parabolic problem, Inverse Problems in Science and Engineering, 2010, 18(8), 1151-1164 Sách, tạp chí
Tiêu đề: A numerical method for solving a nonlinear inverse parabolic problem
Tác giả: Pourgholia R, Rostamiana M, Emamjome M
Nhà XB: Inverse Problems in Science and Engineering
Năm: 2010
[4] Gatti S., An existence result for an inverse problem for a quasilinear parabolic equation, Inverse Problems, 1998;14: 53–65 Sách, tạp chí
Tiêu đề: An existence result for an inverse problem for a quasilinear parabolic equation
Tác giả: Gatti S
Nhà XB: Inverse Problems
Năm: 1998
[6] Nakhushev A. M., Equations of Mathematical Biology, Moscow, 1995 (in Russian) Sách, tạp chí
Tiêu đề: Equations of Mathematical Biology
Tác giả: Nakhushev A. M
Năm: 1995
[7] Ismailov M., Kanca F., An inverse coefficient problem for a parabolic equation in the case of nonlocal boundary and overdetermi- nation conditions, Mathematical Methods in the Applied Science, 2011, 34, 692–702 Sách, tạp chí
Tiêu đề: An inverse coefficient problem for a parabolic equation in the case of nonlocal boundary and overdetermination conditions
Tác giả: Ismailov M., Kanca F
Nhà XB: Mathematical Methods in the Applied Science
Năm: 2011
[9] Alkahtani Badr Saad T, Atangana A., Modeling the potential energy field caused by mass density distribution with Eton approach, Open Physics, 2016, 14 (1), 106-113 Sách, tạp chí
Tiêu đề: Modeling the potential energy field caused by mass density distribution with Eton approach
Tác giả: Alkahtani Badr Saad T, Atangana A
Nhà XB: Open Physics
Năm: 2016
[10] Atangana A., On the new fractional derivative and application to nonlinear Fisher’s reaction-diffusion equation, Applied Mathematics and Computation, 2016, 273, 948-956 Sách, tạp chí
Tiêu đề: On the new fractional derivative and application to nonlinear Fisher’s reaction-diffusion equation
Tác giả: Atangana A
Nhà XB: Applied Mathematics and Computation
Năm: 2016
[5] Kanca F., Baglan I., An inverse coefficient problem for a quasilinear parabolic equation with nonlocal boundary conditions, Boundary Value Problems, 2013, 213 Khác
[8] Alkahtani Badr Saad T., Atangana A., Analysis of non-homogeneous heat model with new trend of derivative with fractional order, Chaos, Solitons &amp; Fractals,. 2016, 89, 566-571 Khác

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN