Assessment of a proposed hybrid photovoltaic array maximum power point tracking method Water Science ScienceDirect Water Science 30 (2016) 108–119 journal homepage www elsevier com/locate/wsj Full Len[.]
Trang 1ScienceDirect
Water Science 30 (2016) 108–119 journal homepage: www.elsevier.com/locate/wsj
Full Length Article
aNational Research Center, Ministry of Water Resources and Irrigation, Egypt
bElectrical and Machine Power Department, Cairo University, Egypt
Received 30 July 2016; received in revised form 14 October 2016; accepted 19 October 2016
Available online 5 December 2016
Abstract
Photovoltaicarrayshavelimitedconversionefficiencyandthus,amaximumpowerpointtrackingtechniqueisessential.This makesthemaximumpower pointtracking(MPPT) requirepriorpredictionofthe mentionedpointin spiteofthe undeniable changesintheenvironment.InthismanuscriptanintroductionandassessmentofthedifferenttechniquesofMPPTispresented ThecategorizationschemeoftheMPPTtechniquesisaccordingtoeitherthepredefinitionofoperatingpointswithoutsystemdata update(offlinemethods)orcontinuoussamplingofsystemvariables,toupdatethePVmodulemeasurements(onlinemethods) Whereashybridmethodisacombinationofboth.AnumberoftechniquesfromeachclassweresimulatedinMATLAB/Simulink environmentinordertocomparetheirperformance.Moreover,thehybridmethodwassimulatedintwosuccessivestepswithout pre-assumptionoftheoutputoftheofflinemethod.Theresultsdemonstratedtherelevanceofthehybridmethodwhenappliedtoa photovoltaicsystemduetoitsgoodperformance,fastresponseandlessfluctuations,whensubjectedtosuddenclimaticchanges
©2016NationalWaterResearchCenter.Productionandhostingby ElsevierB.V.ThisisanopenaccessarticleundertheCC BY-NC-NDlicense(http://creativecommons.org/licenses/by-nc-nd/4.0/)
Keywords:PV systems; MPPT; Online methods; Offline methods; Hybrid methods
1 Introduction
Recentlytheuseofsolarenergyhasbeenemerging.Themainadvantagesofphotovoltaic(PV)systemsarezero greenhousegasemission,lowmaintenancecosts,fewerlimitationswithregardtositeofinstallationandabsenceof mechanicalnoisearisingfrommoving parts(Reisietal., 2013).Theglobal PVmarket reached173GW in2014 However,therearethreemajorlimitationsinphotovoltaicgenerationsystems: theconversionefficiency toelectric powerislow(9–17%),thevariabilityofelectricpowergeneratedduetotheweatherconditionsandsunlighthoursat
∗Correspondingauthor.
E-mail addresses:yasmin.adel1982@hotmail.com (Y Adel), rameens@hotmail.com (R Abdelhady), drahmed@nahdetmisr.com
(A.M Ibrahim).
Peer review under responsibility of National Water Research Center.
http://dx.doi.org/10.1016/j.wsj.2016.10.004
1110-4929/© 2016 National Water Research Center Production and hosting by Elsevier B.V This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Trang 2Fig 1 Single diode equivalent circuit of a solar cell.
daytime(Xiaoetal.,2006),andtherelativelyhighercost(12.5¢/kWh)ascomparedtothatproducedbyconventional powergeneration(7.4¢/kWhfornaturalgascombinedcycle)systemsoreventootherrenewablesourcessuchashydro electricalenergy(8.4¢/kWh)(EnergyInnovation,2015)
Asolarcell(alsocalledphotovoltaiccellorphotoelectriccell)isasolidstatedevicethatconvertstheenergyof sunlightdirectlyintoelectricitybythephotovoltaiceffect(Zhangetal.,2011).Assembliesofcellsareusedtomakesolar modules,alsoknownassolarpanels.Photovoltaicsystemusesvariousmaterialsandtechnologiessuchascrystalline Silicon(c-Si),Cadmiumtelluride(CdTe),Galliumarsenide(GaAs),chalcopyritefilmsofCopper-Indium-Selenide (CuInSe2)
Solarcellsexhibitanon-linear current–voltagecharacteristicsthat dependonsolarradiationsandtemperatures Thereisapointonthecharacteristicscurvewheretheoutputpowerfromthearray(astringofpanels)hasamaximum value.Solarcellsareusuallyassessedbymeasuringthe currentvoltagecharacteristicsof thedeviceunderspecific conditionsofilluminationandthendeterminingasetofparameters.Inordertoensureefficientoperationofthesolar arraythemaximumpowerpoint(MPP)ofthearrayhastobetracked.MPPT,inadditiontorisingthepowerdelivered fromthePVmoduletotheload,isconsideredasaPVsystemlifetimebooster(Bahgatetal.,2005)
1.1 PV system
For simplicityin analyzing characteristics of solar cells, electrical equivalentcircuits are used in representing them.Researchersusednumerousequivalentcircuitstohelpinpredictingthebehaviorundervariousenvironmental conditions,andfurtherinobtaining(I–V)and(P–V)characteristiccurves.Themostcommonlyusedequivalentcircuits arethesinglediodemodel(DeBlasetal.,2002)(showninFig.1),thedoublediodemodel(CabestanyandCastaner,
1983)andthethreediodemodel(Khannaetal.,2015)
According totheabove circuitthe solar cellcan berepresentedby: acurrent generator,adiodeindicatingthe recombinationlosses,ashuntresistancesymbolizinglossesfromcurrentsthatreturnacrossthejunctionandaseries resistancedenotingresistancelosses.ByapplyingasimpleKirchhoff’scurrentlaw(KCL);therelationofthecurrent
IandthevoltageVisgivenas:
I=I ph−I o (e q(V nkT +IRs) −1)−V +IR s
whereI ph isthephotocurrent,I o isthesaturationcurrent ofthe diode,R s istheseriesresistance,R sh istheshunt resistance,nisthediodeidealityfactor,kisBoltzmann’sconstant(1.4×10−23),qistheelectroncharge(1.6×10−19),
TistheabsolutetemperatureinKelvin
Trang 3110 Y Adel et al / Water Science 30 (2016) 108–119
Fig 2 Typical IV/PV characteristic of a solar cell at 1 kW/m2and different temperatures.
Fig 3 PV characteristic of a solar cell at 75 ◦Canddifferentilluminationlevels.
ByplottingtheI–VcurveintherelationinEq.(1),theexistenceof auniquepointisnoticed;thespotnearthe kneeoftheI–Vcurve(Fig.2).Thisisthepointatwhichtheproductofcurrentandvoltageachievesitsmaximum, whichisnoticedmoreontheP–Vcurves(Figs.2and3).Thispoint,asseenfromthefiguresvariesaccordingtothe environmentalconditions(illuminationandtemperature).ManyapproacheshavebeenintroducedtodeducetheMPP fromEq.(1)whichimpliesdeterminingthemajorparameters:thediodesaturationcurrent,theseriesresistance,the idealityfactor,thephotocurrentandtheshuntresistance.SincetheIVequationisimplicit(currentexistsonbothsides
oftheequation),extractingtheparametersbythesimpleleastsquaremethodisnotpossible.Alsothedetermination
Trang 4Fig 4 System block diagram.
requiresmeasuredIVcharacteristicsatthespecifiedinsolationandtemperature.Zhangetal.(2011)usedanexplicit analyticexpressionforIwiththehelpofLambertωfunctiontobeabletoutilizetheconventionalcurvefittingmethods (Eq.(2))
I−
(1/ (a+b)) V − (b (c+d) / (a+b)) + (e/a) × lambertω
((adb) / (e (ab))) exp
e (a+b)
((ca) + (da) + V )
(2)
where:a = R s , b = R sh , c = I L , d = I oande = (nkT)/q.
AfterconcludingtheseparameterstheMPPcanbededucedusingtheaboveequationandthefactthat∂P/∂V V =Vm=
0atVmax
ApracticalsolutionrequirestheintroductionofatrackerwhichisinsertedbetweenthePVsystemandtheload
ADC–DCconverterisusedtomanagethepowerandacontrollerisintroducedwithinthetrackertocompensatethe parametervariationduetoenvironmentalconditions
VariousMPPTmethodshavebeendeveloped.Thesemethodscanbegroupedbasedondifferentfeatures.Inessence, MPPTmethodsarecategorizedinto:offlinemethodswhicharedependentonsolarcellmodels,onlinemethodswhich areusuallyreferredtoasthemodel-freemethodandhybridmethodwhichrepresentsasequenceoftheofflineand onlinemethods.Inthismanuscriptahybridmethodwasassessedbysimulationintwosuccessivestepswithout pre-assumptionoftheoutputoftheofflinemethod.Alsosimulationofdifferenttechniquesunderonlineandofflinemethods andcomparisonwiththehybridmethodispresented
2.1 System overview
Ingeneral,anyPVsystemconsistsof:PVarray,DC–DCconverter,MPPTcontrollerandabattery.Thebatteryis discardedasthemainobjectiveistheMPPTofthesolararray.Fig.4showstheblockdiagramofthesystemusedin thissimulationmodel
ThePVarrayused inthismodel isof typeSunPowerSPR-305-WHTwhichconsistsof20parallelstringsand
5series-connectedsolarmodulesperstring.ThemodulecharacteristicsunderSTC(1kW/m2and25◦C)are:64.2V
V OC,5.96AI SC,54.7VV MPPand5.58AI MPP
TheDC–DCconvertersareusedformatchingthecharacteristicsoftheloadwiththoseofthesolarpanelsi.e.to balancethesystem.Inourmodelthesimulatedconverterisa5kHz–500Vboostconverteranda100ohmresistance
isusedasload.ThecontrolsignalgeneratedbyseveralMPPTmethodsfeedtheboostconverterswitch
2.2 The MPPT control
Inthisresearchcomparisonofdifferentconventionaltrackingtechniqueswiththeintroducedmethodandassessment
ofallroutinesunderdifferentclimaticconditions,iscarriedout.Theradiationandrapidchangeinradiation(shadowing) weretakenintoaccount.Thetemperaturewasdiscardedavoidingcomplexity.Foragivensolarradiation,whenthe celltemperatureincreases,theV oc,dropsslightly,whiletheI sccurrentincreasesconsiderablywhichmakesthetotal effectmarginal(Salmietal.,2012)
Trang 5112 Y Adel et al / Water Science 30 (2016) 108–119
TheMPPTmethodsweresimulatedinMATLAB/Simulinksoftwareenvironment.MATLAB/Simulinkisselected, duetoitsreusability,extendibility,andflexibilityinsuchsystems.Amongthe offlinetechniquessimulated inthis researchweretheopencircuitvoltage(OCV)andtheshortcircuitcurrent(SCC)techniquesdiscussedbelow.MPPT basedontheonlinemethodsofperturbandobserve(P&O)andincrementalconductance(IncCond)alsohavebeen performedtocomparebetweenofflineandonlinetechniquesingeneral.Theproposedhybridmethodisthensimulated, thecontrolsignalsconsistsof twostages:setpointfiguringandtuning.Thefirst stageisthe setpointloopwhich approximatesthemaximumpowerbytheVOCofflinemethod.ThenextstageisusingtheinputfromtheVOCmethod
asaninitialconditiontotheP&Oonlinemethod,whichisthesecondphaseoftrackingtheMPP(finetuningloop)
2.2.1 Offline methods
Offlinemethodsgenerallyrequiretheknowledgeofoneormoreofthesolarpanelparametersvalues,suchasthe opencircuitvoltage(V OC),shortcircuitcurrent(I SC),temperatureandradiation.Thesevaluesgeneratethecontrol signalnecessaryfordrivingthesolarcelltoitsMPP.Inthetrackingoperation,thiscontrolsignalremainsconstantif ambientconditionscanberegardedasfixedandtherearenoattemptstoregulatetheoutputpowerofthePVsystem (Reisietal.,2013)
Offlinetechniquesinclude:opencircuitvoltagemethod(OCV),shortcircuitcurrentmethod(SCC)andartificial intelligence(AI)
TheOCVtechniqueisoneofthemoststraightforwardofflinemethods.Itusesthealmostlinearrelationshipbetween theopencircuitvoltage(V OC)andtheMPPvoltage(V MPP)underchangedclimaticcircumstancesasdescribedbythe followingequation:
wherekisaconstant,dependingonthesolarcellcharacteristics
TheconstantkisderivedempiricallyaftermeasuringseveralV OCandV MPPforanyspecificcellunderdifferent climaticconditions.Valuesfortheconstantk,ingeneral,varybetween0.73to0.80(SchoemanandWyk,1982),here
inourspecificcase,theconstantkisassumedtobe0.8
Despitethesimpleimplementation(hastodowithhardwareusedtoimplementthismethod)andlowcosts,this techniquesuffersfromtwomaindrawbacks:theMPPtrackingisnotpreciseandmeasurementofV OCnecessitates periodicsheddingoftheload.TherecanbenoneedtoshedtheloadinordertomeasuretheV OCaspilotcells(Brunelli
etal.,2009),whosecharacteristicsrepresentthoseoftheoriginalPVarray,mightbeused
AnotherofflinetechniqueistheSCCwhichdependsonthefactthatI MPP isapproximatelylinearlyrelatedtothe
I SCofthePVarray.AlthoughthismethodismoreaccuratethantheOCVapproachyettheimplementationismore complexandtheperiodicsheddingoftheloadortheexploitationofpilotcells,tomeasuretheI SChasnotbeenavoided ThethirdofflinetechniqueisAIwhichhasseveraldisciplinesunderitincludingartificialneuralnetworks(ANNs)and fuzzylogic(FL)
2.2.2 Online methods
Inonlinemethods,alsoknownasmodel-freemethods,usuallytheinstantaneousvaluesofthePVoutputvoltage
orcurrentareusedtogeneratethecontrolsignals(Reisietal.,2013).Thetechniquesundertheonlinemethodsare basedontheprincipleoftheoptimalcontroltheory.Thesetechniquesincludeperturbationandobservationtechnique (P&O),andtheincrementalconductancetechnique(IncCond)
TheP&Otechnique,isoneofthemostsimpleonlinemethodswhich,hasbeentakenintoaccountbyanumberof researchers(Wasynczuk,1983;HuaandLin,1996;Huaetal.,1998).P&Oisimplementedbyapplyingsmallconstant perturbationstothevoltageorthecurrentsignalofthesolarpanel(V ref,I ref).Itsworkingprincipledependsonthe samplingmethod.Thearrayvoltagehereisdecreasedbyincreasingthedutycycleoftheboostconverterandvice versa.Thedutycycleoftheboostconverterisbetween0and1andtheincrementused todecreaseorincreasethe voltageisintheorderof10−4fromliterature.
Aftereachperturbation,theoutputpowerismeasured.Iftheoutputpowerisgreaterinvaluethanthepower of the preceding step,powerwillmovetowardtheMPP(theleftsideofthePVcurve),thereforeavoltageperturbation
ofthesamesignmustbeappliedinthesucceedingstep.Asmallervalueofpower,onthecontrary,infersthatpower hasdeviatedfromMPP(therightsideofthePVcurve),andaperturbationofoppositesignwillhavetobeapplied
Trang 6Fig 5 Flowchart of P&O technique.
(Reisietal.,2013).ThesecontinuousperturbationseventuallycausetheapproachtotheMPP.Thisflowchartofthis procedureisshowninFig.5
TheP&Otechniquehastwodrawbacks:thecontinuousperturbationscausestheoscillationaroundtheMPPand neverreachingitactually.AlsoP&Otechniquecanfailundervaryingatmosphericconditions(Reisietal.,2013).In theP&Othevalueofthe perturbationsappliedtothesystemisthe mainfactorcontrollingthe convergenceofthe outputpowertotheMPP
Intheincrementalconductancetechniqueas thealgorithmtakestwosamplesofvoltageandcurrenttocompute MPP.ThistechniqueisbasedonthefactthattheslopeofthePVarraypowercurveiszeroattheMPP,positivefor valuesofoutputpowersmallerthanMPP,andnegativeforvaluesoftheoutputpowergreaterthanMPP(Irisawaetal., 2000;HohmandRopp,2003;KoizumiandKurokawa,2005;Harada andZhao,1993).Themainlimitationofthe IncCondmethodisthatitobligescomplexcontrolcircuitrywhichmighthaveresultedinahighcostsystempreviously
2.2.3 Hybrid method
Thehybridmethodisacombinationofboththeabovemethods.Itisdivided intwosuccessivesignals:thefirst dependingonanotaccurateofflinepredictionoftheMPPTtakingintoconsiderationtheatmosphericconditionsthen applyingoneoftheonlinetechniques,followingthesameworkflowinFig.5,toaccuratelydeducetheMPPT.This methodeliminatedthedrawbacksoftheothertwo
Trang 7114 Y Adel et al / Water Science 30 (2016) 108–119
Fig 6 Output generated power from PV system without MPPT control at different radiation levels.
Inthismanuscriptthehybridmethodisapplied,twocontrolsignalsaregeneratednotjustapre-assumptionofthe outputofthe offlinemethod.The firstsignalisgeneratedfromtheOCVtechniqueandthesecond fromtheP&O techniquefollowingtheworkflowinFig.5.Thiscombinationeliminatedthedisadvantages ofbothtechniques:the inaccuracyoftheOCVtechnique,sincethemaximumpointreachedisnotthefinalandmisestimatingtheinitialpoint
(V ref)intheP&Otechnique,asitistheoutputfromthefirsttechnique
Also,comparisonofdifferentconventionaltrackingtechniqueswiththeintroducedmethodandassessmentofall methodsunderdifferentclimaticconditions,isproposed(VOCtechnique)(P&Otechnique)
3 Results
MPPTisanessential component inthePV systemsinceit allowsanincrease inthe powerdeliveredfrom the
PVmoduletotheload,anditalsobooststhefunctioninglifetimeofthePVsystem.Fig.6showsthePVgenerated powerperformancewhenthereisnoMPPTcontroltechniqueappliedtothesystem.Inthefigurethepowergenerated diminishestozeroforanincrementofasecond(reaching0.1sfor1000W/m2),thegeneratedpowerfromthearray thenrisestoalevelnotmorethanonetenthoftheMPPinhighradiationlevels
ComparisonoftheefficiencyofdifferentMPPTmethodsunderdifferenttechniquesandtheproposedtechnique wascarriedoutatconstanttemperature(25◦C)andthreevariationsinradiationlevel(250,750,1000W/m2).The efficiencywascalculatedbythefollowingformulashowninEq.(4):
η=
P max.Tracked
P max.
whereηistheefficiencyofthetrackingmethod,Pmax.TrackedistheMPPtrackedandPmax.istheMPPasmeasuredin datasheetofthearray
SimulationresultsoftheOCVtechniqueandtheSCCtechnique(Figs.7and8)showthattheOCVmethodmaintains
arangeof85%efficiencyathighilluminationlevelsyettheefficiencydropsslightlyto82%atlowilluminationlevels
Ontheotherhand,SCCmethodexhibitsanextremelylowefficiencyatlowilluminationlevels
Fortheonlinetechniques(Figs.9and10);theefficiencyoftheP&Oreached97%.TheP&Omethod’sefficiency showeddirectproportionalitytotheilluminationlevels,reaching92%at250W/m2.TheIncCondmethodshowedthe
Trang 8Fig 7 Output generated power from PV system with OCV MPPT control at various radiation levels.
Fig 8 Output generated power from PV system withSCCMPPT control at various radiation levels.
highestefficiencywhichreached99%atlowilluminationlevels.Theintroducedhybridmethodshowedthehighest efficiencyofallreaching99%,sincethetrackingmethodisamingleofbothmethods:theonlineandoffline(Fig.11)
Figs.7–9showfluctuationssincethesimulationdurationis3s.Forsometechniquesittakesmoretimethanothers
toreachsteadystate.AsfortheP&OandIncCondtechniquesthefluctuationsexistregardlesstheirhighefficiency
Trang 9116 Y Adel et al / Water Science 30 (2016) 108–119
Fig 9 Output generated power from PV system with P&O MPPT control at various radiation levels.
Fig 10 Output generated power from PV system with IncCond MPPT control at various radiation levels.
Trang 10Fig 11 Output generated power from PV system with hybrid MPPT control at various radiation levels.
Fig 12 Output generated power from PV system with hybrid MPPT control at rapid change in radiation level.