A comprehensive study on impurity behavior in LHD long pulse discharges ARTICLE IN PRESS JID NME [m5G; November 26, 2016;13 14 ] Nuclear Materials and Energy 0 0 0 (2016) 1–9 Contents lists available[.]
Trang 1journalhomepage:www.elsevier.com/locate/nme
discharges
Y Nakamuraa,b,∗, N Tamuraa, M Kobayashia,b, S Yoshimuraa, C Suzukia, M Yoshinumaa,b,
M Gotoa,b, G Motojimaa,b, K Nagaokaa, K Tanakaa, R Sakamotoa,b, B.J Petersona,b,
K Idaa,b, M Osakabea,b, T Morisakia,b, the LHD Experiment Group
a National Institute for Fusion Science, National Institutes of Natural Sciences, Toki 509-5292, Japan
b SOKENDAI (Graduate School for Advanced Studies), Toki 509–5292, Japan
a r t i c l e i n f o
Article history:
Received 28 June 2016
Revised 14 October 2016
Accepted 12 November 2016
Available online xxx
Keywords:
Long pulse discharge
Impurity accumulation window
Radial electric filed
Impurity screening
Turbulent impurity transport
a b s t r a c t
Impuritybehavior isstudiedinavarietyofLHD(LargeHelicalDevice)longpulsedischarges,i.e stan-dardhydrogenplasmas,superdensecore plasmas,heliumplasmaswith ICH(IonCyclotronFrequency Heating),multi-speciesplasmasmixedwithHandHe.Densityscanexperimentsshowaspecificdensity rangeofimpurityaccumulationforonlyhydrogendischarges.Strongsuppressionofimpurity accumula-tivebehaviorisobservedinhightemperatureplasmaswithhighpowerheating.Themaincontributions
toimpuritytransportareextractedbyacomprehensivestudyonimpuritybehavior,i.e.investigatingthe criticalconditionsforimpurityaccumulationandtheparameterdependences.Itisfoundthatthe impu-ritybehaviorisdeterminedbythreedominantcontributions,i.e.neoclassicaltransportmainlydepending
onradialelectricfield,turbulenttransportincreasingwithheatingpowerandimpurityscreeningathigh edgecollisionalityintheergodiclayer.Themappingofimpuritybehavior onn-T(electrondensity and temperature)spaceattheplasmaedgeshowsaclearindicationofthedomainwithoutimpurity accu-mulationandprovidesoperationscenariostobuildupfusion-relevantplasmas
© 2016TheAuthors.PublishedbyElsevierLtd ThisisanopenaccessarticleundertheCCBY-NC-NDlicense (http://creativecommons.org/licenses/by-nc-nd/4.0/ )
1 Introduction
Understanding impurity transportis one ofthemajor tasksin
presentfusionresearch.Impuritiesintheplasmacoreenhance
ra-diation lossesandplasmadilutionwithdeleteriousconsequences
for fusion reactivity, and an uncontrolled impurity accumulation
mayeventerminate thedischarge.Recently, thechallengesof
us-ing the high-Z plasma facingmaterial W havebeen encountered
in fusion devices such as ASDEX and JET [1] The feasibility of
theuseoftungstenindivertortokamakshasbeenintensively
dis-cussed fordesigning next generation fusion devicessuch as ITER
andDEMO.Thesameissueisofcourseofrelevancetohelical
de-vices.Inparticular,impurityhandlinginlargesuperconducting
he-liotron/stellarator devices such as LHD [2] and W7-X [3], which
should demonstratequasi-stationary plasma operation, is an
im-portantsubject[4,5]
LHD long pulse dischargeswithNBI heatingshowed impurity
accumulative behavior on a long time scale (several seconds) for
∗ Corresponding author
E-mail address: nakamura.yukio@LHD.nifs.ac.jp (Y Nakamura)
high-Z impurities such as Fe, which come from the plasma fac-ing components The intrinsic impurities were accumulated in a specific range of impurity collision frequency (impurity accumu-lationwindow),whichwasaroundthetransitionfromtheplateau regimetothePfirsch–Schlüter(PS)regime[6,7].Impuritytransport studybyusingactiveimpuritypelletinjectionindicatedalong im-purityconfinementtime [8].Such an impurity behavior wasalso observed in other helical devices and a better understanding of impurity transportwasobtained fromtheinter-machine compar-ison [9] Theoretical predictions based on neoclassical transport theory fornon-axisymmetric configurations underline the impor-tanceofradialelectricfield.Inthestandardcasewithnegative ra-dialelectricfield,the so-calledion-root regime,high-Z impurities aredrawntowardthecenter.Onlyinthelow-densityregime,itis possibletoestablishtheelectronrootwithpositive radialelectric field, which flushes out impurities On the other hand, impurity transportstudiesinthescrape-off-layer(SOL)regiondemonstrated
afavorableimpactontheimpurityscreening,i.e.thescreeningof impurityinfluxfromthedivertorplates[10,11].Impuritytransport simulations indicated aclear physicalpicture ofimpurity screen-ing in the SOL [12] The cross-field heat conduction governs the http://dx.doi.org/10.1016/j.nme.2016.11.005
2352-1791/© 2016 The Authors Published by Elsevier Ltd This is an open access article under the CC BY-NC-ND license ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) Pleasecitethisarticleas:Y.Nakamuraetal.,AcomprehensivestudyonimpuritybehaviorinLHDlongpulsedischarges,Nuclear
Trang 2Mate-ion energy transport across the islands under high density, low
temperatureconditions.The frictionforce dominatesover theion
thermalforce, dragging impurities outwards Turbulent transport
isanotherimportantcontributiontoimpuritytransportandmight
gainincreasingimportanceinfusion-relevantplasmasathigh
tem-peratures,butthereisnoclearevidenceinexperimental
observa-tion andalso in theoretical analysis including simulation studies
fornon-axisymmetricconfigurations
In order to predict impurity behavior in fusion-relevant
plas-mas,itisveryimportanttoextendtheoperationalregimetohigh
temperaturesandhighdensities withhigh powerheatingandto
explore favorable scenarios capable of preventing impurity
accu-mulation.Recently, highNBIheatingpowermorethan 10 MWis
availabletolong pulseoperation anda varietyofdischargeswith
hydrogen plasmas, super dense core (SDC) plasmas and helium
plasmashavebeencarriedoutinLHD.Inthispaper,impurity
be-haviorisinvestigatedinthesedischargesandacomprehensive
un-derstandingofimpurity behavior inLHD longpulsedischarges is
presented.Firstofall,experimental observationsaredescribedfor
each dischargeand some kind of parameter dependences of
im-puritybehaviorare indicated.Forunderstandingthemain
contri-butionstoimpuritytransport,theimpurity screeningeffectinthe
ergodiclayer,theroleofradialelectricfieldandtheimpactof
tur-bulenttransportinthecoreplasmaarediscussed.Finally,the
map-pingofimpurity behavioronplasmaparameter(n-T)spaceatthe
plasmaedgeispresentedandoperation scenariosforsteady-state
dischargesinLHDarediscussed
2 Experimental observation on impurity behavior
LHD is a large superconducting magnetic confinement device,
whichemploysaheliotronconfigurationwithapairofl/m=2/10
helicalwindings[13].Aconfiningmagneticfieldofup to2.9Tis
providedinsteadystatebymeansofthefullsetof
superconduct-ingcoils.Themagneticaxiswithoutplasmacanbeadjustedinthe
rangeofmajor radius R=3.6–3.9m andit isone ofkey
parame-tersforproducingSDCplasmas.TheLHDplasmahasanelongated
shapewithadouble-nullstructure andtheaverageplasmaradius
isabout0.6m.Longpulsedischargescanbeproducedbyonly
in-jecting the heating power of ECH, ICH and NBI and the plasma
densityiscontrolledbygaspuffingandpelletinjection
2.1 Standard hydrogen plasma with gas puffing
Firstofall,thedistinctivefeaturesofimpuritybehaviorin
stan-dardhydrogendischargeswiththe magneticaxisofR=3.6mare
described here Fig 1 shows a typical long pulse hydrogen
dis-charge with impurity accumulation The line averaged electron
density is controlled with hydrogen gas puffing during the
dis-chargetokeep aconstant densityof4.5×1019m−3.The radiation
power density in the plasma center (ρ=0) increases with time
though there is no bigchange in the radiation in theperipheral
region (ρ=0.945) The impurity line emission (Fe XXIII)
bright-ensintheplasmacoreandthecentralcarbondensitynC also
in-creasesremarkably withtime Fig 2 showsthe radial profiles of
electrontemperature,electrondensity,radiatedpowerdensityand
carbondensity.Theelectrontemperatureanddensityprofileshave
apeakedshapeandaflat one,respectively,andthey keepnearly
the same shapesduring the discharge In contrast,a remarkable
peakingisobserved inthe radiationandthe carbondensity
pro-files,whicharemeasuredby foilbolometerarraysandcharge
ex-changespectroscopy(CXS),respectively
Densityscanexperimentsinstandardhydrogendischargeswith
gaspuffingrevealtheimpurityaccumulationwindowasshownin
Fig.3.Inthiscase,thehydrogendischargesareconductedwiththe
NBIheatingpowerof 6.7MWatvarious plasmadensities in the
Fig 1 Typical long pulse discharge with impurity accumulation Time evolutions
of (a) heating power of neutral beam injection and averaged electron density, (b) central electron temperature and density, (c) radiated power densities in the center and the peripheral region, (d) impurity line intensity and central carbon density are indicated
magneticconfigurationwithR=3.6m.Therelativestrengthof im-purityaccumulationisestimatedbytheincreasingrateofradiated powerinthe coreplasma(dSrad /dt(ρ=0)).As foundpreviously,
no impurity accumulation occurs in the low-density operational regimeandtheremarkableincreaseofcoreradiationappearswith increasing density The increasing rate of coreradiation abruptly goesdownandnoimpurityaccumulationisobservedinthe high-densityoperationalregime.The densityrangeoftheimpurity ac-cumulation window depends on the plasma heating power and shiftstothehighdensitysidewithincreasingheatingpower.High temperature hydrogen plasmas with the heating power of more than10MWrevealanewaspectofimpuritybehaviorandthe ac-cumulationwindowvanishes,asdescribedinSection2.5
2.2 Super dense core (SDC) plasma with pellet injection
LHD can produce SDC plasmas (ne0=3∼ 5×1020m−3) [14, 15] and recentlya quasi-steady state dischargewith SDCplasma [16] in the magnetic configuration R=3.75m has been demon-strated over 4 by repetitivepellet injectionsasshown inFig.4 The sequential pellet injectiondrives the formation ofa strongly peakeddensityprofileasshowninFig.5(a).Thedensityprofile be-comesremarkablypeakeduntil4.7s.Thenthecentraldensity(ne
(ρ=0))decreasesandtheedgedensity(ne(ρ=1))increaseswith time.Thisisduetoedgeparticlerecycling,whichresultsinthe de-creaseofedge densitybystrong wallpumpingin theearly stage
of thedischarge andthe gradual increase withtime by reducing the capability of wall pumping The radiation intensity is mea-suredwithbolometerarraysofabsoluteextremeultraviolet photo-diodes(AXUVD)[17] andtheradiationsignalsareintegratedalong each chordline.A remarkableincrease ofradiationatthe central chord is observed in the early stage of the discharge The radia-tionprofiles areestimatedbyreconstructingthe two-dimensional distributionoflocalradiationandbysuperimposingeachmagnetic fluxsurface.Theremarkablepeakingoftheradiationprofileis
Trang 30.5
1.0
1.5
2.0
2.5
0 5 10 15 20
# 114887
Te
e (10
t = 5 s
Te
ne (a)
0 20 40 60 80
# 114887
t = 4 s
t = 7 s
Srad
3) (b)
0 2 4 6 8 10 12
# 114887
t = 3.54 s
t = 5.24 s
nC
-3) (c)
Fig 2 Radial profiles of (a) electron temperature and density, (b) radiated power density and (c) carbon density along normalized minor radius ρin the long pulse discharge (#114887)
0
5
10
15
3/s)
n e_bar (1019m-3)
Standard hydrogen plasma (P
nbi = 6.7 MW)
Fig 3 Impurity accumulation window in density scan experiment with standard
hydrogen plasmas The observable indicator for impurity accumulation is the esti-
mated increasing rate of central radiation
served as shown in Fig 5(c) The central radiation increases by
more than three timesat 4.7 incomparison with that at 4.3s,
despite keepingtheprofiles ofdensityandtemperature(Fig.5(a)
and(b)).Theincreaseofimpuritylineintensity(FeXIX)inthecore
plasma is alsoobserved and the globaltemporal behavior is the
sameasthatofthecentralradiation.Inthiscase,impurity
behav-ior isdominatedby thecoreimpurity transportinthePSregime,
wheretheimpurityfluxstronglydependsonthedensitygradient
asdiscussed intokamakplasmasandtheimpurities are
accumu-lated into the central region Anotherimportant feature in these
discharges is that the peaking of radiation profiles slowly stops
duringthedischargeandnoradiationcollapseduetoimpurity
ac-cumulationisobservedafterthesaturation(t>4.7s).This
satura-tioniscorrelatedtothereduction ofimpurityinfluxintothecore
plasmaasdescribedlater(Section3.1)
2.3 Helium plasma with ICH minority heating
InLHD,agreatdealofefforthassofarbeendevotedto
achiev-ing a steady state operation with high performance plasma and
great progresshasbeenmadeinterms ofdischargeduration and
injected energy[4,5] Thehighperformance plasmawithionand
electron temperatures of 2keV and an averaged electron density
of 1.2× 1019m−3 hasbeen sustained for 48min Long pulse
dis-charges with ICH were usually conducted in the scheme of
hy-drogen minorityheatingandheliumdominantplasmaswere
sus-tainedbycontrollingtheminorityratio(nH/nHe<0.1).Mostoflong
Fig 4 Long pulse operation with super dense core (SDC) plasma by multiple pellet
injection in the magnetic configuration R = 3.75 m Time evolutions of (a) averaged electron density and H αsignal, (b) central and edge electron densities, (c) central and edge electron temperature, (d) line-integrated radiation in the central and pe- ripheral chord, (e) impurity line intensities of Fe XIX and C III are indicated
pulsedischarges withICH were terminated by radiation collapse dueto the increase of plasmadensity or the penetration of im-purityflakesintotheplasma[18].However,therehasneverbeen
aneventoflong-termimpurityaccumulation,whichisobservedin hydrogendischarges.Thisnotableresultmightbeattributedtothe differencebetweenhelium andhydrogen plasmas,i.e.the change
ofimpuritytransportduetobackgroundions,asdescribedlater
2.4 Multi-species plasma mixed with H and He
Asdescribedin theprevious subsection,no impurity accumu-lation phenomenon was observed in long pulse discharges with
Trang 41
2
3
4
5
# 104258
t = 5.25 s
t = 4.3 s
t = 4.7 s
ne
-3 )
(a)
0.0 0.5 1.0 1.5
# 104258
t = 5.25 s
t = 4.3 s
t = 4.7 s
T e
(b)
0 2 4 6 8 10
0.0 0.2 0.4 0.6 0.8 1.0
# 104258
t = 5.25.s
t = 4.3 s
t = 4.7 s
(c)
Fig 5 Radial profiles of (a) electron density, (b) electron temperature and (c) local radiation intensity in the long pulse SDC discharge (#104258)
0.0
0.5
1.0
1.5
2.0
2.5
H rich plasma
He rich plasma
S rad
n
e_bar (1019m-3)
(a)
0.0
0.5
1.0
1.5
2.0
2.5
S rad
n
H / (n
H+n
He)
n
H/n
He~ 2.7
PF rad~ 0.5
(b)
H rich
He rich
n e_bar= 3.5 ~ 5 x 1019m-3
Fig 6 Dependences of radiation peaking factor on (a) average electron density and
(b) density ratio n H /(n H + n He ) for multi-species plasmas mixed with H and He The
peaking factor (PF rad ) is estimated by the ratio of core radiation (S rad (0.54)) to edge
one (S rad (0.945))
heliumdominantplasmas.Therefore, impurity behaviorin
multi-speciesplasmasmixedwithHandHeisinvestigatedtoclarifythe
effectof background plasma ions on impurity transport Density
scan in long pulse discharges shows a clear difference of
impu-rity behavior between H and He rich plasmas as shown in Fig
6(a), where the peaking factor of the radiation profile is plotted
asa function of average electron density The impurity
accumu-lationwindow isobserved forH rich plasmas,while thereexists
-0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
P
nbi ~ 13 MW P
-3 /s)
n
e_bar (1019m-3)
Fig 7 Dependence of the increasing rate of core carbon density on averaged elec-
tron density for two different heating power cases (P nbi =7.5 MW and 13 MW)
no impurity accumulative behavior forHe rich plasmas Fig.6(b) showsthedependenceoftheradiationpeakingfactorontheratio
of hydrogeniondensity nH to total iondensity (nH+nHe) inthe dischargeswithne_bar=3.5∼ 5× 1019m−3.Spectroscopic measure-mentswiththelineemissionofneutralhydrogen(HI)andionized helium(HeII)providetheaverageiondensityratioofhydrogento helium (nH/nHe) [19], which is available to estimate the density ratio inthe plasma corefor steadystate plasmas [20].The radi-ationpeakingfactorPFradremains constantuntilthedensityratio
nH/nHe of 2.7and then abruptlyincreases ina transitional man-ner.Thisdrasticchangedependsontheparticletransportof back-groundions,whichinfluences theradial electricfield determined
byambipolardiffusionandalsothefrictionforce bythecollisions betweenimpurities andbackgroundions, asdescribedin Section
3
2.5 High temperature plasma with high power NBI heating
Recently, high NBI heatingpowers (Pnbi>10MW, td∼ 5s) are availableforsteady-statedischargesanditenablesustostudy im-puritybehavior inhightemperatureplasmas.Inthesedischarges,
itisfoundthattheimpurityaccumulativebehaviorisdramatically suppressed withhigher NBI heatingpower Fig 7 shows the de-pendence of the increasing rate of core carbon density on line-averagedelectrondensityfortwodifferentheatingpowercases.In thecaseoflowpowerheating(Pnbi=7.5MW),thedensitywindow for impurity accumulation is found in the carbon density
Trang 5mea-surement asobserved before inradiation measurements (Fig 3).
However, the impurity accumulation window almost vanishes in
the discharges withhighpower heating(Pnbi=13MW) The high
temperature plasmasin the impurity accumulation windowhave
a large negativeradial electric field in the edge region andit is
expectedthat theimpuritiesaredriven intothecoreplasma.The
impurity screening in the ergodic layer dependson the
temper-ature anddensity inthe SOL, butthe plasmaparameters do not
satisfy the criterion for impurity screening in the ergodic layer
A new contribution to impurity transport is required for
under-standingtheresultinhightemperatureplasmasanddiscussedin
Section3.2.3
3 Comprehensive understanding of impurity behavior
The impurity evolution inplasmas dependson transport
pro-cessesinthethreeplasmaregions:(a)theplasma-surface
interac-tion zone, (b)the scrape-off layer (SOL)and(c) theplasma
con-finementregion.Insteadystatedischarges,impurityinfluxdueto
the sputteringofplasma facingcomponents remains almost
con-stantbecausethereisnobigchangeintheplasmaparametersin
the SOL during the discharge Therefore, the screening processes
intheSOLandtheconfinementpropertiesofthecoreplasmaare
comprehensivelystudiedusingexperimentalobservationsina
va-rietyoflongpulsedischarges
3.1 Impurity influx screening in the ergodic layer
Particleandenergytransport intheSOLhavebeenextensively
investigatedinhelicalsystemsaswellasintokamaks.Recent
stud-ies of edge impurity transport with the EMC3/EIRENE code
indi-cated a clear physical picture of impurity screening in the SOL,
whichis auniquefeature inhelicaldevices[12].The balance
be-tween friction and ionthermal forcesgoverns the edge impurity
transportandtheimpurityinfluxintothecoreisstronglyreduced
in the friction-dominated regime This reduction is caused by a
strong suppression ofthe thermalforce dueto the enhancement
ofcross-fieldheatconductionthroughthemagneticislands
There-fore,theratiooftheparallel(Q//D)totheperpendicular heatflux
(Q⊥D)canberegardedasakeyparameterfortheimpurity
screen-ingeffect[21]:
The field-line pitch plays an important role in the
trans-port process Thecontribution ofcross-field transportremarkably
increases onlyfor helicalsystems with=0.0001∼ 0.001,which
is extremely different from ∼ 0.1 for tokamaks The impurity
screeningintheergodiclayercanbeexpectedwhenthecross-field
heatconductionbecomesevenmoredominantunderthecondition
ξi<1 [22].Thisgeometrical 3Deffectisunderinvestigation with
themulti-machinecomparison[23]
In the standard hydrogen discharges with gas puffing
(R=3.6m), the impurity accumulation is strongly suppressed
in the highdensityregion (Fig.3) The experimental database of
impurity behavior has been constructed by scanning the plasma
densityinlongpulsedischargeswithNBIheatingpowerbetween
1MWand9.5MW.The experimental study ofthe critical
condi-tion on impurity screening indicated an empirical scaling based
on the above impurity transport theory, i.e ξi∼ 0.11 [21] Here,
it is important to investigate whether ornot the scaling can be
appliedtootherdischargessuchastotheSDCplasmaortotheHe
rich plasma Fig.8 showsamapping oftheSDCplasmasandthe
standard hydrogen plasmas onthe two-dimensional space ofthe
electron density and temperature at the last closed flux surface
(LCFS) In this case, both SDC and standard hydrogen plasmas
0 100 200 300 400
R = 3.75 m
T e
n e LCFS (1019m-3)
SDC discharge
Standard H discharge
i = 0.09
dS rad/dt ~ 0
dS rad/dt > 0
Fig 8 Mapping of SDC plasmas and standard hydrogen plasmas on n-T space at
the plasma edge Both SDC and standard hydrogen plasmas are produced in the magnetic configuration R = 3.75 m The closed and open symbols indicate the plas- mas with and without impurity accumulation at each time in the discharges (e.g #
104258 in Fig 4 ), respectively The dashed line is fitted by the curve of constant ξi parameter
0 100 200 300 400 500
T e
n e LCFS (1019m-3)
H
* = 0.014
H (
i = 0.11)
E
r shielding
impurity screening
impurity accumulation
Fig 9 Mapping of He rich plasmas and standard hydrogen plasmas on n-T space
at the plasma edge The light gray symbols and open triangles indicate hydrogen plasmas and He rich plasmas, respectively The solid and dashed lines of light gray indicate the empirical scaling on impurity screening for hydrogen plasmas [21] The bold solid line is estimated for pure helium plasmas by using the same ξi parame- ter for hydrogen plasmas
are produced in the magnetic configuration with R=3.75m The closedsymbols indicate theplasmas withimpurity accumulation (dSrad/dt>0)andtheopen symbolstheplasmaswithoutimpurity accumulation(dSrad/dt∼ 0).Thecriticalconditioncanbeestimated
by thecurve ofconstant parameter ξi (seeEq (1)), which is ex-pressed asT=CH n0.4 witha specific constant value of CH given
by(χi ⊥ξi/2κi0)0.4.The curve withtheconstant CH∼ 125makes
a clear separation between impurity accumulation and impurity screeningregions.Assumingthattheperpendicularthermal diffu-sivityχi ⊥∼ 1 m2/sforLHDwith∼ 10−4,theconstantCH(= 125) corresponds totheratio oftheparallel tothe perpendicular heat fluxξi∼ 0.09,which isalmost thesameasthat (ξi∼ 0.11) inthe magneticconfigurationwithR=3.6m
ForHe plasmas, there is a possibilityof reducing theparallel heat conduction in comparison with the H plasmas because the coefficientofionheat conductivitydependsonthe massandthe chargeofbackgroundplasmaion(κi0∝mi−1/2Zi−2).Fig.9 showsa
Trang 6mappingoftheHerichplasmasandtheprevious standard
hydro-genplasmasonthen-TspaceattheLCFS Thelightgraysymbols
(solidoropen)indicatethehydrogenplasmasandtheopen
trian-glestheHe richplasmas,inwhichthereexistsnoimpurity
accu-mulation over all densityrange The solid line oflight gray
rep-resentstheempirical scaling forimpurity screeningfor hydrogen
plasmas andthe solid line for pure helium plasmas, taking into
accountthedifferencesinthemassandthechargeincomparison
withpure hydrogenplasmas.Thoughtheimpurity screeningarea
expandstothelowcollisionalitysidefortheHeplasmas,itisnot
enoughtoexplainthesuppressionofimpurityaccumulationinthe
lowcollisionalityregion.Evenwiththat,theimpurityscreeningat
highedgecollisionalityiseffectiveforalllongpulsedischarges
3.2 Impurity transport in the core plasma
Impurity transport studies in the coreplasma havebeen
per-formedinvarioushelicaldevices[8,24,25],analyzingthetemporal
andspatialevolutionofimpurityradiationinresponsetotransient
impuritysources.Forthispurpose,impurityionsdifferentfromthe
intrinsicimpurities wereinjected intotheplasmaeitherby using
a tracer-encapsulated solid pellet (TESPEL) [26] or a laser
blow-off technique.The decaytimesofthecorresponding lineemission
ofthe highestionization statesafter the injectionwere taken as
a measure of the impurity confinement time The inter-machine
comparisonstudies show a clear density dependence of the
im-purityconfinementtime,whichincreaseswiththeplasmadensity
andyieldslongerconfinementtimesathigherdensity[9].This
re-sultmay be connected with neoclassical andturbulent impurity
transportandtheunfavorable densitydependenceisqualitatively
ingood agreementwithneoclassicaltheory,wheretheambipolar
radial electric field dominates impurity transport for high Z
im-purities In the tracer approximation without the interaction
be-tween impurities and backgroundions, the neoclassical impurity
fluxdensityinthebulkplasmacanbeexpressedby
z = −n z D z
11
z
12
11
(2)
forimpurityionswiththeionicchargeeZ,densitynZandthe
ra-dialelectricfieldErdeterminedbytheambipolarcondition[9,27]
Withincreasing Z,the second term inside the brackets becomes
dominantintheconvectiontermsanddependsstronglyonthe
ra-dial electric field Therefore, high-Z impurities are drawn toward
thecenterbynegativeErandpushedoutwardbypositiveEr.Asa
result,theimpuritybehaviorisstronglyinfluencedbythepolarity
oftheradialelectricfield.Ontheotherhand,thereisnoclear
evi-denceofturbulentimpuritytransportinexperimentalobservation
andtheoretical analysis includingsimulations In this subsection,
therole oftheradialelectricfield inimpuritybehavioris
investi-gatedfora variety oflongpulsedischarges andsome convincing
indications pointing to the essential role of anomalous impurity
transport are discussed for high temperature plasmas with high
powerNBIheating
3.2.1 Impurity core confinement time
Firstofall,theimpurityconfinementtimeisinvestigatedby
us-ingTESPELtoconfirmthesimilarityofimpuritybehaviorbetween
intrinsicimpuritiesandexternallyinjectedimpurities.Inthe
stan-dardhydrogendischarges,theimpurityconfinementtimeincreases
withthecollisionalityandtheextrinsicimpuritieshaveaverylong
confinementtime inimpurity accumulation window The similar
longconfinementbehaviorisseenforSDChydrogendischarges.On
theotherhand,inheliumdischargeswithoutimpurity
accumula-tion, the injected impurities are flushed out instantaneously For
hightemperaturehydrogendischarges,thestrongpumpingout of
-15 -10 -5 0 5 10 15
H (P
nbi = 3~5 MW)
H (Pnbi = 6~8 MW)
H (P
nbi = 13 MW)
E r
ion
*( = 1.0)
He plasma
H plasma
High temperature plasma
Fig 10 Radial electric field in the plasma edge region as a function of background
ion collisionality for H and He plasmas with different heating powers
thetracerimpurityisobservedasinheliumdischarges.Thus simi-larconfinementbehaviorisobservedbetweenintrinsicand extrin-sicimpurities.Anotherimportantpointisthattheextrinsic impu-ritieshavealongconfinementtimeeveninthehighdensityrange, wheretheSOLimpurity screeningmechanismbecomesactive,for standardhydrogenplasmasandSDCplasmas
3.2.2 Role of radial electric field
ErmeasurementshavebeencarriedoutinavarietyofLHD hy-drogenplasmaaswithawiderangeofdensityandmagneticaxis ThedependencesofEron densityandmagneticconfigurationare qualitatively consistent with neoclassical theory [28] In particu-lar,a significant changeofEr appears intheedge plasmaregion
Er in the edge regionchanges its signfrom positive inthe elec-tron roottonegative intheion rootwithincreasing density.Fig
10 shows the dependence of Er on background ioncollisionality (νion =ν/(vth/qR0))attheLCFS(ρ=1.0)forhydrogenandhelium plasmaswitha wide rangeofheatingpower anddensity.Inthis figure,onecanseethattheradialelectricfieldattheplasmaedge (ρ∼ 0.9)doesnotdependontheheatingpowerbutdependsonly
ontheioncollisionality.Therefore,thebackgroundion collisional-itycan be regardedasa goodpredictorof Er.Anotherimportant pointisthedifferencebetweenHandHeplasmasintheErvalue Forhelium plasmas,itis hardto enterthe ionroot(negativeEr) deeplyeveninthehighcollisionalityregion.Thisisduetothe dif-ference oftheparticleflux betweenHandHeionspecies,which stronglyinfluences theErdetermined bythe ambipolarcondition ( Zaana=0).TheheliumionfluxinpureHeplasmasis remark-ablyreducedincomparisonwiththehydrogenionfluxinH plas-mas andthe radial electric field does not reach a large negative valueeveninthehighdensityregion[29]
LHD has a large flexibility in changing the ambipolar radial electricfieldErbycontrollingtheeffectiverippleandthemagnetic topologyandtheimpactofEronimpuritytransportwasstudiedin differentmagneticconfigurations [21].Boththeimpurity accumu-lationwindowandErpointswereshiftedtothehighcollisionality sidewitha shiftingofthemagneticaxisoutwardandthecritical conditionforimpurity accumulationwasingoodagreementwith thechangeofEr.Moreover,recentsimultaneousmeasurementsof both key parameters (Er and coreradiation) indicate a direct ca-sualrelationshipbetweenErandimpuritybehaviorinthelow col-lisonality region asshown inFig 11.In this figure, no discharge existswithadensityofmorethan5× 1019m−3,thereby eliminat-ing theimpurity screeningeffectinthehighcollisionalityregion
Trang 70
2
4
6
8
10
12
H (standard)
He (standard)
H (high T)
3 /s) (
E
r (kV/m) ( ~ 0.9) High temperature plasma
He plasma
H plasma
Fig 11 Relationship between the radial electric filed at the plasma edge and the
increasing rate of core radiation in standard H, He and high temperature plasmas
In thestandard hydrogen discharges,when Er decreases with
in-creasingdensity,theobservableindicatorofimpurityaccumulation
(dSrad/dt) abruptly increases at a specific value of Er∼ −3kV/m
Theimpurity accumulativebehaviorisalwaysobservedintheion
rootregime withthelargenegativeErvalue (<−3kV/m).For
he-liumdischarges,Ercannotreachthespecificvalueevenatthe
den-sity ofaround 5× 1019m−3 and noimpurity accumulation is
ob-served (dSrad/dt∼ 0) From both results,it seems that the
impu-rity transport in the plasmacoreis attributedto theradial
elec-tricfield forHandHe standarddischarges.In SDChydrogen
dis-charges(R=3.75m),itishardtodiscusstherelationshipbetween
Erandimpurityaccumulationbecausethereisnodatabaseonthe
radialelectricfield.However,theEr canbeexpectedtobealarge
negative value fromthe plasmaparameters (collisionality) inthe
edge region and therefore theintrinsic impurities can enter into
theplasmacore.Thecoreplasmawithveryhighdensityisinthe
PSregimeandtheimpuritiesmaybedrawntowardthecenterdue
toasteepdensitygradientandaflattemperatureprofile,whichis
predictedbyneoclassicaltheoryintokamakplasmas[30].Atlast,
anyclearindicationofrelevance betweenErandimpurity
behav-iorcannotbefoundforhightemperatureplasmaswithhighpower
heating There isno impurity accumulationeven inhigh
temper-atureplasmas withlargenegativeEr values,whichis very
differ-entfromtheimpuritybehaviorinstandardhydrogenplasmas.This
suggeststhatthereexistssomekindofoutwardconvectiondriven
byturbulenceasdiscussedinthenextsubsection
3.2.3 Impact of turbulent transport
Intokamaks,impuritytransportstudieshavebeeninvestigated
with neoclassicaltransport theory andtemperature-screening
ef-fectinimprovedplasmaswithhighiontemperatureiswellknown
[31].Ontheotherhand,recentstudiesofturbulentimpurity
trans-port are starting todemonstrate promising qualitative and
quan-titative agreement between impurity measurements and
gyroki-netic turbulencesimulations.However, thescreening effectisnot
expected in helical system except for high collisionality regime
[9] andturbulentimpuritytransportisverylimitedinexperiments
and theoreticalanalysis forhelical devices Inour case, it isalso
difficulttoobtaindirectexperimentalevidenceofturbulent
trans-port.Therefore,someconvincingindicationspointingtothe
essen-tialroleofanomalousimpuritytransportaredescribed
First of all, in the experiment with impurity pellet injection,
anomalous coefficients originating from turbulent transport
pro-cesses haveto beused tofit theexperimental results.The
trans-port simulations reveal diffusion coefficients being one order of
-1 0 1 2 3 4 5
-3 /s)
R
ax/ L
Ti
= 0.5 ion* ~ 0.01
(E
r~ - 5 kV/m
at = 0.9)
High power heating
Fig 12 Correlation between the increasing rate of carbon density and ion tempera-
ture gradient in hydrogen plasmas with the constant ion collisionality ( νion ∗ ∼ 0.01)
at ρ=0.5 The ion collisionality corresponds to that of 0.025 at ρ=1.0 and
E r ∼ −5 kV/m at the plasma edge ( ρ∼ 0.9)
magnitudeenhanced overneoclassicallevelsforhightemperature plasmas[32].Secondly,asdescribedintheprevioussubsection,for standard hydrogen discharges withPnbi<10MW,impurity trans-port inthe coreplasmais dominated bythe radial electricfield, which is predicted by neoclassical theory for high Z impurities
TokeeptheErcontributionconstant,specificdischargeswith con-stantioncollisionalityare selectedfromthosewithvarious heat-ingpowers,becausetheioncollisionalityisagoodpredictorofEr Theturbulentcontributiontoimpuritytransportisextractedby in-vestigatingthedependenceoftheimpurity pinchontheion tem-peraturegradient,whichcandrive turbulence(ITG mode).Fig.12 showsthe correlationbetweentheincreasing rateofcarbon den-sityandtheiontemperaturegradient forhydrogenplasmaswith theconstantioncollisionality(νion ∼ 0.01)atρ=0.5.Theion col-lisionality corresponds to that of around 0.025 at ρ=1.0, where impurity accumulative behavior remarkablyappears asshown in Fig 9 In this case, the strength of the impurity pinch is calcu-lated by the time derivative of the carbon density at the mid-radius (ρ=0.5) At the sameradial position,the normalized log-arithmic ion temperature gradient Rax/LTi=−(Rax/Ti)dTi/dr is es-timated fromthe ion temperatureprofile measured by CXS One canseea significantdecreasingtrendoftheimpuritypinchwhen the temperature gradient is increased with the heating power Consequently, there is no observation of impurity accumulative behavior in high temperature plasmas with high power heating (Pnbi=13MW) In this database, as a matter of course, there is
no sensitivityto the radial electricfield, which depends on only ioncollisionality(Er∼ −5kV/m atρ=0.9 forνion ∼ 0.01) There-fore,thistrendcannotbeexplainedbyneoclassicalimpurity trans-port.Anotherimportantfeatureisseeninthecarbondensity pro-fileforhightemperatureplasmasasshowninFig.13.Thecarbon densityprofile becomeshollow withdecreasing the plasma den-sity, thereby observinga strong hollow profileof carbon,the so-called impurity hole in high ion temperature mode [33–35] Al-thoughthe impurityhole isobservedasatransientphenomenon
in high Ti mode, such a strong hollow carbon profile is sus-tainedforlongtimeduringthestandardhydrogendischargewith highpowerheating.Thehollownessofthecarbonprofilebecomes strongerwithdecreasingbackgroundioncollisionalityasshownin Fig.14,wherethenormalizedlogarithmiccarbondensitygradient
Rax/Lnc=−(Rax/nc)dnc/drisplottedasafunctionofion collisional-ity.Ingeneral,theradialelectricfieldincreaseswithdecreasingion collisionalityandbecomespositivetodrivetheimpuritiesoutward
Trang 81
2
3
4
P nbi = 13 MW
n C
-3 )
n e_bar = 4.34
n e_bar = 2.86
ne_bar = 1.52
Fig 13 Carbon density profiles in high temperature plasmas with different average
densities Each carbon density profile is maintained during the discharge
-25
-20
-15
-10
-5
0
5
10
R ax
ion
* = 0.5
peaked
hollow
Fig 14 Correlation between carbon density profile and ion collisionality The ver-
tical axis indicates the normalized logarithmic carbon density gradient (R ax /L nc ) at
the mid-radius
However,theradialelectricfieldsinthecoreregioncanbe
evalu-atedtobenegativeforhightemperatureplasmas,becausetheEris
amonotonicfunctionofminorradius inLHD [36] andhasa
neg-ativevalueattheplasmaedge(Fig.10).Therefore,thestrong
out-wardconvectionataroundthemid-radiuscannotbeexplainedby
neoclassicalimpurity transport alone Oneof mostprobable
can-didates for anomalous impurity transport is turbulence such as
theITGmode, whichcan be driven inhightemperature plasmas
(Rax/LTi>5) in LHD [37] Although turbulent impurity transport
simulation is under investigation in LHD, there are some results
onturbulentimpuritytransportfortokamakplasmas.Inareversed
magneticshearconfiguration,whichhasanegativemagneticshear
aswell asLHD, the curvature pinchprovides the main
contribu-tiontothetotal convectivevelocity andbecomesoutward in
tur-bulenttransport simulation [38] Comparison between measured
boronprofilesandgyrokineticsimulationsindicatesthat
thermod-iffusion(iontemperaturegradient)androtodiffusion(toroidal
rota-tiongradient)termscontribute totheoutward convection in
tur-bulentimpurity transport [39,40] Theseresults indicate that ITG
turbulence drives the impurities outward in experimental
obser-vationsandsimulationstudies.InLHD,recentstudiesonimpurity
transportinthedischargewithNBItorqueinputshowthattoroidal
rotationplaysanimportantroleintheimpuritytransport[41].The
impuritybehaviorinLHDmaybedominatedbyacombination
ef-R = 3.6 m
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
T LCFS
n
strong outward convection due to E
r and turbulence
impurity screening
in the ergodic layer
suppression of impurity accumulation due to turbulence impurity
accumulation due to Er
i= const
ion
*= const
Fig 15 Classification of impurity behavior on n-T space at the plasma edge in the
operational regime on LHD with R = 3.6 m The n-T diagram is made for standard hydrogen plasmas with flat density and peaked temperature profiles The dominant contribution to impurity transport is indicated in each domain The solid lines are based on the empirical scaling determined by the mapping of various discharges
fectofiontemperaturegradientandrotationgradienttermsin tur-bulentimpurity transport The anomalous impurity transport ob-servedinhightemperatureplasmashasagoodsimilaritywiththe recentresultsintokamakplasmas
3.3 Operational regime without impurity accumulation
Alargenumberoflongpulsedischargeshavesofar been per-formed toexplore theoperationalregime withoutimpurity accu-mulation Theexperimental database enablesusto make a map-ping ofimpurity behavior inthe steadystate operational regime Fig.15 showsadiagram forimpuritybehavior ontheplasma pa-rameters (n, T) at the plasma edge, which is made for standard hydrogenplasmas withgaspuffing inthe magneticconfiguration withR=3.6m.Inthesedischarges,theprofilestructuresindensity and temperature (flat density and peaked temperature) are kept forscanningthedensityandheatingpower.Thedegree of turbu-lenceincreaseswithincreasingheatingpower(temperature gradi-ent).Theimpuritybehaviorisbasicallydeterminedbythree domi-nantcontributionstoimpuritytransport:(a)neoclassicaltransport duetotheradialelectricfield,(b)anomaloustransportdueto tur-bulenceand(c)impurityscreeningintheergodiclayer.Inthelow collisionalityregionwithlownandhighT,theplasmahasalarge positive Er which prevents theimpurities from entering into the plasmacore.ThesteepiontemperaturegradientdrivesITG turbu-lence,inducing theoutwardconvection ofimpurityions.As a re-sult, extremely hollowimpurity profiles areobserved bya strong outwardconvectionduetothesynergeticeffectofpositiveErand turbulence On the other hand, in the high collisionality region withhighnandlow T,though theplasmahasalarge negativeEr drawingtheimpuritiesintotheplasmacore,theimpurity screen-ing bythefriction force iseffectiveintheSOL.Consequently,the intrinsicimpuritiesareretainedintheSOLregionandnoimpurity accumulationisobserved.Theboundaryconditionsaredetermined
bytheconstantioncollisionalityandξiparameter,whichare em-piricallyderivedfromtheexperimentaldatabase.Inthe intermedi-atecollisionalityregion,theplasmaisintheionrootregimewith negativeEr,whileturbulenceincreasesinintensitywithincreasing heatingpower As the Er does not dependon the heatingpower andtheneoclassicalpinchtermEr/Tidecreaseswithincreasingion temperature[42],turbulenttransportbecomesdominantinhigher
Trang 9temperatureplasmas, thereby resultingin thestrong suppression
of accumulation.Here, the boundary conditionis empirically
de-termined by the heatingpower, Pnbi=10MW, which corresponds
toapowerdensityofapproximately1MW/m3 intheplasmacore
Fromthisfigure,itisfoundthatthedomainofimpurity
accumula-tionisrestrictedtothespecificcollisionalityrangeandvanishesin
thehighertemperatureregion,whichisabigadvantagefor
achiev-ingsteadystateoperationinfusion-relevantplasmas
4 Summary
A systematic study of impurity behavior has been performed
withavarietyoflongpulsedischarges.Somekindsofimpurity
ac-cumulativebehaviorareobservedandtheintrinsicimpuritiessuch
as iron and carbon are accumulated into the plasma core
Den-sity scans instandard hydrogen dischargesreveal a specific
den-sityrangeofimpurityaccumulation,i.e.animpurityaccumulation
window.InSDCdischarges,transientimpurityaccumulationis
ob-servedintheinitialstageofthedischargeandthereafterthe
long-termaccumulativebehaviordoesnotappear.Thisiscausedbythe
change ofedge densitydueto particle recycling Thereis no
ob-servationofimpurityaccumulationinsteadystatedischargeswith
ICHminorityheating,whichrequiresaverysmalldensityratioof
HtoHeions.Multi-speciesplasmasmixedwithHandHeshowa
distinctivedifferenceinimpuritytransportduetobackgroundions
Although there exists no impurity accumulation window for He
rich plasmas, the accumulationwindow appears in a transitional
mannerwithadecreasingdensityratioofHetoH.High
tempera-tureplasmaswithhighpowerheatingindicatethestrong
suppres-sionof impurityaccumulative behaviorandnoimpurity
accumu-lationisobservedovertheentiredensityrange
Theimpuritybehavioriscomprehensivelyinvestigatedfromthe
threepointsofviewofimpurity transport,i.e.impurityscreening
intheSOL,therole ofEr inneoclassicaltransportandthe
contri-bution ofturbulence.Impurityscreeningdueto thefriction force
at high edge collisionality is studied for standard hydrogen
dis-chargesandanempiricalscalingonthecriticalconditionisfound
This scaling can be applied to the SDC plasmas and the
multi-species plasmasmixed withHand He,and the impurity
screen-ing iseffectiveforall discharges.In theplasmacore, neoclassical
impuritytransportisbasicallydominatedbyEr,whichdependson
thebackgroundioncollisionality.SinceHeplasmasdonotenterin
a deepionrootregime witha large negativeEr eveninthe high
densityregion, the Er contribution issignificantly reduced inthe
impurity accumulationwindow.ThedirectcorrelationbetweenEr
andcoreradiationalso showsthe importanceof theEr
contribu-tion tocoreimpuritytransport forHandHeplasmas.Some
con-vincingcontributionsofturbulenceareobservedinhigher
temper-atureplasmas.Thesuppressionofimpurityaccumulativebehavior
increaseswithincreasingiontemperaturegradientunderthe
con-stantErcontribution.Carbondensitymeasurementsrevealastrong
hollowprofileinhightemperatureplasmasatlowdensityandthe
carbondensitygradientbecomesstrongerwithdecreasingion
col-lisionality.One ofmostprobablecandidates foranomalous
impu-ritytransportisturbulencesuchastheITGmode,whichdrivesthe
impuritiesoutwardfortokamakplasmas.However,further
investi-gationintoturbulenttransportisrequired
The impurity behavior in long pulsedischarges can be classi-fiedonthen-Tdiagramattheplasmaedgeanddividedintofour categories:(a)impurityscreeningathighedgecollisionalityinthe ergodiclayer,(b)strongoutwardconvectionduetopositiveErand turbulence inthe low collisionality region,(c) impurity accumu-lationby the dominant contributionof negativeEr, (d)turbulent transport exceeding neoclassicaltransport (Er/Ti pinch term) and suppressingimpurity accumulation From thisdiagram, operation scenariosofsteadystateplasmasinLHDcanbedevelopedtowards therealizationoffusion-relevantplasmas
Acknowledgments
TheauthorsaregratefultotheLHDTeamfortheirexcellent co-operation andto the device engineeringgroup of LHD for main-taininggoodoperatingconditions.Oneoftheauthors(YN)thanks therefereesfortheirimportantcommentsandfruitfuldiscussions This work is supported by the budget for the LHD project (NIF-SULRR702)
References
[1] M.N.A Beurskens , et al , Plasma Phys Control Fusion 55 (2013) 124043 [2] O Kaneko , et al , Nucl Fusion 53 (2013) 104015
[3] T.S Pedersen , et al , Nucl Fusion 55 (2015) 126001 [4] Y Nakamura , et al , Nucl Fusion 46 (2006) 714 [5] T Mutoh , et al , Nucl Fusion 53 (2013) 063017 [6] Y Nakamura , et al , Plasma Phys Control Fusion 44 (2002) 2121 [7] Y Nakamura , et al , Nucl Fusion 43 (2003) 219
[8] N Tamura , et al , Plasma Phys Control Fusion 45 (2003) 27 [9] R Burhenn , et al , Nucl Fusion 49 (2009) 065005 [10] M Kobayashi , et al , J Nucl Mater 390-391 (2009) 325 [11] M Kobayashi , et al , Nucl Fusion 53 (2013) 033011 [12] Y Feng , et al , Plasma Phys Control Fusion 53 (2011) 024009 [13] A Iiyoshi , et al , Nucl Fusion 39 (1999) 1245
[14] N Ohyabu , et al , Phys Rev Lett 97 (2006) 055002 [15] R Sakamoto , et al , Nucl Fusion 49 (2009) 085002 [16] H Yamada , et al , Nucl Fusion 51 (2011) 094021 [17] B.J Peterson , et al , Plasma Phys Control Fusion 45 (2003) 1167 [18] H Kasahara , et al , Phys Plasma 21 (2014) 061505
[19] M Goto , et al , Phys Plasma 10 (2003) 1402 [20] K Ida , et al , Rev Sci Instrum 86 (2015) 123514 [21] Y Nakamura , et al , Plasma Phys Control Fusion 56 (2014) 075014 [22] Y Feng , et al , Nucl Fusion 46 (2006) 807
[23] M Kobayashi , et al , Nucl Fusion 55 (2015) 104021 [24] R Burhenn , et al , Fusion Sci Technol 46 (2004) 115 [25] C Hidalgo , et al , Nucl Fusion 45 (2005) S266 [26] S Sudo , et al , Nucl Fusion 52 (2012) 063012 [27] H Maassberg , et al , Plasma Phys Control Fusion 41 (1999) 1135 [28] M Yoshinuma , et al , Plasma Phys Control Fusion 46 (2004) 1021 [29] H Sasao , et al , J Plasma Fusion Res Ser 3 (20 0 0) 431
[30] S.P Hirshman , D.J Sigmar , Nucl Fusion 21 (1981) 1079 [31] M.R Wade , et al , Phys Rev Lett 84 (20 0 0) 282 [32] S Sudo , et al , Plasma Phys Control Fusion 55 (2013) 095014 [33] M Yoshinuma , et al , Nucl Fusion 49 (2009) 062002 [34] K Ida , et al , Phys Plasma 16 (2009) 056111 [35] M Yoshinuma , et al , Nucl Fusion 55 (2015) 083017 [36] K Ida , et al , Nucl Fusion 45 (2005) 391
[37] M Nakata , et al , Plasma Phys Control Fusion 58 (2016) 074008 [38] S Futatani , Phys Rev Lett 104 (2010) 015003
[39] C Angioni , et al , Nucl Fusion 51 (2011) 023006 [40] E.J Casson , et al , Nucl Fusion 53 (2013) 063026 [41] Y Nakamura , in: 26th IAEA Fusion Energy Conference (Kyoto, Japan), 2016,
p EX/P8-4 [42] J.L Velasco , et al , Nucl Fusion 57 (2017) 016016