1. Trang chủ
  2. » Tất cả

Bayesian analysis of low cycle fatigue failure in printed wiring boards

6 2 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 6
Dung lượng 508,53 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Bayesian analysis of low cycle fatigue failure in printed wiring boards Case Studies in Engineering Failure Analysis 7 (2016) 65–70 Bayesian analysis of low cycle fatigue failure in printed wiring boa[.]

Trang 1

Bayesian analysis of low-cycle fatigue failure in printed wiring

boards

a

Arizona State University, United States

b

Honeywell Inc., United States

A R T I C L E I N F O

Article history:

Received 28 July 2016

Received in revised form 28 October 2016

Accepted 7 November 2016

Available online 12 November 2016

Keywords:

Reliability

Circuit board

Thermal cycling test

Weibull regression

Bayesian analysis

A B S T R A C T

Inthisstudy,alow-cyclefatigueexperimentwasconductedonprintedwiringboards (PWB).TheWeibullregressionmodelandcomputationalBayesiananalysismethodwere appliedtoanalyzefailuretimedataandtoidentifyimportantfactorsthatinfluencethe PWB lifetime.Theanalysisshowsthat bothshapeparameterand scale parameterof WeibulldistributionareaffectedbythesupplierfactorandpreconditioningmethodsBased

ontheenergyequivalenceapproach,a6-cyclereflowpreconditioncanbereplacedbya 5-cycleISTprecondition,thusthetotaltestingtimecanbegreatlyreduced.Thisconclusion wasvalidatedbythelikelihoodratiotestoftwodatasetscollectedundertwodifferent preconditioning methods Therefore, the Weibull regression modeling approach is an effectiveapproachforaccountingforthevariationofexperimentalsettinginthePWB lifetimeprediction

ã2016TheAuthor(s).PublishedbyElsevierLtd.ThisisanopenaccessarticleundertheCC

BY-NC-NDlicense(http://creativecommons.org/licenses/by-nc-nd/4.0/)

1.Background

Acceleratedlifetesting(ALT)ofprintedwiringboards(PWB)isanessentialtoolforpredictingcircuitboardlifetimeinthe electronicindustry.A standardpracticeof usingALTsis tosimulatethermally inducedfailureorlow-cycle fatigueby subjectingacircuitboardcoupontoaprescribednumberofspecificthermalcyclesthatrepresentsin-serviceuseofthe product[1].Forexample,thestandardpracticeintheavionicindustryemploysinterconnectstresstest(IST)perIPC-TM-650

[2]withallcouponsinalotpassing350thermalcyclesastheacceptancetestcriteria.Inourexperiment,thetestcoupons weredrivenbeyondthenormaltestlimitsof350cyclesassuggestedin[3,4]toprecipitatefailuresandtostudydifferencesin preconditioningprocesses.Thegoalofthisstudyistri-folded:First,wedevelopanenergy-equivalentmodelforestablishing theISTsetup.Second,wecomparetheresultsfromcouponsfabricatedbyfoursuppliers.Lastly,thiscasestudydemonstrates theeffectivenessofusingWeibullregressionandcomputationalBayesiananalysistechniquesforelectroniccomponent failureanalysis

TheISTcouponsaremanufacturedalongthesideofacircuitboardprototypeandmultipleviabarrelsareproducedonit (seeFig.1(a)).Thefailuremodeofthedatapresentedinthispaperisthermallyinducedfatigueduetotheexpansionand contractionofviabarrels(aviaisthemechanismbywhichdifferentcircuitlayersareconnected).Theselowcyclefatigueson interconnectshavedrawnalotofattentionsfromacademicresearchersandindustrialpractitioners[5–7];however,mostof themdiscussedthefatiguesonleadorlead-freesolders,notonviabarrels.Fig.2(b)illustratesthefracturesinaviabarrel

* Corresponding author.

E-mail address: rong.pan@asu.edu (R Pan).

http://dx.doi.org/10.1016/j.csefa.2016.11.001

2213-2902/ã 2016 The Author(s) Published by Elsevier Ltd This is an open access article under the CC BY-NC-ND license ( http://creativecommons.org/

Case Studies in Engineering Failure Analysis 7 (2016) 65–70

ContentslistsavailableatScienceDirect

j o u r n a lh o m e p a g e : w w w e l s e v i e r c o m / l o c a t e / c s e fa

Trang 2

Failureisdeterminedwhencouponresistanceisatgreaterthan10%resistancechangefromtheoriginalresistanceatthe initialcycleatthehighestpointofthetesttemperatureafterpreconditioning.Theresistanceincreasesbecausewhenacrack formslessmaterialislefttoconductcurrent

A preconditioning thermal cycle step is required beforethe designed thermal cycling test that simulates the life experienceofcircuitboard.Thispreconditioningstepistoaccountforthethermalstressduringthecircuitboard’ssoldering process.Twomodesofheattransfercanbeusedtoreproducetheproductionthermalstresstheresistiveheattransferas usedbyISTortheconvectionheattransferbyreflowoven.Althoughthelatteronecanmorerealisticallyrepresentthe manufacturingprocess,itdemandsinvaluablemanufacturingresource(reflowoven)andiscostlyandtimeconsuming.In contrast,ISTcanheattheinternalenvironmentoftestedcouponsbyresistiveheattransferinaveryshorttime.Therefore,it

isimportanttoknowwhatISTsettingscanbeusedtoreplacethereflowpreconditioning

2.Experiment

PWBcouponsofsize5”0.70.1”wereusedinthisexperiment.Eachcouponwasmadeof14layersofcircuitrywithan electricalcircuitdaisychain.Thesecouponscame fromfourdifferentsuppliersanda batchofsixcouponswastested togetheratonetime.Therewereatotalof134couponsbeingtested.Thefailuretimes(numberofthermalcycles)ofthese testcouponsaregiveninAppendixA.Ifacoupondidnotfail,itssurvivaltimeismarkedwith“+”

Atestcouponmayexperience5or6ISTpreconditioningcycles(IST5orIST6)or6reflowpreconditioningcycles(RFO6) Theexperimentalsettingsofthesepreconditioningmethodsaredescribedbelow:

UseISTtoheattestcouponsforthreeminutesuntilitreachesthemaximumtemperatureof230C,andthencoolthe couponintheroomtemperature(25C)environmentfortwominutes.ThismakesonecycletimefortheISTtesttobefive minutes.However,thisexperimentalsettingwasmodifiedforthecouponsfromonesupplier,inwhichthemaximum temperaturewasincreasedto240Cand245C

Fig 1 (a) A typical PWB coupon used in this study; (b) Failure mode is a cracked via barrel at arrow points due to thermal induced fatigue.



66 R Pan et al / Case Studies in Engineering Failure Analysis 7 (2016) 65–70

Trang 3

 Passtestcouponsthroughthereflowovenfor12minunderthetemperatureof250C.Thisway,couponsareheated directlyviaconvectionheattransfer.Thetestcouponthenstaysintheroomtemperatureenvironmentfor8mintocool down.Thus,onecycletimeforthereflowsystemis20minutes

3.Engineeringanalysis

PriortotheselectionoftheWeibulldistributionastheappropriatelifetimedistributionforthedata,allthedatasetswere fittedbyWeibull,normal,logistic,lognormalandloglogisticdistributions.Werankedthesedistributionsbytheir Anderson-Darlingstatistics.ItwasfoundthatbothWeibullandlognormaldistributionshavethebestgoodness-of-fit;however,the Weibulldistributionwaschosen,becauseatthehighestcycles-to-failuretheWeibulldistributiontendedtohaveabetterfit whenweexaminedtheindividualprobabilityplotofeachdataset

3.1.Weibullregressionmodel

Weibulldistributionhastwoparameters–theshapeparameterv>0andthescaleparameter(thecharacteristiclife)

h>0,anditsprobabilitydensityfunctionisgivenby

fðtÞ¼hv hx

 v1

eðt=hÞ v

Accordingly,itscumulativefailuredistributionfunctionisgivenby

FðxÞ¼1eðt=hÞ v

ð2Þ andthereliabilityfunction

RðxÞ¼eð t =hÞ v

ð3Þ Theshapeparametervisofteninfluencedbythesupplierfactorandthepreconditioningmethod,becausetheyhavean impactonthematerialbeingtested.Thus,wemodeltheshapeparameterbythefollowinglinearfunction:

wheres1;s2ands3areindicatorvariablesforidentifyingsuppliersandrrepresentsthepreconditioningmethod.Whens1¼1 ands2¼s3¼0,thefirstsupplier’scouponisinuse.Similarly,thesecondandthirdsuppliersareidentifiedbys2¼1and

s3¼1,respectively,andthelastsupplierisidentifiedbys1¼s2¼s3¼0.ThereflowandISTpreconditioningmethodsare indicatedbyr¼1andr¼0,respectively.Usingthisregressionmodel,wecanpoolallavailabledataformodelparameter estimation

Forthescaleparameter,ourpreviousstudysuggeststhatitcanbeinfluencedbytheenergyabsorbedbythecoupon duringthepreconditioningstep[8].Aseachpreconditioningmethodhasdifferenttargetedtemperature,rampingtimeand cycletime,wecalculatetheirjouleequivalentenergyusingthefollowingequation:

Energy¼PCCDTRT

where PCC represents the number of preconditioning cycles, DT represents the temperature gap between ramping temperatureandcoolingdowntemperature,RTistherampingtime,andCTisthetotalcycletime.Accordingto[9],coupons reachsteady statetemperaturessofastthat itis reasonabletoassume thatthese couponsarealways atthereadout temperature.Basedontheinversepowerlaw,alog-linearmodelfortheWeibullcharacteristiclifeisgivenby

wherevariableedenotestheenergyabsorbedbycoupon

3.2.Bayesianinference

InordertointegratepriorknowledgeofWeibullparametersintoourdataanalysis,wechosetheBayesianinference method.AWeibullregressionanalysiswasconductedinWinBUGSenvironment[10]usingthefollowingmodel:

t½iweibullðv½i;l½iÞ

v½i ¼a þas ½i þa s½i þas ½i þa r½i

R Pan et al / Case Studies in Engineering Failure Analysis 7 (2016) 65–70 67

Trang 4

l½i¼h½iv½ i 

logh½i¼b0þb1s1½iþb2s2½iþb3s3½iþb4loge½iþb5r½i

whereirepresentsithtestdata,i2N;Nisthetotalnumberoftestdata

Ourpriorknowledgeabouttheseparameterswasderivedfromasimilartestconductedin[4].Intheirtest,therewere

54couponsundertheISTpreconditioningprocessforsixcyclesthathasthejouleequivalentenergyof738,andanother

58couponsunderreflowpreconditioningprocessforsixcycleswiththejouleequivalentenergyof615.Fittingtheirdata resultedintheequation,logh¼263loge.Therefore,wesetthepriordistribution,b4Nð3;1Þ.Otherpriordistributions arespecifiedasb0Nð20;1Þ,biNð0;1Þ,i¼1;2;3;5.Inaddition,thepriordistributionsfora0saresetasa0Nð2:5;1Þ,

aiNð0;1Þ,i¼1;2;3

MarkovchainMonteCarlo(MCMC)methodwasimplementedbytheGibbssampler,whichiterativelydrewsamplesofa parameterfromitscorrespondingconditionaldistributionmodel(see[11]forthedetailsofGibbssampler)

4.Numericalanalysis

TwoMarkovchainswithdifferentinitialvalueswererun,with100,000iterationsand10,000burn-initerationsforeach chain.Tovalidatethemodelandparametersettings,theGelman-Rubinconvergencediagnosiswasperformed.Wehad foundthehighautocorrelationsamongb0andb4samples.Thereasonofhighautocorrelationsintheseparameterscanbe explainedbythelowvarietyofequivalentenergyvalues.Therefore,weconductedsamplethinningwith20thinninginterval beingsetforeachparameter

Table1 givestheposterior estimationsof modelparameters.Using theestimatedvalueof each parameterand its correspondingstandarddeviationvalue,wecanperformattesttoshowwhetherornottheparameteris statistically significant.Thep-valuesofthesetestsarelistedinthetable.Wenoticethat,fortheWeibullshapeparameter,onlysupplier

2hasasignificanteffect,whiletheeffects fromothersuppliersarenot statisticallydifferent.Forthescale parameter (characteristiclife),allsuppliersaresignificant.Inaddition,thelargemagnitudeofb4(thecoefficientoftheequivalent energyfactor) indicatesthat theenergy equivalencevariablecan explaina largeportionof variabilityin theWeibull distribution’scharacteristiclife.Meanwhile,thenegativevalueofb4indicatesthatthelifetimeofPWBcouponisinversely proportiontotheenergyitabsorbed.ThemethodofpreconditioninghasanimpactonthelifetimeofPWBcoupononly throughtheWeibullcharacteristiclife,notthroughitsshapeparameter,asthecoefficienta4isnotstatisticallysignificant Using the regression model for the Weibull characteristic life, we may consider replacing the traditional reflow preconditionbyaproperISTprecondition.Asstatedin[8],a6-cyclereflowpreconditionwiththetemperaturerangefrom

25Cto250C,12minramptimeand20mincycletimescanproduce782jouleequivalentenergy,thusthelasttwotermsof therighthandsideofEq.(6)iscalculatedas1:755log782þ0:2382¼4:84.ByusinganISTpreconditionwiththe temperaturerangefrom25Cto245C,3minramptimeand5mincycletime,a5-cycleISThas660jouleequivalentenergy andthelasttwotermsofEq.(6)is1:755log660¼4:94,whichisclosetothepreviousreflowcalculation.Thus,thisIST preconditioningmethodcanbeusedtoreplacethetraditionalreflowpreconditioningmethodsoastoavoidtheuseofreflow oveninthetestandtoreducethetotaltestingtime.Furthermore,weperformedalikelihoodratiotestonthe5-cycleISTdata (245C)andthe6-cycleRFOdatafromSupplier4andconcludedthattheirfailuretimedistributionsarenotstatistically different.ThisconclusionisalsoconfirmedbyFig.2,wherethefittedWeibulldistributionsforthesetwodatasetsoverlap eachother

Table 1

Posterior estimation of Weibull regression parameters.

alpha0 3.353 0.3618 <0.0001 2.668 3.342 4.076 alpha1 0.3456 0.5693 0.6636 0.7581 0.3476 1.488 alpha2 2.039 0.4438 <0.0001 2.884 2.045 1.147 alpha3 0.3183 0.5573 0.6778 0.7455 0.3054 1.44 alpha4 0.9209 0.4466 0.0952 0.06004 0.9201 1.806 beta0 19.12 0.9538 <0.0001 17.25 19.07 21.1 beta1 1.104 0.06232 <0.0001 1.225 1.104 0.9813 beta2 2.906 0.1896 <0.0001 3.27 2.912 2.513 beta3 0.6304 0.05737 <0.0001 0.7407 0.6305 0.5184 beta4 1.755 0.1462 <0.0001 2.06 1.748 1.467 beta5 0.2382 0.05425 <0.0001 0.1332 0.2379 0.3475

68 R Pan et al / Case Studies in Engineering Failure Analysis 7 (2016) 65–70

Trang 5

The low-cycle fatigue tests wereconducted on the PWB coupons from four differentsuppliers In this paper we demonstratetheuseofWeibullregressionmodelandcomputationalBayesiananalysismethodforidentifyingimportant factorsonPWBlifetime.Our resultshowsthatasthelifetimesofcouponsfromfoursuppliersaredifferentingeneral, couponsfromsupplier2possesssignificantlylowerlifecharacteristicthanothers.Furthermore,wedemonstratethatthe energyequivalenceapproachisaneffectiveapproachforaccountingforthevariationinlifetimeestimationduetodifferent preconditioningmethodsandforsetting ISTparameters.Based onthis approach,a6-cyclereflow preconditioncanbe replacedbya5-cycleISTprecondition,thusthetotaltestingtimecanbegreatlyreduced

Acknowledgements

Wethanktheanonymousrefereeforhis/herconstructivecommentsandsuggestions.Thisworkwaspartiallysupported

bytheNSFGrantCMMI1301075

AppendixA.Thermalcycletestdataset

Thermalcycletestdataset

Supplier 1 Supplier 2 Supplier 3 Supplier 4

IST5

(230C)

IST6

(230C)

RFO6 IST5

(230C)

RFO6 IST5

(230C)

IST6 (230C)

RFO6 IST6

(240C)

IST5 (245C)

1500+ 1500+ 2437 2821+

2733 1800+

1800+

1800+

1800+

1800+

1800+

1800+

2800+

2800+

2800+

References

[1] Dieter GE Mechanical metallurgy 2nd ed New York, NY: McGraw-Hill; 1976

[2] IPC-TM-650 Test methods: manual, Test Methods Subcommittee (7–11) (2001, May) DC current induced thermal cycling test (Number 2.6.26) Northbrook, IL: Association Connecting Electronics Industries (IPC), http://www.IPC.org

[3] K.D Cluff, M Osterman, Defining accelerated test requirements for PWBs: A physics-based approach, presented at Association Connecting Electronics Industries (IPC) Printed Circuits Exposition, Long Beach, CA, March, 2002.

[4] B Slough, IST correlation study between Multek Asia, PWB Interconnect Solutions, and Multek Germany (Report number MET161404, Tracking #1614) Jingan Town, Doumen, Zhuhai, Guangdong, PRC: Multek Asia Analytical & Materials Development Lab., 2005.

[5] Pang JHL, Xiong BS, Low TH Low cycle fatigue models for lead-free solders Thin Solid Films 2004;462–463:408–12

[6] Jing HY, Zhang YY, Xu LY, Zhang GS, Han YD, Wei J Low cycle fatigue behavior of a eutectic 80Au/20Sn solder alloy Int J Fatigue 2015;75:100–7 [7] Zhu Y, Li X, Gao R, Wang C Low-cycle fatigue failure behavior and life evaluation of lead-free solder joint under high temperature Microelectr Reliabil 2014;54:2922–8

R Pan et al / Case Studies in Engineering Failure Analysis 7 (2016) 65–70 69

Trang 6

[9] Blattau MD Evaluation of IST test technology for plated through hole reliability Master Thesis College Park: University of Maryland; 1999 [10] Lunn DJ, Thomas A, Best N, Spiegelhalter D WinBUGS – a Bayesian modelling framework: concepts, structure, and extensibility Stat Comput 2000;10:325–37

[11] Gelman A, Carlin JB, Stern HS, Dunson DB, Vehtari A, Rubin DB Bayesian Data Analysis 3rd Edition Boca Raton, FL: CRC Press; 2014

70 R Pan et al / Case Studies in Engineering Failure Analysis 7 (2016) 65–70

Ngày đăng: 19/11/2022, 11:41

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN