1. Trang chủ
  2. » Tất cả

DS10 c1 b1 MENH đe

19 5 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Mệnh Đề
Tác giả Phạm Việt Thái, Vũ Thị Thu Trang, Thu Ngọc, Hoa Nghiêm A
Trường học Trường Đại học Sư phạm Hà Nội
Chuyên ngành Toán học
Thể loại Báo cáo môn học
Năm xuất bản 2021-2022
Thành phố Hà Nội
Định dạng
Số trang 19
Dung lượng 1,16 MB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

PPT TIVI DIỄN ĐÀN GIÁO VIÊN TOÁN NĂM 2021 2022 ĐẠI SỐ 10 – CHƯƠNG 1 §1 MỆNH ĐỀ Thời lượng dự kiến 3 tiết Facebook GV1 soạn bài Phạm Việt Thái (phần A) Facebook GV2 soạn bài Vũ Thị Thu Trang (phần B) F[.]

Trang 1

ĐẠI SỐ - 10 – CHƯƠNG 1

§1 MỆNH ĐỀ

Thời lượng dự kiến: 3 tiết

Facebook GV1 soạn bài: Phạm Việt Thái (phần A)

Facebook GV2 soạn bài: Vũ Thị Thu Trang (phần B)

Facebook GV3 phản biện lần 1: Thu Ngọc

Facebook GV1 chuẩn hoá lần 1: Hoa Nghiêm

A PHẦN KIẾN THỨC CHÍNH

I MỆNH ĐỀ MỆNH ĐỀ CHỨA BIẾN

1 Mệnh đề

 VD MỞ ĐẦU: Xét xem trong những câu sau, câu nào đúng, câu nào sai?

a) "Số 7 chia hết cho 2." (S)

" 2 là một số hữu tỉ." (S)

"3 4." (Đ)

"2 3 1 6   36

." (S)

"5 là một số nguyên tố." (Đ)

b) "Số rất quan trọng!" (không đúng, không sai)

Hãy đốt lửa lên!" (không đúng, không sai)

"Anh bao nhiêu tuổi?" (không đúng, không sai)

"Hãy đi nhanh lên!" (không đúng, không sai)

 Chú ý: Mỗi mệnh đề phải hoặc đúng hoặc sai

Một mệnh đề không thể vừa đúng, vừa sai

2 Mệnh đề chứa biến

 VD1: Xét câu sau: "2x 3 là số dương" Nó có thể đúng nhưng cũng có thể sai tuỳ thuộc vào giá trị cụ thể của x Ta nói đó là mệnh đề chứa biến

 VD2: "4 x 3", "x y  " cũng là những ví dụ về mệnh đề chứa biến.7

II PHỦ ĐỊNH CỦA MỘT MỆNH ĐỀ

 VD MỞ ĐẦU: Nam và Minh tranh luận về loài Dơi Nam nói "Dơi là một loài chim" Minh phủ định "Dơi không phải là một loài chim"

Để phủ định một mệnh đề, ta thêm (hoặc bớt) từ "không" (hoặc "không phải") vào trước vị ngữ của mệnh đề đó

 Chú ý:

Kí hiệu A là mệnh đề phủ định của mệnh đề A

Trang 2

A đúng khi A sai.

A sai thì A đúng.

 VD1: Hãy xét tính đúng, sai và tìm mệnh đề phủ định của các mệnh đề sau

a) P : " là một số vô tỉ".

b) Q : "Tổng ba góc trong của một tam giác bằng 180"

Lời giải

a) P : " là một số vô tỉ" là mệnh đề đúng.

P : " không là số vô tỉ" hoặc P : " là một số hữu tỉ".

b) Q : "Tổng ba góc trong của một tam giác bằng 180" là mệnh đề đúng

Q : "Tổng ba góc trong của một tam giác không bằng 180".

Hoặc Q : "Tổng ba góc trong của một tam giác khác 180"

III MỆNH ĐỀ KÉO THEO

 VD MỞ ĐẦU: Cho hai mệnh đề:

P : "Trái đất không có nước" và Q : "Trái đất không có sự sống".

Phát biểu: "Nếu Trái Đất không có nước thì Trái Đất không có sự sống" là một mệnh đề (và là

một mệnh đề đúng), có dạng "Nếu P thì Q "

 Chú ý:

Mệnh đề "Nếu P thì Q " được gọi là mệnh đề kéo theo, và kí hiệu là PQ

Mệnh đề PQ còn được phát biểu là " P kéo theo Q " hoặc "Từ P suy ra Q ".

 VD1: Cho ví dụ về mệnh đề kéo theo đúng và mệnh đề kéo theo sai?

Lời giải

Nếu ABC cân tại A thì ABAC (đúng)

Nếu a là số nguyên thì a chia hết cho 3 (sai)

 Chú ý:

Mệnh đề AB chỉ sai khi A đúng và B sai.

Nếu A đúng và B đúng thì "AB" là 1 mệnh đề đúng

Nếu A đúng và B sai thì "AB" là 1 mệnh đề sai

 VD2: Xét tính đúng sai của các mệnh đề kéo theo sau

a) 2   3 ( 2)2 ( 3)2

b) Nếu 12 là bội của 6 thì 12 là bội của 3

Trang 3

c) Nếu Tố Hữu là nhà Toán học lớn nhất của Việt Nam thì Évariste và Galois là nhà Thơ lỗi lạc của thế giới

Lời giải

Mệnh đề có dạng: "AB"

a) Ta có A đúng, B sai Vậy mệnh đề sai

b) Ta có A đúng, B đúng Vậy mệnh đề đúng

c) Ta có A sai, nên mệnh đề kéo theo đương nhiên đúng.

 Chú ý: Các định lí toán học là những mệnh đề đúng và thường có dạng P Q Ta nói :

P là giả thiết, Q là kết luận của định lí.

P là điều kiện đủ để có Q

Q là điều cần để có P

 VD3: Cho hai mệnh đề:

P : "Tứ giác T là hình vuông" và Q : "Tứ giác T có hai đường chéo bằng nhau".

a) Hãy phát biểu định lí PQ, nêu giả thiết và kết luận của định lí

b) Hãy phát biểu định lí này dưới dạng điều kiện cần, điều kiện đủ?

Lời giải

a) Định lí "Nếu một tứ giác là hình vuông thì nó sẽ có hai đường chéo bằng nhau”

P : "Tứ giác T là hình vuông" là giả thiết

Q : "Tứ giác T có hai đường chéo bằng nhau" là kết luận của định lí.

b) "Tứ giác T là hình vuông là điều kiện đủ để tứ giác T có hai đường chéo bằng nhau".

"Tứ giác T có hai đường chéo bằng nhau là điều kiện cần để nó là hình vuông".

Bài tập trắc nghiệm

Câu 1. Khẳng định nào sau đây sai?

A "Mệnh đề" là từ gọi tắt của "mệnh đề logic".

B Mệnh đề là một câu khẳng đúng hoặc một câu khẳng định sai.

C Mệnh đề có thể vừa đúng hoặc vừa sai.

D Một khẳng định đúng gọi là mệnh đề đúng, một khẳng định sai gọi là

mệnh đề sai

Lời giải Chọn C

Theo khái niệm mệnh đề

Câu 2. Trong các mệnh đề sau, mệnh đề nào là mệnh đề đúng?

Trang 4

A Nếu a b thì a2 b2.

B Nếu n chia hết cho 9 thì n chia hết cho 3

C Nếu em chăm chỉ thì em thành công.

D Nếu một tam giác có một góc bằng 60 thì tam giác đó là đều

Lời giải Chọn B

Câu A sai, ví dụ 12 nhưng

1  ( 2) Câu B đúng, vì n9 n9 (m m) n3.3 (3m m) n3.

Câu C không phải là mệnh đề vì ta không biết nó đúng hay sai Bởi nếu em chăm chỉ thì em có thể thành công hoặc cũng chưa chắc nữa nếu em có thể thiếu đôi chút may mắn

Câu D sai, vì tam giác phải có 2 góc bằng 60 thì mới khẳng định được là tam giác đều

Câu 3. Trong các câu sau, có bao nhiêu câu là mệnh đề:

a Huế là một thành phố của Việt Nam

b Sông Hương chảy ngang qua thành phố Huế

c Hãy trả lời câu hỏi này!

d 5 19 24 

e 6 81 25 

f Bạn có rỗi tối nay không?

g x  2 11

Lời giải Chọn C

a Mệnh đề đúng

b Mệnh đề đúng

c Là câu hỏi Không phải là mệnh đề

d Không phải là mệnh đề, vì nó không đúng, không sai

e Mệnh đề sai

g Không phải là mệnh đề, là mệnh đề chứa biến

III MỆNH ĐỀ ĐẢO HAI MỆNH ĐỀ TƯƠNG ĐƯƠNG

 VD MỞ ĐẦU: Cho các mệnh đề dạng "AB" sau:

Trang 5

a) "Tứ giác T là hình thoi thì có hai đường chéo vuông góc".

b) "Tứ giác T là hình thoi thì nó là hình bình hành và có hai đường chéo vuông góc"

Mỗi mệnh đề trên đúng hay sai và hãy xét tính đúng sai của mệnh đề "BA"?

 Chú ý:

Mệnh đề "BA" được gọi là mệnh đề đảo của mệnh đề "AB"

Nếu cả hai mệnh đề ABBA đều đúng, ta nói A và B là hai mệnh đề tương đương

Kí hiệu: AB

Đọc là: " A khi và chỉ khi B ", hoặc "A tương đương B", hoặc " A là điều kiện cần và đủ để có

B ".

 VD1: Phát biểu mệnh đề sau dùng điều kiện cần và đủ

a) ABC có góc ˆA bằng 90  ABC vuông tại A.

b) Một hình bình hành có các đường chéo vuông góc là một hình thoi và ngược lại

Lời giải

a) ABC có góc ˆA bằng 90 là điều kiện cần và đủ để ABC vuông tại A.

b) Một hình bình hành có các đường chéo vuông góc là điều kiện cần và đủ để nó là hình thoi

 VD2: Mệnh đề "x 0 và y   0 xy  " đúng hay sai? 0

Lời giải

Mệnh đề có dạng "AB"

Xét chiều AB: "x 0 và y 0 xy " đúng (tính chất của số thực dương.)0

Xét chiều BA: "xy   0 x 0 và y  ” sai (ví dụ: 0 x1,y )1

Vậy mệnh đề đã cho là sai

V CÁC KÍ HIỆU , 

1) Kí hiệu , 

 Kí hiệu  : đọc là: với mọi, tất cả

 Kí hiệu đọc là: có (ít nhất) một, tồn tại (ít nhất) một

 VD1: Phát biểu thành lời mệnh đề sau và xét tính đúng – sai của nó

a) " n N, n là số nguyên tố"; b) "x x:  1 2 "x ;

c) " x R x: 2 0"; d) " x R x: 2 2x 1 0"

Lời giải

a) " n N, n là số nguyên tố": Mọi số tự nhiên đều là số nguyên tố

Mệnh đề sai, ví dụ n = 4 không phải là một số nguyên tố.

b) "x x:  1 2 "x : Mọi số thực khi cộng thêm 1 đều lớn hơn khi lấy nó rồi nhân đôi

Trang 6

Mệnh đề sai, ví dụ với x 3.

c) " x R x: 2 0": Bình phương của mỗi số thực đều không âm

Mệnh đề đúng

d) " x R x: 2 2x 1 0": Với mỗi số thực x, ta luôn có x2 2x 1 0"

Mệnh đề sai, ví dụ với x 1

 VD2: Phát biểu thành lời mệnh đề sau và xét tính đúng – sai của nó

a) " x :x2 2";

b) " x :x2 2";

c) " x :x2 x 8 0"

Lời giải

a) " x :x2 2": Tồn tại số hữu tỉ mà bình phương bằng 2

Mệnh đề sai vì  2, 2 

b) " x :x2 0": Tồn tại số thực mà bình phương của nó không là một số dương Mệnh đề đúng với x 0

c) " x :x2 x 8 0": Phương trình x2  x  có nghiệm trong tập số thực.8 0 Mệnh đề sai vì phương trình x2 x  vô nghiệm.8 0

2 Phủ định của các mệnh đề chứa các kí hiệu , 

 VD1: Tìm mệnh đề phủ định của các mệnh đề sau

A : "Mọi học sinh trong lớp 10A đều hát hay".

B : "Tất cả các học sinh trong lớp 10A đều đã được đi máy bay".

Lời giải

A : "Có bạn học sinh trong lớp 10A hát không hay".

B : "Có bạn học sinh trong lớp 10A chưa được đi máy bay".

 Chú ý:

A : " x X; x có tính chất P" A: " x X; x không có tính chất P"

B : " x X; x có tính chất P" B: " x X; x không có tính chất P"

 VD2: Phát biểu mệnh đề phủ định của các mệnh đề sau

a) P : " x R x: 2 2x 1 0";

b) Q : " x R x: 2 0";

Trang 7

c) R : " x :x2 2".

Lời giải

a) P: " x R x: 2 2x 1 0";

b) Q: " x R x: 20";

c) R: " x :x2 2"

Bài tập trắc nghiệm

Câu 1. Cho mệnh đề A: " x ,x2 x 7 0" Mệnh đề phủ định của A là:

A  x , x2 x 7 0 B  x , x2 x 7 0

C Không tồn tạix x: 2 x  7 0 D  x , x2 x 7 0

Lời giải Chọn D

Phủ định của  là 

Phủ định của  là 

Câu 2. Mệnh đề nào sau đây là phủ định của mệnh đề "Mọi động vật đều di chuyển"

A Mọi động vật đều không di chuyển B Có ít nhất một động vật di chuyển.

C Mọi động vật đều đứng yên D Có ít nhất một động vật không di chuyển.

Lời giải Chọn D

Phủ định của "mọi" là "có ít nhất"

Phủ định của "đều di chuyển" là "không di chuyển"

B LUYỆN TẬP

I Chữa bài tập SGK

Bài 1 trang 19 - SGK: Trong các câu sau, câu nào là mệnh đề, câu nào là mệnh đề chứa biến?

Lời giải

a) 3 2 7  là mệnh đề

b) 4 x 3 là mệnh đề chứa biến

c) x y  là mệnh đề chứa biến.1

d) 2 5 0 là mệnh đề

Trang 8

Bài 2 trang 9 - SGK: Xét tính đúng sai của mỗi mệnh đề sau và phát biểu mệnh đề phủ định của nó

a) 1794 chia hết cho 3; b) 2 là một số hữu tỉ;

Lời giải

a) Mệnh đề "1794 chia hết cho 3" là mệnh đề đúng

Mệnh đề phủ định: "1794 không chia hết cho 3"

b) Mệnh đề " 2 là một số hữu tỉ" là mệnh đề sai

Mệnh đề phủ định: " 2 không là một số hữu tỉ"

c) Mệnh đề " 3,15" là mệnh đề đúng

Mệnh đề phủ định: " 3,15"

d) Mệnh đề " 125 0 " là mệnh đề sai

Mệnh đề phủ định: 125  0

Bài 3 trang 9 – SGK: Cho các mệnh đề kéo theo

Nếu ab cùng chia hết cho c thì a b chia hết cho c (a, b, c là những số nguyên) Các số nguyên tận cùng bằng 0 đều chia hết cho 5

Tam giác cân có hai đường trung tuyến bằng nhau

Hai tam giác bằng nhau có diện tích bằng nhau

a) Hãy phát biểu mệnh đề đảo của mỗi mệnh đề trên

b) Phát biểu mỗi mệnh đề trên, bằng cách sử dụng khái niệm "điều kiện đủ"

c) Phát biểu mỗi mệnh đề trên, bằng cách sử dụng khái niệm "điều kiện cần"

Lời giải

a) Nếu a b chia hết cho c thì cả ab đều chia hết cho c

Các số nguyên chia hết cho 5 thì tận cùng bằng 0

Tam giác có hai trung tuyến bằng nhau là tam giác cân

Hai tam giác có diện tích bằng nhau thì bằng nhau

b) ab chia hết cho c là điều kiện đủ để a b chia hết cho c.

Một số nguyên tận cùng bằng 0 là điều kiện đủ để số đó chia hết cho 5

Điều kiện đủ để một tam giác là cân là có hai đường trung tuyến bằng nhau

Hai tam giác bằng nhau là điều kiện đủ để chúng có diện tích bằng nhau

c) a b chia hết cho c là điều kiện cần để ab chia hết cho c

Các số nguyên chia hết cho 5 là điều kiện cần để số đó có tận cùng bằng 0

Trang 9

Điều kiện cần để tam giác là tam giác cân là nó có hai trung tuyến bằng nhau.

Hai tam giác có diện tích bằng nhau là điều kiện cần để hai tam giác đó bằng nhau

Bài 4 trang 9 – SGK: Phát biểu mỗi mệnh đề sau, bằng cách sử dụng khái niệm "điều kiện cần và đủ"

a) Một số có tổng các chữ số chia hết cho 9 thì chia hết cho 9 và ngược lại

b) Một hình bình hành có các đường chéo vuông góc là một hình thoi và ngược lại

c) Phương trình bậc hai có hai nghiệm phân biệt khi và chỉ khi biệt thức của nó dương

Lời giải

a) Điều kiện cần và đủ để một số chia hết cho 9 là tổng các chữ số của nó chia hết cho 9

b) Điều kiện cần và đủ để tứ giác là hình thoi là tứ giác là hình bình hành có hai đường chéo vuông góc với nhau

c) Điều kiện cần và đủ để phương trình bậc hai có hai nghiệm phân biệt là biệt thức của nó dương

Bài 5 trang 10 – SGK: Dùng kí hiệu  ,  để viết các mệnh đề sau

a) Mọi số nhân với 1 đều bằng chính nó;

b) Có một số cộng với chính nó bằng 0;

c) Mọi số cộng với số đối của nó đều bằng 0

Lời giải

a)  x : 1xx

b)  x :x x 0

c)  x :x  x 0

Bài 6 trang 10 – SGK: Phát biểu thành lời mỗi mệnh đề sau và xét tính đúng sai của nó.

a)  x :x2 0; b)  n :n2 n;

1 :

x

Lời giải

a) Mệnh đề " x :x2 0" được phát biểu thành lời là: "Bình phương của mỗi số thực là số một dương"

Mệnh đề sai vì 0   mà 02  0

b) Mệnh đề " n :n2 n" được phát biểu thành lời là: "Tồn tại một số tự nhiên mà bình phương của nó bằng chính nó"

Mệnh đề đúng vì 1:12 1

Trang 10

c) Mệnh đề " n :n2n" được phát biểu thành lời là: "Mọi số tự nhiên thì không lớn hơn hai lần số ấy"

Mệnh đề đúng vì n2nn0

d) Mệnh đề "

1 :

x

" được phát biểu thành lời là: "Có số thực x nhỏ hơn nghịch đảo của nó"

Mệnh đề đúng, chẳng hạn

1

0,5

Bài 7 trang 10 – SGK: Lập mệnh đề phủ định của mỗi mệnh đề sau và xét tính đúng sai của nó.

a)   n :n chia hết cho n; b)

2

c)  x :x x 1; d)  x : 3x x 21

Lời giải

a) : "P   n :n chia hết cho n"

: " :

P   n n không chia hết cho n" hay "Có số tự nhiên n không chia hết cho chính nó" Mệnh đề này đúng vì n   0 , 0 không chia hết cho 0

b) P: " x :x2 2"

2

P  xx

hay "Bình phương của một số hữu tỉ là một số khác 2"

Mệnh đề đúng vì x2  2 x 2

c) : "P  x :x x 1"

: " : 1"

P  xx x  hay "Tồn tại số thực x không nhỏ hơn số ấy cộng với 1"

Mệnh đề này sai vì x x  1 0 1 (vô lý)

d) P: " x : 3x x 21"

2

: " : 3 1"

P  xx x 

Đây là mệnh đề sai vì phương trình vì

2

x x   x 

II Bài tập trắc nghiệm

Câu 1 [Mức độ 1] Trong các câu sau, có bao nhiêu câu là mệnh đề?

 1

Cố lên, sắp đến rồi !

Trang 11

 2

Số 15 là số nguyên tố

 3

Tổng các góc của một tam giác là 180

 4

Số 5 là số nguyên dương

Lời giải Chọn C.

 1

"Cố lên, sắp đến rồi !" là câu cảm thán, không phải mệnh đề.

 2

"Số 15 là số nguyên tố" là mệnh đề sai

 3 "Tổng các góc của một tam giác là 180" là mệnh đề đúng.

 4 "Số 5 là số nguyên dương" là mệnh đề đúng.

Câu 2 [Mức độ 1] Trong các câu sau, câu nào không là mệnh đề chứa biến?

A Số 2 không phải là số nguyên tố. B

2

4xx 5 0

Câu 3 [Mức độ 1] Cho mệnh đề P : "4 là số chẵn" và mệnh đề Q : "Hà Nội là thủ đô của Việt Nam"

Phát biểu nào sau đây là phát biểu của mệnh đề PQ

A Nếu 4 là số chẵn thì Hà Nội là thủ đô của Việt Nam.

B Nếu Hà Nội là thủ đô của Việt Nam thì 4 là số chẵn.

C 4 là số chẵn nếu Hà Nội là thủ đô của Việt Nam.

D Nếu 4 là số chẵn thì Hà Nội không là thủ đô của Việt Nam.

Lời giải Chọn A

Mệnh đề "Nếu P thì Q " được gọi là mệnh đề kéo theo và kí hiệu là PQ

Câu 4 [Mức độ 1] Mệnh đề phủ định của mệnh đề "Phương trình ax2bx c  0 a 0 vô nghiệm"

là mệnh đề nào sau đây?

A Phương trình ax2bx c  0 a 0 không có nghiệm.

B Phương trình ax2bx c  0 a 0

có 2 nghiệm phân biệt

Ngày đăng: 14/11/2022, 08:40

w