14, Balgat, Ankara, 06530, Turkey Full list of author information is available at the end of the article Abstract In this manuscript, by using the fixed point theorems, the existence and
Trang 1R E S E A R C H Open Access
Existence and uniqueness of solutions for
multi-term nonlinear fractional
integro-differential equations
Dumitru Baleanu1,2,3*, Sayyedeh Zahra Nazemi4and Shahram Rezapour4
* Correspondence:
dumitru@cankaya.edu.tr
1 Department of Chemical and
Materials Engineering, Faculty of
Engineering, King Abdulaziz
University, P.O Box 80204, Jeddah,
21589, Saudi Arabia
2 Department of Mathematics,
Cankaya University, Ogretmenler
Cad 14, Balgat, Ankara, 06530,
Turkey
Full list of author information is
available at the end of the article
Abstract
In this manuscript, by using the fixed point theorems, the existence and the uniqueness of solutions for multi-term nonlinear fractional integro-differential equations are reported Two examples are presented to illustrate our results
Keywords: Caputo fractional derivative; fixed point theorem; multi-term nonlinear
fractional differential equation
1 Introduction
The study of fractional differential equations ranges from the theoretical aspects of ex-istence and uniqueness of solutions to the analytic and numerical methods for finding solutions Fractional differential equations appear naturally in a number of fields such as physics, polymer rheology, regular variational in thermodynamics, biophysics, blood flow phenomena, aerodynamics, electro-dynamics of complex medium, viscoelasticity, Bode’s analysis of feedback amplifiers, capacitor theory, electrical circuits, electron-analytical
chemistry, biology, control theory, fitting of experimental data, etc An excellent account
in the study of fractional differential equations can be found in [, ] and [] For more details and examples, one can study [–] and [] It is considerable that there are many works about fractional integro-differential equations (see, for example, [–] and [])
In , Xinwei and Landong reviewed the existence of solutions for the nonlinear frac-tional differential equation
c D α u(t) = f
t, u(t), c D β u(t)
( < t < )
with boundary values u() = u() = or u() = u() = or u() = u() = , where < α ≤
, <β ≤ , and f is continuous on [, ] × R × R [] In , Su and Zhang studied
the existence and uniqueness of solutions for the following nonlinear two-point fractional boundary value problem
c D α u(t) = f
t, u(t), c D β u(t)
( < t < )
with boundary values au() – au() = A and bu() + bu() = B, where α, β, a i , b i (i = , ) satisfy certain conditions [] In , Ahmad and Sivasundaram studied the
©2013 Baleanu et al.; licensee Springer This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction
Trang 2existence of solutions for the nonlinear fractional integro-differential equation
c D q u(t) = f
t, u(t), ( φu)(t), (ψu)(t) ( < t < and < q≤ )
with boundary values u() + au( η) = , bu() + u( η) = and <η≤ η< , wherec D qis
the Caputo fractional derivative, a, b ∈ (, ), f : [, ] × X × X × X → X is continuous and
for the mappingsγ , λ : [, ]×[, ] → [, ∞) with the property sup t∈[,]|t
λ(t, s) ds| < ∞
and supt∈[,]|t
γ (t, s) ds| < ∞, the maps φ and ψ are defined by (φu)(t) =t
γ (t, s)u(s) ds
and (ψu)(t) =t
λ(t, s)u(s) ds Here, X is a Banach space (see []).
2 Main results
2.1 The basic problem
In this paper, we study the existence and uniqueness of solutions for the multi-term
non-linear fractional integro-differential equation
c D α u(t) = f
t, u(t), ( φu)(t), (ψu)(t), c D βu(t), c D βu(t), , c D β n u(t)
( < t < ) ()
with boundary values u() + au() = and u() + bu() = , where <α < , < β i< ,
α – β i ≥ , a, b = –, f : [, ] × R n+→ R is continuous, and for the mappings
γ , λ : [, ] × [, ] → [, ∞)
with the property supt∈[,]|t
λ(t, s) ds| < ∞ and sup t∈[,]|t
γ (t, s) ds| < ∞, the maps φ
andψ are defined by (φu)(t) =t
γ (t, s)u(s) ds and (ψu)(t) =t
λ(t, s)u(s) ds In this way,
we need the following result, which has been proved in []
Lemma . Let α > and n = [α] + Then
I αc D α u(t) = u(t) + c+ ct + ct + · · · + c n– t n–,
where c, c, , c n– are some real numbers.
The proof of the following result by using Lemma . is straightforward
Lemma . Let y ∈ C[, ], a, b = – and < α < Then the problem c D α u(t) = y(t) with
boundary values u() + au() = and u() + bu() = has the unique solution
u(t) = (α)
t
(t – s) α– y(s) ds – a
( + a) (α)
( – s) α– y(s) ds
+ ab – b( + a)t
( + a)( + b) (α – )
( – s) α– y(s) ds.
2.2 Some results on solving the problem
Let C(I) be the space of all continuous real-valued functions on I = [, ] and
X =
u : u ∈ C(I) and c D β i u ∈ C(I) ( < β i < ) for i = , , , n endowed with the norm u = max t ∈I |u(t)| +n
i=maxt ∈I|c D β i u(t) | It is known that (X,
· ) is a Banach space
Trang 3Theorem . Assume that there exist κ ∈ (, α – ) and μ(t) ∈ L
κ([, ], (,∞)) such that
f (t, x, y, w, u, u, , u n ) – f
t, x, y, w, v, v, , v n
≤ μ(t) x – x + y – y + w – w +|u– v| + |u– v| + · · · + |u n – v n|
for all t ∈ [, ] and x, y, w, x, y, w, u, u, , u n , v, v, , v n ∈ R Then problem () has a
unique solution whenever
= ( + γ+λ) ( + |a|)μ∗
| + a| (α)
–κ
α – κ
–κ
+ |b|( + |a|)μ∗
| + a|| + b| (α – )
–κ
α – κ –
–κ
+
n
i=
(α – κ)μ∗
(α – ) (α – β i–κ + )
–κ
α – κ –
–κ
| + b| ( – β i) (α – )
–κ
α – κ –
–κ
< ,
where γ= supt ∈I|t
γ (t, s) ds|, λ= supt ∈I|t
λ(t, s) ds|, μ∗= (
(μ(s))
κ ds) κ
Proof Define the mapping F : X → X by
(Fu)(t) =
t
(t – s) α–
(α) f
s, u(s), ( φu)(s), (ψu)(s), c D βu(s), c D βu(s), , c D β n u(s)
ds
( + a)
( – s) α–
(α)
× fs, u(s), ( φu)(s), (ψu)(s), c D βu(s), c D βu(s), , c D β n u(s)
ds
+ab – b( + a)t
( + a)( + b)
( – s) α–
(α – )
× fs, u(s), (φu)(s), (ψu)(s), c D βu(s), c D βu(s), , c D β n u(s)
ds.
For each u, v ∈ X and t ∈ [, ], by using the Hölder inequality, we have
(Fu)(t) – (Fv)(t)
= t (t – s) (α) α–f
s, u(s), (φu)(s), (ψu)(s), c D βu(s), c D βu(s), , c D β n u(s)
– f
s, v(s), ( φv)(s), (ψv)(s), c D βv(s), c D βv(s), , c D β n v(s)
ds
( + a)
( – s) α–
(α)
f
s, u(s), ( φu)(s), (ψu)(s), c D βu(s), c D βu(s), , c D β n u(s)
– f
s, v(s), ( φv)(s), (ψv)(s), c D βv(s), c D βv(s), , c D β n v(s)
ds
+ab – b( + a)t
( + a)( + b)
( – s) α–
(α – )
f
s, u(s), ( φu)(s), (ψu)(s), c D βu(s), c D βu(s),
,c D β n u(s)
– f
s, v(s), ( φv)(s), (ψv)(s), c D βv(s), c D βv(s), , c D β n v(s)
ds
≤
t
(t – s) α–
(α) f
s, u(s), (φu)(s), (ψu)(s), c D βu(s), c D βu(s), , c D β n u(s)
Trang 4– f
s, v(s), (φv)(s), (ψv)(s), c D βv(s), c D βv(s), , c D β n v(s) ds + |a|
| + a|
( – s) α–
(α) f
s, u(s), ( φu)(s), (ψu)(s), c D βu(s), c D βu(s), , c D β n u(s)
– f
s, v(s), (φv)(s), (ψv)(s), c D βv(s), c D βv(s), , c D β n v(s) ds +|ab – b( + a)t|
| + a|| + b|
( – s) α–
(α – ) f
s, u(s), ( φu)(s), (ψu)(s), c D βu(s), c D βu(s),
,c D β n u(s)
– f
s, v(s), (φv)(s), (ψv)(s), c D βv(s), c D βv(s), , c D β n v(s) ds
≤
t
(t – s) α–
(α) μ(s) u(s) – v(s) + (φu)(s) – (φv)(s) + (ψu)(s) – (ψv)(s) + c D βu(s) – c D βv(s) + c D βu(s) – c D βv(s) +· · · + c D β n u(s) – c D β n v(s) ds + |a|
| + a|
( – s) α–
(α) μ(s) u(s) – v(s) + (φu)(s) – (φv)(s) + (ψu)(s) – (ψv)(s) + c D βu(s) – c D βv(s) + c D βu(s) – c D βv(s) +· · · + c D β n u(s) – c D β n v(s) ds + |b|( + |a|)
| + a|| + b|
( – s) α–
(α – ) μ(s) u(s) – v(s) + (φu)(s) – (φv)(s) + (ψu)(s) – (ψv)(s) + c D βu(s) – c D βv(s)
+ c D βu(s) – c D βv(s) +· · · + c D β n u(s) – c D β n v(s) ds
≤( +γ+λ) u – v
(α)
t
(t – s) α– μ(s) ds
+|a|( + γ+λ) u – v
| + a| (α)
( – s) α– μ(s) ds
+|b|( + |a|)( + γ+λ) u – v
| + a|| + b| (α – )
( – s) α– μ(s) ds
≤( +γ+λ) u – v
(α)
t
(t – s) α–
–κ ds
–κ t
μ(s)κds
κ
+|a|( + γ+λ) u – v
| + a| (α)
( – s) α–
–κ ds
–κ
μ(s)κds
κ
+|b|( + |a|)( + γ+λ) u – v
| + a|| + b| (α – )
×
( – s) α–
–κ ds
–κ
μ(s)κ ds
κ
≤μ∗( +γ+λ) u – v
(α)
–κ
α – κ
–κ
+|a|μ∗( +γ+λ) u – v
| + a| (α)
–κ
α – κ
–κ
+|b|( + |a|)μ∗( +γ+λ) u – v
| + a|| + b| (α – )
–κ
α – κ –
–κ
≤ ( + γ+λ)
( + |a|)μ∗
| + a| (α)
–κ
α – κ
–κ
+ |b|( + |a|)μ∗
| + a|| + b| (α – )
–κ
α – κ –
–κ
u – v
Trang 5Also, we have
c D β i (Fu)(t) – c D β i (Fv)(t)
= t ( – β (t – s)–β i i)(Fu)(s) ds –
t
(t – s)–β i
( – β i)(Fv)
(s) ds
= t (t – s)–β i
( – β i)
s
(s – τ) α–
(α – )
× fτ, u(τ), (φu)(τ), (ψu)(τ), c D βu(τ), c D βu(τ), , c D β n u(τ)dτ
– b
+ b
( –τ) α–
(α – )
× fτ, u(τ), (φu)(τ), (ψu)(τ), c D βu( τ), c D βu( τ), , c D β n u( τ)d τ
ds
–
t
(t – s)–β i
( – β i)
s
(s – τ) α–
(α – )
× fτ, v(τ), (φv)(τ), (ψv)(τ), c D βv( τ), c D βv( τ), , c D β n v( τ)d τ
– b
+ b
( –τ) α–
(α – )
× fτ, v(τ), (φv)(τ), (ψv)(τ), c D βv( τ), c D βv( τ), , c D β n v( τ)d τ
ds
≤
t
(t – s)–β i
( – β i)
s
(s – τ) α–
(α – )
× f
τ, u(τ), (φu)(τ), (ψu)(τ), c D βu( τ), c D βu( τ), , c D β n u( τ)
– f
τ, v(τ), (φv)(τ), (ψv)(τ), c D βv( τ), c D βv( τ), , c D β n v( τ) d τds
+ |b|
| + b|
t
(t – s)–β i
( – β i)
×
( –τ) α–
(α – ) f
τ, u(τ), (φu)(τ), (ψu)(τ), c D βu( τ), c D βu( τ), , c D β n u( τ)
– f
τ, v(τ), (φv)(τ), (ψv)(τ), c D βv( τ), c D βv( τ), , c D β n v( τ) d τds
≤( +γ+λ) u – v
( – β i) (α – )
t
(t – s)–β i
s
(s – τ) α– μ(τ) dτ
ds
+ |b|( + γ+λ) u – v
| + b| ( – β i) (α – )
t
(t – s)–β i
( –τ) α– μ(τ) dτ
ds
≤μ∗( +γ+λ) u – v
( – β i) (α – )
–κ
α – κ –
–κ t
(t – s)–β i s α–κ– ds
+|b|μ∗( +γ+λ) u – v
| + b| ( – β i) (α – )
–κ
α – κ –
–κ t
(t – s)–β i ds
≤μ∗( +γ+λ) u – v
( – β i) (α – )
–κ
α – κ –
–κ
( –ξ)–β i ξ α–κ– dξ
+|b|μ∗( +γ+λ) u – v
| + b| ( – β) (α – )
–κ
α – κ –
–κ
Trang 6
Since B( α – κ, – β i) =
( –ξ)–β i ξ α–κ– dξ = (α–κ) (–β i)
(α–β i–κ+), we obtain
c D β i (Fu)(t) – c D β i (Fv)(t) ≤( +γ+λ)
(α – κ)μ∗
(α – ) (α – β i–κ + )
–κ
α – κ –
–κ
| + b| ( – β i) (α – )
–κ
α – κ –
–κ
u – v for all i = , , , n Hence, we get
Fu – Fv
≤ ( + γ+λ) ( + |a|)μ∗
| + a| (α)
–κ
α – κ
–κ
+ |b|( + |a|)μ∗
| + a|| + b| (α – )
–κ
α – κ –
–κ
+
n
i=
(α – κ)μ∗
(α – ) (α – β i–κ + )
–κ
α – κ –
–κ
| + b| ( – β i) (α – )
–κ
α – κ –
–κ
u – v = u – v
Since < , F is a contraction mapping, therefore, by using the Banach contraction
prin-ciple, F has a unique fixed point, which is the unique solution of problem () by using
Corollary . Assume that there exists L > such that
f (t, x, y, w, u, u, , u n ) – f
t, x, y, w, v, v, , v n
≤ L x – x + y – y + w – w +|u– v| + |u– v| + · · · + |u n – v n|
for all t ∈ [, ] and x, y, w, x, y, w, u, u, , u n , v, v, , v n ∈ R Then problem () has a
unique solution whenever
( +γ+λ) ( + |a|)( + (α + )|b|)L
| + a|| + b| (α + )
+
n
i=
L (α – β i+ )+
|b|L
| + b| ( – β i) (α)
< ,
where γ= supt ∈I|t
γ (t, s) ds|, λ= supt ∈I|t
λ(t, s) ds|.
Now, we restate the Schauder’s fixed point theorem, which is needed to prove next result (see Theorem .. in [])
Theorem . Let E be a closed, convex and bounded subset of a Banach space X, and let
F : E → E be a continuous mapping such that F(E) is a relatively compact subset of X Then
F has a fixed point in E.
Trang 7Theorem . Let f : [, ] × R n+ → R be a continuous function such that there exists a
constant l ∈ (, α – ) and a real-valued function m(t) ∈ Ll([, ], (,∞)) such that
f (t, x, y, w, u, u, , u n)
≤ m(t) + d|x| ρ + d|y| ρ
+ d|w| ρ
+ d|u|ρ+ d|u|ρ+· · · + d n |u n|ρ n, (∗)
where d, d, d, d i ≥ and < ρ, ρ,ρ,ρ i < for i = , , , n, or
f (t, x, y, w, u, u, , u n)
≤ d|x| ρ + d|y| ρ
+ d|w| ρ
+ d|u|ρ+ d|u|ρ+· · · + d n |u n|ρ n,
where d, d, d, d i > and ρ, ρ,ρ,ρ i > for i = , , , n Then problem () has a solution.
Proof First, suppose that f satisfy condition ( ∗) Define B r={u ∈ X, u ≤ r}, where
r≥ max(n + )Ad
–ρ,
(n + )Adγ p
–ρ,
(n + )Adλ p
–ρ,
(n + )Ad
–ρ,
(n + )Ad
–ρ, ,
(n + )Ad n
–ρn , (n + )K
,
K =( + |a|)M
| + a| (α)
– l
α – l
–l
+ |b|( + |a|)M
| + a|| + b| (α – )
– l
α – l –
–l
+
n
i=
(α – l)M (α – ) (α – β i – l + )
– l
α – l –
–l
| + b| ( – β i) (α – )
– l
α – l –
–l ,
A =( + |a|)( + ( + α)|b|)
| + a|| + b| (α + ) +
n
i=
(α – β i+ )+
|b|
| + b| (α) ( – β i)
and M = (
(m(t))l ds) l Note that B ris a closed, bounded and convex subset of the Banach
space X For each u ∈ B r, we have
(Fu)(t) =
t
(t – s) α–
(α) f
s, u(s), ( φu)(s), (ψu)(s), c D βu(s), c D βu(s), , c D β n u(s)
ds
– a
( + a)
( – s) α–
(α)
× fs, u(s), ( φu)(s), (ψu)(s), c D βu(s), c D βu(s), , c D β n u(s)
ds
+ab – b( + a)t
( + a)( + b)
( – s) α–
(α – )
× fs, u(s), ( φu)(s), (ψu)(s), c D βu(s), c D βu(s), , c D β n u(s)
ds
≤
t
(t – s) α–
(α) f
s, u(s), ( φu)(s), (ψu)(s), c D βu(s), c D βu(s), , c D β n u(s) ds
+ |a|
| + a|
( – s) α–
(α)
Trang 8s, u(s), (φu)(s), (ψu)(s), c D βu(s), c D βu(s), , c D β n u(s) ds + |b|( + |a|)
| + a|| + b|
( – s) α–
(α – )
× f
s, u(s), ( φu)(s), (ψu)(s), c D βu(s), c D βu(s), , c D β n u(s) ds
≤
t
(t – s) α–
(α) m(s) ds
+
dr ρ + dγ p
r ρ+ dλ p
r ρ+ dr ρ+ dr ρ+· · · + d n r ρ n t
(t – s) α–
(α) ds
+ |a|
| + a|
( – s) α–
(α) m(s) ds
+ |a|
| + a|
dr ρ + dγ p
r ρ+ dλ p
r ρ+ dr ρ+ dr ρ+· · · + d n r ρ n
×
( – s) α–
(α) ds +
|b|( + |a|)
| + a|| + b|
( – s) α–
(α – ) m(s) ds
+ |b|( + |a|)
| + a|| + b|
dr ρ + dγ p
r ρ+ dλ p
r ρ+ dr ρ+ dr ρ+· · · + d n r ρ n
×
( – s) α–
(α – ) ds
≤
(α)
t
(t – s) α–
–l ds
–l t
m(s)
l ds
l
+ |a|
| + a| (α)
( – s) α–
–l ds
–l
m(s)
l ds
l
+ |b|( + |a|)
| + a|| + b| (α – )
( – s) α–
–l ds
–l
m(s)
l ds
l
+( + |a|)( + ( + α)|b|)
| + a|| + b| (α + )
×dr ρ + dγ p
r ρ+ dλ p
r ρ+ dr ρ+ dr ρ+· · · + d n r ρ n
≤ ( + |a|)M| + a| (α)
– l
α – l
–l
+ |b|( + |a|)M
| + a|| + b| (α – )
– l
α – l –
–l
+( + |a|)( + ( + α)|b|)
| + a|| + b| (α + )
×dr ρ + dγ p
r ρ+ dλ p
r ρ+ dr ρ+ dr ρ+· · · + d n r ρ n
Also, we have
c D β i (Fu)(t) = t
(t – s)–β i
( – β i)(Fu)
(s) ds
= t
(t – s)–β i
( – β i)
s
(s – τ) α–
(α – )
× fτ, u(τ), (φu)(τ), (ψu)(τ), c D βu(τ), c D βu(τ), , c D β n u(τ)dτ
– b
+ b
( –τ) α–
(α – )
Trang 9× fτ, u(τ), (φu)(τ), (ψu)(τ),
c D βu( τ), c D βu( τ), , c D β n u( τ)d τ
ds
≤
t
(t – s)–β i
( – β i)
s
(s – τ) α–
(α – ) f
τ, u(τ), (φu)(τ), (ψu)(τ),
c D βu(τ), c D βu(τ), , c D β n u(τ) dτds
+ |b|
| + b|
t
(t – s)–β i
( – β i)
( –τ) α–
(α – ) f
τ, u(τ), (φu)(τ), (ψu)(τ),
c D βu( τ), c D βu( τ), , c D β n u( τ) d τds
≤
t
(t – s)–β i
( – β i)
s
(s – τ) α–
(α – ) m( τ) dτ
ds
+
dr ρ + dγ p
r ρ+ dλ p
r ρ+ dr ρ+ dr ρ+· · · + d n r ρ n
×
t
(t – s)–β i
( – β i)
s
(s – τ) α–
(α – ) d τ
ds
+ |b|
| + b|
t
(t – s)–β i
( – β i)
( –τ) α–
(α – ) m( τ) dτ
ds
+ |b|
| + b|
dr ρ + dγ p
r ρ+ dλ p
r ρ+ dr ρ+ dr ρ+· · · + d n r ρ n
×
t
(t – s)–β i
( – β i)
( –τ) α–
(α – ) dτ
ds
(α – ) ( – β i)
t
(t – s)–β i
×
s
(s – τ) α–
–l d τ
–l s
m( τ)l d τ
l
ds
+(dr
ρ + dγ p
r ρ+ dλ p
r ρ+ dr ρ+ dr ρ+· · · + d n r ρ n)
(α) ( – β i)
×
t
(t – s)–β i s α– ds + |b|
| + b| (α – ) ( – β i)
×
t
(t – s)–β i
( –τ) α–
–l d τ
–l
m( τ)l d τ
l
ds
+|b|(dr ρ + dγ p
r ρ+ dλ p
r ρ+ dr ρ+ dr ρ+· · · + d n r ρ n)
| + b| (α) ( – β i)
≤ (α – ) ( – β M
i)
– l
α – l –
–l t
(t – s)–β i s α–l– ds
+(dr
ρ + dγ p
r ρ+ dλ p
r ρ+ dr ρ+ dr ρ+· · · + d n r ρ n)
(α) ( – β i)
×
t
(t – s)–β i s α– ds
Trang 10+ |b|M
| + b| (α – ) ( – β i)
– l
α – l –
–l t
(t – s)–β i ds
+|b|(dr ρ + dγ p
r ρ+ dλ p
r ρ+ dr ρ+ dr ρ+· · · + d n r ρ n)
| + b| (α) ( – β i)
≤ (α – ) ( – β M
i)
– l
α – l –
–l
( –ξ)–β i ξ α–l– d ξ
+(dr
ρ + dγ p
r ρ+ dλ p
r ρ+ dr ρ+ dr ρ+· · · + d n r ρ n)
(α) ( – β i)
×
( –ξ)–β i ξ α– d ξ
| + b| (α – ) ( – β i)
– l
α – l –
–l
+|b|(dr ρ + dγ p
r ρ+ dλ p
r ρ+ dr ρ+ dr ρ+· · · + d n r ρ n)
| + b| (α) ( – β i) .
Since B( α – l, – β i) =
( –ξ)–β i ξ α–l– dξ = (α–l) (–β i)
(α–β i –l+) and, on the other hand, B( α, –
β i) =
( –ξ)–β i ξ α– d ξ = (α) (–β i)
(α–β i+) , we conclude that
c D β i (Fu)(t) ≤ (α – l)M
(α – ) (α – β i – l + )
– l
α – l –
–l
| + b| (α – ) ( – β i)
– l
α – l –
–l
+dr
ρ + dγ p
r ρ+ dλ p
r ρ+ dr ρ+ dr ρ+· · · + d n r ρ n
(α – β i+ ) +|b|(dr ρ + dγ p
r ρ+ dλ p
r ρ+ dr ρ+ dr ρ+· · · + d n r ρ n)
| + b| (α) ( – β i)
for all i = , , , n Thus,
Fu ≤ ( + |a|)M| + a| (α)
– l
α – l
–l
+ |b|( + |a|)M
| + a|| + b| (α – )
– l
α – l –
–l
+
n
i=
(α – l)M (α – ) (α – β i – l + )
– l
α – l –
–l
| + b| (α – ) ( – β i)
– l
α – l –
–l
+
dr ρ + dγ p
r ρ+ dλ p
r ρ+ dr ρ+ dr ρ+· · · + d n r ρ n
×
( + |a|)( + ( + α)|b|)
| + a|| + b| (α + ) +
n
i=
(α – β i+ )+
|b|
| + b| (α) ( – β i)
= K +
dr ρ + dγ p
r ρ+ dλ p
r ρ+ dr ρ+ dr ρ+· · · + d n r ρ n
A
≤ r
n + × (n + ) = r.
... E be a closed, convex and bounded subset of a Banach space X, and letF : E → E be a continuous mapping such that F(E) is a relatively compact subset of X Then
F... i > and ρ, ρ,ρ,ρ i > for i = , , , n Then problem () has a solution.
Proof First, suppose...
and M = (
(m(t))l ds) l Note that B ris a closed, bounded and convex subset of