1. Trang chủ
  2. » Giáo án - Bài giảng

existence and uniqueness of solutions for multi term nonlinear fractional integro differential equations

17 0 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 17
Dung lượng 275,1 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

14, Balgat, Ankara, 06530, Turkey Full list of author information is available at the end of the article Abstract In this manuscript, by using the fixed point theorems, the existence and

Trang 1

R E S E A R C H Open Access

Existence and uniqueness of solutions for

multi-term nonlinear fractional

integro-differential equations

Dumitru Baleanu1,2,3*, Sayyedeh Zahra Nazemi4and Shahram Rezapour4

* Correspondence:

dumitru@cankaya.edu.tr

1 Department of Chemical and

Materials Engineering, Faculty of

Engineering, King Abdulaziz

University, P.O Box 80204, Jeddah,

21589, Saudi Arabia

2 Department of Mathematics,

Cankaya University, Ogretmenler

Cad 14, Balgat, Ankara, 06530,

Turkey

Full list of author information is

available at the end of the article

Abstract

In this manuscript, by using the fixed point theorems, the existence and the uniqueness of solutions for multi-term nonlinear fractional integro-differential equations are reported Two examples are presented to illustrate our results

Keywords: Caputo fractional derivative; fixed point theorem; multi-term nonlinear

fractional differential equation

1 Introduction

The study of fractional differential equations ranges from the theoretical aspects of ex-istence and uniqueness of solutions to the analytic and numerical methods for finding solutions Fractional differential equations appear naturally in a number of fields such as physics, polymer rheology, regular variational in thermodynamics, biophysics, blood flow phenomena, aerodynamics, electro-dynamics of complex medium, viscoelasticity, Bode’s analysis of feedback amplifiers, capacitor theory, electrical circuits, electron-analytical

chemistry, biology, control theory, fitting of experimental data, etc An excellent account

in the study of fractional differential equations can be found in [, ] and [] For more details and examples, one can study [–] and [] It is considerable that there are many works about fractional integro-differential equations (see, for example, [–] and [])

In , Xinwei and Landong reviewed the existence of solutions for the nonlinear frac-tional differential equation

c D α u(t) = f

t, u(t), c D β u(t)

( < t < )

with boundary values u() = u() =  or u() = u() =  or u() = u() = , where  < α ≤

,  <β ≤ , and f is continuous on [, ] × R × R [] In , Su and Zhang studied

the existence and uniqueness of solutions for the following nonlinear two-point fractional boundary value problem

c D α u(t) = f

t, u(t), c D β u(t)

( < t < )

with boundary values au() – au() = A and bu() + bu() = B, where α, β, a i , b i (i = , ) satisfy certain conditions [] In , Ahmad and Sivasundaram studied the

©2013 Baleanu et al.; licensee Springer This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction

Trang 2

existence of solutions for the nonlinear fractional integro-differential equation

c D q u(t) = f

t, u(t), ( φu)(t), (ψu)(t) ( < t <  and  < q≤ )

with boundary values u() + au( η) = , bu() + u( η) =  and  <η≤ η< , wherec D qis

the Caputo fractional derivative, a, b ∈ (, ), f : [, ] × X × X × X → X is continuous and

for the mappingsγ , λ : [, ]×[, ] → [, ∞) with the property sup t∈[,]|t

λ(t, s) ds| < ∞

and supt∈[,]|t

γ (t, s) ds| < ∞, the maps φ and ψ are defined by (φu)(t) =t

γ (t, s)u(s) ds

and (ψu)(t) =t

λ(t, s)u(s) ds Here, X is a Banach space (see []).

2 Main results

2.1 The basic problem

In this paper, we study the existence and uniqueness of solutions for the multi-term

non-linear fractional integro-differential equation

c D α u(t) = f

t, u(t), ( φu)(t), (ψu)(t), c D βu(t), c D βu(t), , c D β n u(t)

( < t < ) ()

with boundary values u() + au() =  and u() + bu() = , where  <α < ,  < β i< ,

α – β i ≥ , a, b = –, f : [, ] × R n+→ R is continuous, and for the mappings

γ , λ : [, ] × [, ] → [, ∞)

with the property supt∈[,]|t

λ(t, s) ds| < ∞ and sup t∈[,]|t

γ (t, s) ds| < ∞, the maps φ

andψ are defined by (φu)(t) =t

γ (t, s)u(s) ds and (ψu)(t) =t

λ(t, s)u(s) ds In this way,

we need the following result, which has been proved in []

Lemma . Let α >  and n = [α] +  Then

I αc D α u(t) = u(t) + c+ ct + ct + · · · + c n– t n–,

where c, c, , c n– are some real numbers.

The proof of the following result by using Lemma . is straightforward

Lemma . Let y ∈ C[, ], a, b = – and  < α <  Then the problem c D α u(t) = y(t) with

boundary values u() + au() =  and u() + bu() =  has the unique solution

u(t) = (α)

 t

(t – s) α– y(s) ds – a

( + a) (α)

 

( – s) α– y(s) ds

+ ab – b( + a)t

( + a)( + b) (α – )

 

( – s) α– y(s) ds.

2.2 Some results on solving the problem

Let C(I) be the space of all continuous real-valued functions on I = [, ] and

X =

u : u ∈ C(I) and c D β i u ∈ C(I) ( < β i < ) for i = , , , n endowed with the norm u = max t ∈I |u(t)| +n

i=maxt ∈I|c D β i u(t) | It is known that (X,

· ) is a Banach space

Trang 3

Theorem . Assume that there exist κ ∈ (, α – ) and μ(t) ∈ L

κ([, ], (,∞)) such that

f (t, x, y, w, u, u, , u n ) – f

t, x, y, w, v, v, , v n

≤ μ(t) x – x + y – y + w – w +|u– v| + |u– v| + · · · + |u n – v n|

for all t ∈ [, ] and x, y, w, x, y, w, u, u, , u n , v, v, , v n ∈ R Then problem () has a

unique solution whenever

= ( + γ+λ) ( + |a|)μ∗

| + a| (α)

 –κ

α – κ

–κ

+ |b|( + |a|)μ

| + a|| + b| (α – )

 –κ

α – κ – 

–κ

+

n

i=

(α – κ)μ

(α – ) (α – β iκ + )

 –κ

α – κ – 

–κ

| + b| ( – β i) (α – )

 –κ

α – κ – 

–κ 

< ,

where γ= supt ∈I|t

γ (t, s) ds|, λ= supt ∈I|t

λ(t, s) ds|, μ∗= (

(μ(s))

κ ds) κ

Proof Define the mapping F : X → X by

(Fu)(t) =

 t

(t – s) α–

(α) f



s, u(s), ( φu)(s), (ψu)(s), c D βu(s), c D βu(s), , c D β n u(s)

ds

( + a)

 

( – s) α–

(α)

× fs, u(s), ( φu)(s), (ψu)(s), c D βu(s), c D βu(s), , c D β n u(s)

ds

+ab – b( + a)t

( + a)( + b)

 

( – s) α–

(α – )

× fs, u(s), (φu)(s), (ψu)(s), c D βu(s), c D βu(s), , c D β n u(s)

ds.

For each u, v ∈ X and t ∈ [, ], by using the Hölder inequality, we have

(Fu)(t) – (Fv)(t)

= t (t – s) (α) α–f

s, u(s), (φu)(s), (ψu)(s), c D βu(s), c D βu(s), , c D β n u(s)

– f

s, v(s), ( φv)(s), (ψv)(s), c D βv(s), c D βv(s), , c D β n v(s)

ds

( + a)

 

( – s) α–

(α)



f

s, u(s), ( φu)(s), (ψu)(s), c D βu(s), c D βu(s), , c D β n u(s)

– f

s, v(s), ( φv)(s), (ψv)(s), c D βv(s), c D βv(s), , c D β n v(s)

ds

+ab – b( + a)t

( + a)( + b)

 

( – s) α–

(α – )



f

s, u(s), ( φu)(s), (ψu)(s), c D βu(s), c D βu(s),

,c D β n u(s)

– f

s, v(s), ( φv)(s), (ψv)(s), c D βv(s), c D βv(s), , c D β n v(s)

ds

 t

(t – s) α–

(α) f

s, u(s), (φu)(s), (ψu)(s), c D βu(s), c D βu(s), , c D β n u(s)

Trang 4

– f

s, v(s), (φv)(s), (ψv)(s), c D βv(s), c D βv(s), , c D β n v(s) ds + |a|

| + a|

 

( – s) α–

(α) f

s, u(s), ( φu)(s), (ψu)(s), c D βu(s), c D βu(s), , c D β n u(s)

– f

s, v(s), (φv)(s), (ψv)(s), c D βv(s), c D βv(s), , c D β n v(s) ds +|ab – b( + a)t|

| + a|| + b|

 

( – s) α–

(α – ) f

s, u(s), ( φu)(s), (ψu)(s), c D βu(s), c D βu(s),

,c D β n u(s)

– f

s, v(s), (φv)(s), (ψv)(s), c D βv(s), c D βv(s), , c D β n v(s) ds

 t

(t – s) α–

(α) μ(s) u(s) – v(s) + (φu)(s) – (φv)(s) + (ψu)(s) – (ψv)(s) + c D βu(s) – c D βv(s) + c D βu(s) – c D βv(s) +· · · + c D β n u(s) – c D β n v(s) ds + |a|

| + a|

 

( – s) α–

(α) μ(s) u(s) – v(s) + (φu)(s) – (φv)(s) + (ψu)(s) – (ψv)(s) + c D βu(s) – c D βv(s) + c D βu(s) – c D βv(s) +· · · + c D β n u(s) – c D β n v(s) ds + |b|( + |a|)

| + a|| + b|

 

( – s) α–

(α – ) μ(s) u(s) – v(s) + (φu)(s) – (φv)(s) + (ψu)(s) – (ψv)(s) + c D βu(s) – c D βv(s)

+ c D βu(s) – c D βv(s) +· · · + c D β n u(s) – c D β n v(s) ds

≤( +γ+λ) u – v

(α)

 t

(t – s) α– μ(s) ds

+|a|( + γ+λ) u – v

| + a| (α)

 

( – s) α– μ(s) ds

+|b|( + |a|)( + γ+λ) u – v

| + a|| + b| (α – )

 

( – s) α– μ(s) ds

≤( +γ+λ) u – v

(α)

 t



(t – s) α– 

–κ ds

–κ  t



μ(s)κds

κ

+|a|( + γ+λ) u – v

| + a| (α)

 



( – s) α– 

–κ ds

–κ  



μ(s)κds

κ

+|b|( + |a|)( + γ+λ) u – v

| + a|| + b| (α – )

×  



( – s) α– 

–κ ds

–κ  



μ(s)κ ds

κ

μ∗( +γ+λ) u – v

(α)

 –κ

α – κ

–κ

+|a|μ∗( +γ+λ) u – v

| + a| (α)

 –κ

α – κ

–κ

+|b|( + |a|)μ∗( +γ+λ) u – v

| + a|| + b| (α – )

 –κ

α – κ – 

–κ

≤ ( + γ+λ)

 ( + |a|)μ

| + a| (α)

 –κ

α – κ

–κ

+ |b|( + |a|)μ

| + a|| + b| (α – )

 –κ

α – κ – 

–κ

u – v

Trang 5

Also, we have

c D β i (Fu)(t) – c D β i (Fv)(t)

= t ( – β (t – s)β i i)(Fu)(s) ds –

 t

(t – s)β i

( – β i)(Fv)

(s) ds

= t (t – s)β i

( – β i)

 s

(s – τ) α–

(α – )

× fτ, u(τ), (φu)(τ), (ψu)(τ), c D βu(τ), c D βu(τ), , c D β n u(τ)

b

 + b

 

( –τ) α–

(α – )

× fτ, u(τ), (φu)(τ), (ψu)(τ), c D βu( τ), c D βu( τ), , c D β n u( τ)d τ

ds

 t

(t – s)β i

( – β i)

 s

(s – τ) α–

(α – )

× fτ, v(τ), (φv)(τ), (ψv)(τ), c D βv( τ), c D βv( τ), , c D β n v( τ)d τ

b

 + b

 

( –τ) α–

(α – )

× fτ, v(τ), (φv)(τ), (ψv)(τ), c D βv( τ), c D βv( τ), , c D β n v( τ)d τ

ds

 t

(t – s)β i

( – β i)

 s

(s – τ) α–

(α – )

× f

τ, u(τ), (φu)(τ), (ψu)(τ), c D βu( τ), c D βu( τ), , c D β n u( τ)

– f

τ, v(τ), (φv)(τ), (ψv)(τ), c D βv( τ), c D βv( τ), , c D β n v( τ) d τ ds

+ |b|

| + b|

 t

(t – s)β i

( – β i)

×

 

( –τ) α–

(α – ) f

τ, u(τ), (φu)(τ), (ψu)(τ), c D βu( τ), c D βu( τ), , c D β n u( τ)

– f

τ, v(τ), (φv)(τ), (ψv)(τ), c D βv( τ), c D βv( τ), , c D β n v( τ) d τ ds

≤( +γ+λ) u – v

( – β i) (α – )

 t

(t – s)β i

 s

(s – τ) α– μ(τ) dτ

ds

+ |b|( + γ+λ) u – v

| + b| ( – β i) (α – )

 t

(t – s)β i

 

 ( –τ) α– μ(τ) dτ

ds

μ∗( +γ+λ) u – v

( – β i) (α – )

 –κ

α – κ – 

–κ t

(t – s)β i s α–κ– ds

+|b|μ∗( +γ+λ) u – v

| + b| ( – β i) (α – )

 –κ

α – κ – 

–κ t

(t – s)β i ds

μ∗( +γ+λ) u – v

( – β i) (α – )

 –κ

α – κ – 

–κ 

 ( –ξ)β i ξ α–κ– dξ

+|b|μ∗( +γ+λ) u – v

| + b| ( – β) (α – )

 –κ

α – κ – 

–κ

Trang 6

Since B( α – κ,  – β i) =

( –ξ)β i ξ α–κ– dξ = (α–κ) (–β i)

(α–β iκ+), we obtain

c D β i (Fu)(t) – c D β i (Fv)(t) ≤( +γ+λ)



(α – κ)μ

(α – ) (α – β iκ + )

 –κ

α – κ – 

–κ

| + b| ( – β i) (α – )

 –κ

α – κ – 

–κ

u – v for all i = , , , n Hence, we get

Fu – Fv

≤ ( + γ+λ) ( + |a|)μ

| + a| (α)

 –κ

α – κ

–κ

+ |b|( + |a|)μ

| + a|| + b| (α – )

 –κ

α – κ – 

–κ

+

n

i=

(α – κ)μ

(α – ) (α – β iκ + )

 –κ

α – κ – 

–κ

| + b| ( – β i) (α – )

 –κ

α – κ – 

–κ 

u – v = u – v

Since < , F is a contraction mapping, therefore, by using the Banach contraction

prin-ciple, F has a unique fixed point, which is the unique solution of problem () by using

Corollary . Assume that there exists L >  such that

f (t, x, y, w, u, u, , u n ) – f

t, x, y, w, v, v, , v n

≤ L x – x + y – y + w – w +|u– v| + |u– v| + · · · + |u n – v n|

for all t ∈ [, ] and x, y, w, x, y, w, u, u, , u n , v, v, , v n ∈ R Then problem () has a

unique solution whenever

( +γ+λ) ( + |a|)( + (α + )|b|)L

| + a|| + b| (α + )

+

n

i=

L (α – β i+ )+

|b|L

| + b| ( – β i) (α)



< ,

where γ= supt ∈I|t

γ (t, s) ds|, λ= supt ∈I|t

λ(t, s) ds|.

Now, we restate the Schauder’s fixed point theorem, which is needed to prove next result (see Theorem .. in [])

Theorem . Let E be a closed, convex and bounded subset of a Banach space X, and let

F : E → E be a continuous mapping such that F(E) is a relatively compact subset of X Then

F has a fixed point in E.

Trang 7

Theorem . Let f : [, ] × R n+ → R be a continuous function such that there exists a

constant l ∈ (, α – ) and a real-valued function m(t) ∈ Ll([, ], (,∞)) such that

f (t, x, y, w, u, u, , u n)

≤ m(t) + d|x| ρ + d|y| ρ

+ d|w| ρ

+ d|u|ρ+ d|u|ρ+· · · + d n |u n|ρ n, (∗)

where d, d, d, d i ≥  and  < ρ, ρ,ρ,ρ i <  for i = , , , n, or

f (t, x, y, w, u, u, , u n)

≤ d|x| ρ + d|y| ρ

+ d|w| ρ

+ d|u|ρ+ d|u|ρ+· · · + d n |u n|ρ n,

where d, d, d, d i >  and ρ, ρ,ρ,ρ i >  for i = , , , n Then problem () has a solution.

Proof First, suppose that f satisfy condition ( ∗) Define B r={u ∈ X, u ≤ r}, where

r≥ max(n + )Ad 

–ρ,

(n + )Adγ p

 

–ρ,

(n + )Adλ p

 

–ρ,

(n + )Ad

 

–ρ,



(n + )Ad

 

–ρ, ,

(n + )Ad n

 

–ρn , (n + )K

,

K =( + |a|)M

| + a| (α)

 – l

α – l

–l

+ |b|( + |a|)M

| + a|| + b| (α – )

 – l

α – l – 

–l

+

n

i=

(α – l)M (α – ) (α – β i – l + )

 – l

α – l – 

–l

| + b| ( – β i) (α – )

 – l

α – l – 

–l ,

A =( + |a|)( + ( + α)|b|)

| + a|| + b| (α + ) +

n

i=

(α – β i+ )+

|b|

| + b| (α) ( – β i)

and M = (

(m(t))l ds) l Note that B ris a closed, bounded and convex subset of the Banach

space X For each u ∈ B r, we have

(Fu)(t) =

 t

(t – s) α–

(α) f



s, u(s), ( φu)(s), (ψu)(s), c D βu(s), c D βu(s), , c D β n u(s)

ds

a

( + a)

 

( – s) α–

(α)

× fs, u(s), ( φu)(s), (ψu)(s), c D βu(s), c D βu(s), , c D β n u(s)

ds

+ab – b( + a)t

( + a)( + b)

 

( – s) α–

(α – )

× fs, u(s), ( φu)(s), (ψu)(s), c D βu(s), c D βu(s), , c D β n u(s)

ds

 t

(t – s) α–

(α) f

s, u(s), ( φu)(s), (ψu)(s), c D βu(s), c D βu(s), , c D β n u(s) ds

+ |a|

| + a|

 

( – s) α–

(α)

Trang 8

s, u(s), (φu)(s), (ψu)(s), c D βu(s), c D βu(s), , c D β n u(s) ds + |b|( + |a|)

| + a|| + b|

 

( – s) α–

(α – )

× f

s, u(s), ( φu)(s), (ψu)(s), c D βu(s), c D βu(s), , c D β n u(s) ds

 t

(t – s) α–

(α) m(s) ds

+

dr ρ + dγ p

r ρ+ dλ p

r ρ+ dr ρ+ dr ρ+· · · + d n r ρ n  t

(t – s) α–

(α) ds

+ |a|

| + a|

 

( – s) α–

(α) m(s) ds

+ |a|

| + a|



dr ρ + dγ p

r ρ+ dλ p

r ρ+ dr ρ+ dr ρ+· · · + d n r ρ n

×

 

( – s) α–

(α) ds +

|b|( + |a|)

| + a|| + b|

 

( – s) α–

(α – ) m(s) ds

+ |b|( + |a|)

| + a|| + b|



dr ρ + dγ p

r ρ+ dλ p

r ρ+ dr ρ+ dr ρ+· · · + d n r ρ n

×

 

( – s) α–

(α – ) ds

≤ 

(α)

 t



(t – s) α– 

–l ds

–l  t



m(s)

l ds

l

+ |a|

| + a| (α)

 



( – s) α–

–l ds

–l  



m(s)

l ds

l

+ |b|( + |a|)

| + a|| + b| (α – )

 



( – s) α–

–l ds

–l  



m(s)

l ds

l

+( + |a|)( + ( + α)|b|)

| + a|| + b| (α + )

×dr ρ + dγ p

r ρ+ dλ p

r ρ+ dr ρ+ dr ρ+· · · + d n r ρ n

≤ ( + |a|)M| + a| (α)

 – l

α – l

–l

+ |b|( + |a|)M

| + a|| + b| (α – )

 – l

α – l – 

–l

+( + |a|)( + ( + α)|b|)

| + a|| + b| (α + )

×dr ρ + dγ p

r ρ+ dλ p

r ρ+ dr ρ+ dr ρ+· · · + d n r ρ n

Also, we have

c D β i (Fu)(t) =  t

(t – s)β i

( – β i)(Fu)

(s) ds

=  t

(t – s)β i

( – β i)

 s

(s – τ) α–

(α – )

× fτ, u(τ), (φu)(τ), (ψu)(τ), c D βu(τ), c D βu(τ), , c D β n u(τ)

b

 + b

  ( –τ) α–

(α – )

Trang 9

× fτ, u(τ), (φu)(τ), (ψu)(τ),

c D βu( τ), c D βu( τ), , c D β n u( τ)d τ

ds

 t

(t – s)β i

( – β i)

 s

(s – τ) α–

(α – ) f

τ, u(τ), (φu)(τ), (ψu)(τ),

c D βu(τ), c D βu(τ), , c D β n u(τ) ds

+ |b|

| + b|

 t

(t – s)β i

( – β i)

 

( –τ) α–

(α – ) f

τ, u(τ), (φu)(τ), (ψu)(τ),

c D βu( τ), c D βu( τ), , c D β n u( τ) d τ ds

 t

(t – s)β i

( – β i)

 s

(s – τ) α–

(α – ) m( τ) dτ

ds

+

dr ρ + dγ p

r ρ+ dλ p

r ρ+ dr ρ+ dr ρ+· · · + d n r ρ n

×

 t

(t – s)β i

( – β i)

 s

(s – τ) α–

(α – ) d τ

ds

+ |b|

| + b|

 t

(t – s)β i

( – β i)

 

( –τ) α–

(α – ) m( τ) dτ

ds

+ |b|

| + b|



dr ρ + dγ p

r ρ+ dλ p

r ρ+ dr ρ+ dr ρ+· · · + d n r ρ n

×

 t

(t – s)β i

( – β i)

 

( –τ) α–

(α – ) dτ

ds

(α – ) ( – β i)

 t

(t – s)β i

×

  s



(s – τ) α– 

–l d τ

–l  s



m( τ)l d τ

l

ds

+(dr

ρ + dγ p

r ρ+ dλ p

r ρ+ dr ρ+ dr ρ+· · · + d n r ρ n)

(α) ( – β i)

×

 t

(t – s)β i s α– ds + |b|

| + b| (α – ) ( – β i)

×

 t

(t – s)β i

  

 ( –τ) α– 

–l d τ

–l  



m( τ)l d τ

l

ds

+|b|(dr ρ + dγ p

r ρ+ dλ p

r ρ+ dr ρ+ dr ρ+· · · + d n r ρ n)

| + b| (α) ( – β i)

(α – ) ( – β M

i)

 – l

α – l – 

–l t

(t – s)β i s α–l– ds

+(dr

ρ + dγ p

r ρ+ dλ p

r ρ+ dr ρ+ dr ρ+· · · + d n r ρ n)

(α) ( – β i)

×

 t

(t – s)β i s α– ds

Trang 10

+ |b|M

| + b| (α – ) ( – β i)

 – l

α – l – 

–l t

(t – s)β i ds

+|b|(dr ρ + dγ p

r ρ+ dλ p

r ρ+ dr ρ+ dr ρ+· · · + d n r ρ n)

| + b| (α) ( – β i)

(α – ) ( – β M

i)

 – l

α – l – 

–l 

 ( –ξ)β i ξ α–l– d ξ

+(dr

ρ + dγ p

r ρ+ dλ p

r ρ+ dr ρ+ dr ρ+· · · + d n r ρ n)

(α) ( – β i)

×

 

 ( –ξ)β i ξ α– d ξ

| + b| (α – ) ( – β i)

 – l

α – l – 

–l

+|b|(dr ρ + dγ p

r ρ+ dλ p

r ρ+ dr ρ+ dr ρ+· · · + d n r ρ n)

| + b| (α) ( – β i) .

Since B( α – l,  – β i) =

( –ξ)β i ξ α–l– dξ = (α–l) (–β i)

(α–β i –l+) and, on the other hand, B( α,  –

β i) =

( –ξ)β i ξ α– d ξ = (α) (–β i)

(α–β i+) , we conclude that

c D β i (Fu)(t) ≤ (α – l)M

(α – ) (α – β i – l + )

 – l

α – l – 

–l

| + b| (α – ) ( – β i)

 – l

α – l – 

–l

+dr

ρ + dγ p

r ρ+ dλ p

r ρ+ dr ρ+ dr ρ+· · · + d n r ρ n

(α – β i+ ) +|b|(dr ρ + dγ p

r ρ+ dλ p

r ρ+ dr ρ+ dr ρ+· · · + d n r ρ n)

| + b| (α) ( – β i)

for all i = , , , n Thus,

Fu ≤ ( + |a|)M| + a| (α)

 – l

α – l

–l

+ |b|( + |a|)M

| + a|| + b| (α – )

 – l

α – l – 

–l

+

n

i=



(α – l)M (α – ) (α – β i – l + )

 – l

α – l – 

–l

| + b| (α – ) ( – β i)

 – l

α – l – 

–l

+

dr ρ + dγ p

r ρ+ dλ p

r ρ+ dr ρ+ dr ρ+· · · + d n r ρ n

×

 ( + |a|)( + ( + α)|b|)

| + a|| + b| (α + ) +

n

i=



(α – β i+ )+

|b|

| + b| (α) ( – β i)



= K +

dr ρ + dγ p

r ρ+ dλ p

r ρ+ dr ρ+ dr ρ+· · · + d n r ρ n

A

r

n +  × (n + ) = r.

... E be a closed, convex and bounded subset of a Banach space X, and let

F : E → E be a continuous mapping such that F(E) is a relatively compact subset of X Then

F... i >  and ρ, ρ,ρ,ρ i >  for i = , , , n Then problem () has a solution.

Proof First, suppose...

and M = (

(m(t))l ds) l Note that B ris a closed, bounded and convex subset of

Ngày đăng: 02/11/2022, 10:38

Nguồn tham khảo

Tài liệu tham khảo Loại Chi tiết
4. Ahmad, B: Existence of solutions for fractional differential equations of order q ∈ (2, 3) with anti-periodic boundary conditions. J. Appl. Math. Comput. 34, 385-391 (2009) Sách, tạp chí
Tiêu đề: q
1. Hilfer, R: Applications of Fractional Calculus in Physics. World Scientific, Singapore (2000) Khác
2. Kilbas, AA, Srivastava, HM, Trujillo, JJ: Theory and Applications of Fractional Differential Equations. North-Holland Mathematics Studied, vol. 204. Elsevier, Amsterdam (2006) Khác
3. Podlubny, I: Fractional Differential Equations. Mathematics in Science and Engineering. Academic Press, San Diego (1999) Khác
5. Baleanu, D, Agarwal, RP, Mohammadi, H, Rezapour, S: Some existence results for a nonlinear fractional differential equation on partially ordered Banach spaces. Bound. Value Probl. 2013, 112 (2013) Khác
6. Baleanu, D, Mohammadi, H, Rezapour, S: Positive solutions of a boundary value problem for nonlinear fractional differential equations. Abstr. Appl. Anal. 2012, Article ID 837437 (2012) Khác
7. Baleanu, D, Mohammadi, H, Rezapour, S: Some existence results on nonlinear fractional differential equations. Philos.Trans. R. Soc. Lond. A 371, 20120144 (2013) Khác
8. Baleanu, D, Mohammadi, H, Rezapour, S: On a nonlinear fractional differential equation on partially ordered metric spaces. Adv. Differ. Equ. 2013, 83 (2013) Khác
9. Chang, YK, Nieto, JJ: Some new existence results for fractional differential inclusions with boundary conditions. Math.Comput. Model. 49, 605-609 (2009) Khác
10. Chen, A, Chen, Y: Existence of solutions to anti-periodic boundary value problem for nonlinear fractional differential equations. Differ. Equ. Dyn. Syst. 19(3), 237-252 (2011) Khác
11. Davi, JV, Lakshmikantham, V: Nonsmooth analysis and fractional differential equations. Nonlinear Anal. 69, 2677-2682 (2008) Khác
12. Lakshmikantham, V, Vatsala, AS: Basic theory of fractional differential equations. Nonlinear Anal. 69, 2677-2682 (2008) 13. Li, CF, Luo, XN, Zhou, Y: Existence of positive solutions of the boundary value problem for nonlinear fractionaldifferential equations. Comput. Math. Appl. 59, 1363-1375 (2010) Khác
14. Sun, S, Li, Q, Li, Y: Existence and uniqueness of solutions for a coupled system of multi-term nonlinear fractional differential equations. Comput. Math. Appl. (2012). doi:10.1016/j.camwa.2012.01.065 Khác
15. Jaradat, O, Al-Omari, A, Momani, SM: Existence of the mild solution for fractional semilinear initial value problems.Nonlinear Anal. 69, 3153-3159 (2008) Khác
16. Momani, SM, El-Khazali, R: On the existence of extremal solutions of fractional integro-differential equations. J. Fract.Calc. 18, 87-92 (2000) Khác
17. Momani, SM: Some existence theorems on fractional integro-differential equations. Abhath Al-Yarmouk J. 10, 435-444 (2001) Khác
18. Momani, SM, Hadid, SB: On the inequalities of integro-differential fractional equations. Int. J. Appl. Math. 12(1), 29-37 (2003) Khác
19. Momani, SM, Hadid, SB: Some comparison results for integro-fractional differential inequalities. J. Fract. Calc. 24, 379-387 (2003) Khác
20. Xinwei, S, Landong, L: Existence of solution for boundary value problem of nonlinear fractional differential equation.Appl. Math. J. Chin. Univ. Ser. B 22(3), 291-298 (2007) Khác
21. Su, X, Zhang, S: Solutions to boundary value problems for nonlinear differential equations of fractional order.Electron. J. Differ. Equ. 2009, 26 (2009) Khác

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

🧩 Sản phẩm bạn có thể quan tâm