With this device, a horizontal bar 30×6×1mm is movedthrough the materialat a set height from the substrate and the force on the bar mea-sured.Itisacontrolledstrainordeformationtest,where
Trang 1foodandbioproductsprocessing 93 (2015)256–268
ContentslistsavailableatScienceDirect
jo u r n al ho m e p a g e :w w w e l s e v i e r c o m / l o c a t e / f b p
deposits
aDepartment of Chemical Engineering and Biotechnology, New Museums Site, Pembroke Street, Cambridge CB2
3RA, United Kingdom
bProctor & Gamble Technical Centres Ltd., Whitley Road, Longbenton, Newcastle-upon-Tyne NE12 9TS, UK
a b s t r a c t
Amm-scalescrapingdevicewasdevelopedtostudytheremovalbehaviourofsoftsolidfoulinglayers(thickness
0.5–10mm)fromsolidsubstrates.Abladeisdraggedthroughthecircularorrectangularsamplesatcontrolledspeed
andtheresistanceforcesmeasured.Testswithaviscousliquid(honey)andviscoplasticmaterial(aVaseline®-carbon
blackpaste)indicatedthatcohesivedeformationdominatedthemeasuredforce.Twomodelfoodsoilswere:(i)
unbakedlardand(ii)lardbakedfordifferenttimeswithandwithoutaddedovalbumin.Thecohesivestrengthof
thebakedlard,anditsremovalbehaviour,changednoticeablyfollowingautoxidativepolymerisation.Ovalbumin
delayedtheonsetofpolymerisation
©2014TheAuthors.PublishedbyElsevierB.V.onbehalfofTheInstitutionofChemicalEngineers.Thisisanopen
accessarticleundertheCCBYlicense(http://creativecommons.org/licenses/by/3.0/)
Keywords: Adhesion;Cohesivestrength;Cleaning;Fouling;Fats;Rheology
1 Introduction
The formation of fouling layers from baked fats and oils
isawidespreadprobleminfoodprocessing,causing
equip-mentdegradation,unhygienicconditionsand,onhousehold
appliances, an undesirable appearance Food fats and oils
aremixturesofmono,di-andtri-glyceridesaswellasother
hydrophobiccomponents.Duringfryingandbaking,proteins
andstarchescanbeaddedtothemelt.Foulingdepositsare
formedbyoxidativepolymerisationoftheunsaturated
com-ponentstogivesolidorsemi-solidlayers,whichcanadhere
stronglytotheprocesssurfaces.Extended(orrepeated)heat
treatmentpromotesfurtherpolymerisation,colourchanges
andultimately, athigher temperatures,degradation to
car-bonaceous(coke)layers
∗ Corresponding author.Tel.:+447833466898
E-mailaddress:aa620@cam.ac.uk(A.Ali)
Received2May2014;Receivedinrevisedform31August2014;Accepted2September2014
Availableonline22October2014
Theselayersareamongstthemostchallengingtoremove and cleaning often requires strong chemical treatments and/or large mechanical forces Both of these can lead to degradation ofthe underlyingsubstrate andanincreasein surface roughness (i.e scratches), which can increase the propensityforfurtherfoulingandmicrobialgrowth.Cleaning baked-onfatsoilsofteninvolvesacombinationofchemical and mechanical actions, wherein a chemical reagent pro-motes softeningofthe soillayersothatit canberemoved
byfluidshear, impactingliquid jetsormechanical friction Beingabletomeasuretheforces involved,andthereby the rheologyandevolutionofmicrostructure,ofthesematerials duringcleaningishighlydesirableforunderstandingcleaning mechanismsand developingcleaningagents.Asstiff semi-solidmaterials,thesesoilsdonotlendthemselvestostudyby
http://dx.doi.org/10.1016/j.fbp.2014.09.001
0960-3085/©2014TheAuthors.PublishedbyElsevierB.V.onbehalfofTheInstitutionofChemicalEngineers.Thisisanopenaccessarticle undertheCCBYlicense(http://creativecommons.org/licenses/by/3.0/)
Trang 2Roman
a Carreau–Yasudomodelparameter,–
fI forcecomponenttodisplacematerialaheadof
theblade,N
fII forcecomponenttoraisedisplacedmaterial,N
fIII forcecomponenttoresistmaterialunderneath
blade,N
Fw forceperunitwidth,Nm−1
Fw,0 forceperunitwidthatr/R=0,Nm−1
F0
w plasticcomponentofFw,Nm−1
FI
w forceperunitwidthtodisplacematerialahead
oftheblade,Nm−1
FII
w forceperunitwidthtoraisedisplacedmaterial,
Nm−1
FIII
w forceperunitwidthtoresistmaterialunderthe
blade,Nm−1
Fw averageforceperunitwidth,Nm−1
g accelerationduetogravity,m−2
G elasticmodulus,Pa
G viscousmodulus,Pa
m Carreau–Yasudopower-lawindex,–
r distancefromsamplecenterand
millimanipu-lationtool,m
R2
fit coefficientofdetermination,–
t o scrapingtime,s
V scrapespeed,ms−1
Vdisplace samplevelocityatthesubstrate,ms−1
Vsubstrate samplevelocityatthesubstrate,ms−1
w widthofthebladeincontactwithsample,m
wt widthofthemillimanipulationblade,m
x distancescrapedthroughsamplerelativetothe
pointoffirstcontact,m
Greek
ı clearanceunderneathmillimanipulationblade,
m
ıo initialthicknessofsoil,m
˙
shearrate,s−1
apparentviscosity,Pas
0 viscosityat0shearrate,Pas
∞ viscosityatinfiniteshearrate,Pas
characteristicviscoelastictime,s
w wallshearstress,Pa
Acronyms
BHT butylatedhydroxytoluene
DSC differentialscanningcalorimetry
FT-IR Fouriertransforminfraredspectroscopy
GPC gelpermeationchromatography
SS stainlesssteel
Vas Vaseline®
VCB Vaseline®blackpaste
existinghydrodynamicdevicessuchastheparallelplateflow cell(Bakkeretal.,2003),impingingjet(Bayoudhetal.,2005), radialflowcell(Detryetal.,2007),rotatingdisc(Garcaetal.,
1997),theplynometer(Zoritaetal.,2010)andfluiddynamic gauging (Chew et al., 2004) These all require the user to observethemomentandnatureofremovalatalengthscale
ofseveralmicronsandabove
Atsmallerlengthscales,atomicforcemicroscopyhasbeen usedtocharacteriseadhesionandcohesionoffoodstuffssuch
ascaramel, sweetenedcondensedmilkand Turkishdelight (Akhtaretal.,2010)andbiofilms(Garrettetal.,2008).Ofthe techniquesmentioned,however,noneprovideadirect mea-sureoftheforceswithinasoilorthestrengthofattachment
tothefouledsurface.Withtheexceptionoftheplynometer, theyallgenerallyrequirelargeliquidvolumesand/oraretime intensive.Wepresentthecommissioningofadevicethatis easytouse,requireslittleornocleaningliquidandcanmake measurementsquickly(≤5min)
1.1 From micro- to milli-manipulation
Zhang and co-workers developed the micromanipulation techniqueattheUniversityofBirminghamforstudyingthe deformationofcells(Zhangetal.,1991)andtheirmechanical properties (Zhang et al., 1992; Yap et al., 2006) A modi-fied‘micromanipulation’devicewasdevelopedbyZhangand Fryer (Liu et al., 2002) tostudy the adhesive and cohesive forces withinsoiling layers With this device, a horizontal bar (30×6×1mm) is movedthrough the materialat a set height from the substrate and the force on the bar mea-sured.Itisacontrolledstrain(ordeformation)test,whereas the hydrodynamic devices mentioned above employ con-trolled (or estimated) shear stress conditions By adjusting the level at which the tool is pulled through the layer, the technique can investigate cohesive (soil–soil) or adhe-sive(soil–substrate)interactions.Table1summarisesstudies wheremicromanipulationhasbeenusedtostudyfoodstuffs, including proteinaceous(Liuet al.,2006a)andstarchlayers (Liuetal.,2006b).Thesestudieshaveshownhowsample rhe-ologyandsoil–substrateinterfacialpropertiesaffectboththe strengthofattachmentandthetypeofremovalobserved Theheterogeneityandthehighcohesivestrengthoffood fatsoilspromptedourdevelopmentofa‘millimanipulation’ tooldesignedtomeasurelargerforcesand workwithdeep layers,ofthickness0.2–10mm.Bakedfatlayers,forexample, havegreaterstrengthsthanthematerialreportedinTable1 Thestrengthoflayersintheaforementionedstudiesranges from∼0.3to80Jm−2(asdefinedbelow).The millimanipula-tiondevicepresentedhere,isshowntoworkonmaterialswith
awider rangeofstrength,includinghoney (∼0.4Jm−2)and bakedlard(∼420Jm−2)
TheschematicinFig.1(a)illustratestheworkingaction:
averticalstainlesssteelbladeismovedhorizontallythrough thelayeratvelocityV.Thelayerisscrapedfrominitialdepth,
ıo,tofinaldepth,ı.Theforcerequiredtoimposethestrain
ismeasured and videomicroscopes are usedtorecord the deformationbehaviour.Theforcemeasured,f,includes com-ponentsrequiredto(seeFig.1
(I) Deformmaterialinthelayerofthicknesss,aheadofthe blade,fI;
(II) Displacethedeformedmaterial, usuallyupwardsalong thefaceoftheblade,f ;
Trang 3(mm)
Apparent cohesivestrength (Jm−2)
Apparent adhesivestrength (Jm−2)
Experimental variables investigated
hydration
Liuetal.(2002)
temperature
Increasingtemperatureand NaOHconcentration (0.1–5wt%)
Liuetal.(2006a)
exposuretoair
Liuetal.(2006b)
Tomatopaste Ni-P-PTFE
composites
substratesurface energy,sample thickness
Minimumsampleadhesion occursonsurfaceswith surfaceenergiesfrom20to
25mJm−2
Liuetal.(2006b)
substrate
Alayerofcornoilbetween substrateanddeposit reducesadhesion
Liuetal.(2006)
temperature
Higherbakingtemperatures increaseadhesivestrength
Liuetal.(2007)
o,
FI
FII
FIII
Trang 4fcanbecomparedwiththeadhesivework.Itisnotedthat
settingthebladealongthesurface,i.e.ı=0,islikelytoinvite
contributionsfromsurfacefriction.Forthesoilsstudiedhere,
thecohesivestrength,fIisnon-zero.TheschematicinFig.1(a)
pertainstocohesiveremovalofaviscousliquidorsemi-solid
soil.Fig.1(b)showsanexampleofaVaseline®carbonblack
(VCB)pastebilletundergoingtesting.Iftheremovedsoildoes
notadheretotheblade,fIIisnegligible.Theforcetransducer
onlymeasuresforcesinthehorizontalplane;anyshearcaused
bymaterialclimbingupthebladeisnotmeasureddirectlybut
theworkrequiredtoelevatesuchmaterialisreflectedinFw
2 Materials and methods
2.1 Device
Themillimanipulationdevicewasdesignedtoworkwithsoil
samplespreparedoncircularmetaldiscsofdiameter50mm
Theunitwasbuiltaroundaforcetransducer(SauterGmbH,
FH5) witha measurementlimit of5000mN and resolution
±1mN.Thetransducerismountedonasteelx–ytabledriven
bytwosteppermotorsallowingindependentmotioninthe
xandydirectionsatspeedsrangingfrom0.5to20mms−1
Theforceismeasuredatasamplingrateof20Hz.Thestepper
motorsare controlledviaadesktopPCanddataarelogged
usingaLabVIEWTMapplication.Thedeformationisrecorded
byavideomicroscope(400XUSBMicroscope,MaplinGadgets)
Twosampleshapeswereusedforthestudiesreportedhere
Softersamples,suchashoney,Vaseline®andlard,were
pre-paredoncirculardiscs.Thetoothwidth,wt,wasselectedto
bewiderthanthesample,suchthatthelengthincontactwith
theblade,w,varieswithscrapedistance,x(seeFig.2(a)).For
harderlayers,suchasbakedlard,anarrowrectangular
sec-tionisprepared,suchthatwstaysconstantduringscraping
(seeFig.2(b)).Thetoolisheldverticalbylubricatedguiderails
(seeFig.2(c)and(d))connectedtotheforcetransducerand
ispulledhorizontallythroughthesampleatconstantspeed,
typicallyfor38mm
2.2 Sample preparation
Commissioning tests were conducted using honey
(Sains-bury’sBasicTM,aviscousliquid),Vaseline®(aviscoplasticsoft
solid)andlard(amodelfoodsoil).Honeysampleswere
pre-paredby pipetting 14g of materialon to 50mm diameter
(1mmthick)stainlesssteel(SS)316testdiscsatroom
tem-perature.Thisprocedurewasfoundtogivereproduciblelayers
approximately3.5mmthick,measuredusingthevideo
micro-scope
Vaseline® and lard samples were spread evenly across
50mmdiameterdiscswithaspatula,usingsetsofhalf-ring
formersto providesamplesofknown thickness(≤0.9mm)
AsVaseline®istranslucent,samplesweremixedwith5wt%
graphitepowder (FisherScientific,UK) togive aVCB paste
suitableforobservationwiththevideomicroscope
Model food fat layers were prepared using lard
(Sains-bury’sBasicTM),bakedfor1–5hattemperaturesof50–250◦C
Themeltingpointrangeofthelard,asmeasuredby
differ-entialscanning calorimetry(DSC,datanotpresentedhere),
was27–38◦C.Lardwasheatedto39◦Candeggwhiteprotein
(ovalbumin:Sigma–Aldrich,gradeII)wasaddedtogivea
liq-uidmixturewithproteincontentsrangingfrom0to9.5wt%
AliquotsofthemixturewerepipettedontothecentreofaSS
discandallowedtospreadout.Thediscswereplacedinan ovenforbakinginairattherequiredtemperatureand dura-tion.Sampleswereallowedtocooltoroomtemperaturebefore testing
This method of preparation was suitable for preparing layersupto200mthick.Someofthesethinlayerswere, how-ever,sohardthattheforcesrequiredtoremovethemexceeded theinstrumentlimit,orcausedthebladetodeflect.Thicker andsomewhatsoftersampleswere thenpreparedusingSS discswith0.6mmhighraisededges.Thelardwasloadedon
tothediscandcookedasabove.Rectangularsamples,12mm wideandapproximately40mmlong,werecreatedwhenthe samplehadcooledandbyclearingtheoutermaterialaway usingastencilandspatula(seeFig.2(c)featureD).Thetooth toolwasusedinthesetests.Theraisededgerestrictedthe blademovementto38mm
TheSSdiscsurfaceswerecleanedaftertestingby immer-sionin1Msodiumhydroxidesolutionovernight,sonicationin reverseosmosiswaterat40◦Cfor30min,followedbydrying
inairatambientconditions
Attemptstocharacterisethechemicalnatureofbakedlard weremadeusingFouriertransforminfraredspectroscopy (FT-IR)andgelpermeationchromatography(GPC).FT-IRspectra didnotshowanymarkeddifferencebetweenlardandbaked lard(datanotpresented).GPCtestingprovedinconclusive,as baked larddidnotdissolve inany ofthesolventsavailable fortesting (including acetone, tetrahydrofuran,chloroform, chlorobenzeneandtoluene)
2.3 Material rheology
Rheological measurements were conducted using a Bohlin CVO120HRcontrolledstressrheometer(MalvernInstruments, London,UK)usingparallelplateswhichwereeither(i)smooth,
20mmdiameter,or(ii)sandblasted,25mmdiameter,to pre-ventwallslip.Oscillatorytests wereconductedat20◦Cfor Vaseline®,VCBpasteandlard.Frequencysweepswere per-formedfrom0.01to50Hzwithastrainamplitude<1%
3 Results and discussion
3.1 Material rheology
3.1.1 Honey
Fig 3 shows that the honey exhibited noticeable shear thinning, with a low shear rate behaviour that is consid-eredpseudo-Newtonian.Thenon-Newtonianbehaviourwas attributedtothepresenceofcrystallisedsugarparticlesinthe honey.ThiscanbedescribedbytheCarreau–Yasudamodel:
−∞
0−∞ =(1+()˙a)(m−1)/a (4) where0 and ∞ arethe lowandhigh shear-rateviscosity,
respectively,˙istheshearrate,isacharacteristictime con-stantandparametersaandmdescribethebehaviourbetween thelowandhigh-shearrateplateaus.Forhoney, regression
of the experimental data gave 0=13.4Pas, ∞=4Pas,
=0.0025s,m=0,a=1
3.1.2 Vaseline®and VCB
The steady shear results in Fig 4(a) show that both the Vaseline® and VCBpastesexhibitalowshear, high viscos-ityplateau.Aboveacriticalshearrate,ofaround5×10−4s−1,
Trang 5260 foodandbioproductsprocessing 93 (2015) 256–268
Fig 2 – (a) Schematic of circular samples, with w = 2
R 2 − ( R − x) 2
The shaded area denotes the location of the sample.xis the distance scraped through the layer.ris the minimum displacement between the blade and disc centre.rvaries between
−RandR,such thatr/Ralways lies between −1 and 1 (b) Schematic of rectangular samples The width of the blade, w t , is larger than the sample For the rectangular samples, w =/f(x) (c) Photograph of the millimanipulation rig showing: (A) motorisedx–ytable; (B) force transducer; (C) scraper blade held in place with guide rails; (D) adjustable height mount, with baked lard strip; (E) video microscope (d) Millimanipulation tooth in (b); dimensions in mm.
(shear stress of ∼50Pa) the apparent viscosity decreases
stronglywith increasing shearrate Thevalues ofthe low
shearapparentviscosity,ofaround105Pa,aresimilartothose
reported foradifferent Vaseline® materialbyChang et al
(2003),aswellassomeothercommonfoodspreadsthatare
noteasilycleanedbywaterrinsing(see(Yangetal.,2014))
Whenthedataareplottedagainstshearstress,asinFig.4(b),
theysuggestthatthematerialexhibitsacriticalshearstress
ofaround50Pa,abovewhichthematerialisshearthinning
Theeffectofslip,givinglowerapparentviscosity,isnoticeable
withsmoothtools
TheoscillatorysheardatafortheVaseline®basedmaterial
inFig.5showdifferencesintheirsmallstrainbehaviour,i.e
beforeyielding.Theviscousmodulus,G,fortheVaseline®is
consistentlyhigherthantheelasticmodulus,G,untilhigher
frequencies,indicatingliquid-likebehaviour,whereastheVCB
modulivaluesaremoresimilarinmagnitude,indicatingthat
agel-likestructureiscreatedbytheadditionofcarbonblack
particles
3.1.3 Lard
Thelard proved tobe too stiff for steady shear testing at
20◦C The oscillatory shear data in Fig 6, however, show
thatthelardwaspredominantlyelasticatthistemperature, withG∼15kPa,overthefrequencyrangetested.Theviscous modulus was ∼10kPa, so someviscoelasticcontribution is expected
3.2 Millimanipulation data
3.2.1 Honey
Tests withhoney employeda 1mm sheargap The forces required to deform the honey were small so these tests employedcircularshapesanda60mmwideblade.Fig.7(a) shows measuredforceversus scrapeddistanceforahoney layerofinitialthickness3.5mmsubjecttoascrapedepthof 2.5mm.Thelengthofthebladeincontactwiththefilm,w, variedwithpositionandthevariationisplottedalongsidethe measuredforce Theforceinitiallyincreasesaswincreases anddecreasesafterxreachedthepointofmaximumwidth (at x=R=31.75mm).Separatetestsestablishedthat compli-anceinthefittingsgaveanuncertaintyofaround±2mNin theforcemeasurements
The force data are plotted as normalised force versus dimensionlessscrapingdistance,r/R,inFig.7(b).Thereisan
Trang 6Fig 3 – Apparent viscosity of honey measured at 20 ◦ C.
1 mm gap, 20 mm radius smooth plates Solid symbols
indicate increasing shear rate, open symbols return ramp
(decreasing shear rate) Dashed line shows fit of data to
Carreau–Yasuda model, Eq (4) , with parameters
0 = 13.4 Pa s, ∞ = 4 Pa s, = 0.0025 s,m= 0,a= 1, R 2
fit = 0 986.
initialstepinFwoverthefirstfewmmoftravel,associated
withthesheargapbeingfilled,andasteadyincrease with
x until the disc midpoint is reachedthen decreasing as x
increases.TheasymmetryevidentinFig.7(a)isagainevident
andFwincreasessharplyasxapproachesandpassesx=2Ras
wapproacheszero.Theforceprofileisnotsymmetricalabout
x=R,andthereisanon-zeroforcewhenthebladereachesthe
edgeofthedisc(x=63.5mm)
Thelinearshearrateinthegapwasestimatedusing:
˙
=V−Vsubstrate
where Vsubstrate is the velocity at the substrate A no-slip
boundaryconditionwasassumed,giving˙=V/ı.Thelargest
shear rate expected under the blade for the velocities in
Fig 5 – Oscillatory testing of Vaseline®(Vas) and Vaseline®-black paste (VCB) at 20 ◦ C 25 mm diameter, parallel, roughened plates, 1% strain amplitude, 1.5 mm gap.
Fig.7(b),1–4mms−1,isthen4s−1.Atthisshearrate,Fig.3 indi-catesthatthehoneyisNewtonianwithaviscosityof∼14Pas Thecontributionofshear,processIII,canbeestimatedby treatingthegapunderthebladeasaone-dimensionalslit,so that:
FIII
wherewisthewallshearstressandL,thebladethickness,is
2mm.FortheconditionsinFig.7(b),theapparentshearstress ratesare1–4s−1andFIII
w=25–100mNm−1.Thesevaluesareall smallerthantheinitialFw(measuredatr/R∼−1),indicating thatFwisdominatedbydeformationanddisplacement TheFwprofilesinFig.7(b)showaproportionaldependency
on V, whichis expectedfor aNewtonian fluidundergoing
Fig 4 – Plots of apparent viscosity versus (a) shear rate and (b) shear stress for Vaseline®(labelled ‘Vas’) and
Vaseline®-carbon black (labelled ‘VCB’) paste at 20 ◦ C.
(b) is reproduced from Yang et al (2014) , with permission.
Trang 7262 foodandbioproductsprocessing 93 (2015) 256–268
Fig 6 – Oscillatory testing of lard at 20 ◦ C Rough parallel
plates, 1% strain, 1 mm gap.
shearand deformationinthe laminarregion.Inspectionof
theFwatr/R=0,Fw,0,showedalinearcorrelationwithV,viz
Fw,0(r/R=0)=133V+0.15 (R2
whereR2
fitiscoefficientofdetermination
Videoimagesindicatedthatthedislodgedmaterial
accu-mulatedatthefront oftheblade(asshown inFig.1 and
beyondthemid-point,i.e.r/R>0,somedrippedofftheedge
ofthedisc.Thecontributionfrom displacement(processII
inFig.1)withcircular samplesisthereforecomplexand is
believedtoberesponsibleforthechangeinFwwithx.Tests
onbakedlardweresubsequentlyperformedwithrectangular
stripsofmaterialsothattheareaofsampledisplacedbythe
bladeisalmostconstant
3.2.2 VCB paste
TheresultsforremovingVCBpastelayers,atascrapedepth
of1mm,inFig.8(a)showtheincreaseinfwithscrapewidth observedwithhoneyandasimilarasymmetryintheprofiles Theforcesarenoticeably larger,reaching250mNcompared
tothe18mNobservedwithhoneyforscrapedepth,s=1mm,
V=1mms−1 The measured force is insensitiveto the gap height,ı, whichvariesfrom 2to8mminthesetests, indi-catingthatFIII
wisnegligible(estimatedas2mNm−1usingEq (6))andthatthedeviceismeasuringthecohesivestrengthof thematerial
ThenormalisedprofileinFig.8(b)shows3regionspresent
InregionA,thereisasteepinitialriseinFwfor−1≤r/R−0.85,
toabout2Nm−1.Theinsensitivitytoıisagainevident.The initialriseinAisattributedtosomeinitialcreepand compli-anceinthematerial
InregionB,thegradualincreaseinFwby1–2Nm−1with displacementislikelyduetoaccumulationofdislodged mate-rialinfrontoftheblade.Thecontributionofhydrostaticstress
toFw,arisingfromraisingthemassofdislodgedmaterial,was estimatedbygVdisplaceas∼5×10−5N(whereVdisplace isthe
volumeofdisplacedmaterial).ProcessII,wasnottherefore consideredtoaffectmillimanipulationdata.InregionC,Fw
risesmarkedly,aswapproacheszero.Thiswasalsoobserved withhoney(seeFig.7(b))andthesedataarediscarded Testson12mmwiderectangularVCBsamplesareshown
inFig.9.TheforcevaluesinFig.9(a)arelowerthanthedisc tests(Fig.8 asthewidthofthetoothisgenerallysmallerthan thechordincontactwiththesampleinthedisctests.The sim-plerdeformationzoneaheadoftheblademaybethereason whythereisnogradualriseinFw.RegionCinFig.8(b)isnot evident.Aswiththedisctests,initialsamplethicknessdoes notaffecttheresultsandthemagnitudesofFw(∼2–3Nm−1) aresimilar
Fig.10showstheeffectofscrapedepth,wherelayersof differentinitialthicknesswerescrapedtoacommonresidual thickness,of5mm.Theapparentshearrateundertheblade
inthesecasesis0.2s−1andtheFIII
w contributionsestimated fromEq.(6)isaround0.4Nm−1.Theindividualprofilesdonot
Fig 7 – Millimanipulation of honey on 63.5 mm diameter circular SS discs at 20 ◦ C ıo= 3.5 mm,s= 2.5 mm,R= 31.75 mm (a) Force,f,and blade contact length, w, forV= 1 mm s −1 Error bars on selected points show measurement uncertainty Gaps between data points are due to the limits of the force transducer resolution (b) Effect of velocity onFw , with normalised scrape force versus distance The horizontal dashed lines indicate estimated values of F III from Eq (6)
Trang 8Fig 8 – Removal of VCB paste from 50 mm diameter discs.V= 1 mm s −1 ,s= 1 mm,R= 25 mm, 20 ◦ C (a) raw data, including blade contact length, w, displayed with the solid line (b) normalised force versus normalised radial distance Legend entries indicate initial sample thickness ıo.
exhibitthetrendsinFig.8,exceptfors=1mm.Fors=2mm
and4mm,thereisariseinFwuntilr/R∼−0.5afterwhichpoint
thereisagradualdecreaseinFw.InadditiontheFwvaluesin
regionBdonotincreaseproportionatelywiths,whichwould
beexpectedifFI
wandFII
wwererelatedtothevolumeofmaterial deformedanddisplaced.ThedeformationoftheVCBmaterial
iscomplexandisthesubjectofongoinginvestigation
3.2.3 Lard
Theprofiles obtained forscraping circular lard samples in
Fig.11(a)showsimilarfeaturestotheVCBpasteinFig.8(b)
Sampleswerealsopreparedasrectangularstrips.Fwvalues
fortherectangularsectionsinFig.11(b)were,ingeneral,lower
thatonthecirculardisc.Thereasonforthedifferencesisnot
currentlyunderstood.Thereisalsomorevariationbetween
samplesonthediscs.Thetrendsobservedremainthesame
betweentestingontherectangularsectionanddiscs;in
par-ticular,scrapespeeddidnotaffectFw
The measured forces for lard are about 3 times larger than the VCBpaste.There is,however, nosimple relation-shipbetweenfandtherheometrydata.Thescrapingspeed has no effect on Fw, indicating that FIII
w is small For soft solids that fail in acohesive manner, a flat surface isleft behind (see schematicin Fig.1(a)) Therefore, byreturning thebladeoverthescrapedsample,separatemeasurements
ofFIII
w canbemade.Forlard,thesemeasurementsconfirmed that FIII
w<0.3mN Theinsensitivity to V indicates that the deformation isprimarilydue toelasticand plastic compo-nents
3.2.4 Baked lard
The behaviour observed for baked lard different markedly fromlard.TheresultsforbakedlardreportedinFig.12were obtained with 12mm wide strip samples tested using the toothtool(Fig.2(b)–(d)).Fig.12presentsatypicalplotofFw
versustime,ratherthandisplacement,obtainedforasample
Fig 9 – Removal of VCB paste from 12 mm wide rectangular sections.V= 1 mm s −1 ,s= 1 mm, 20 ◦ C (a) Scrape profiles (b) Normalised force versusx.Legend entries indicate initial sample thickness ı
Trang 9264 foodandbioproductsprocessing 93 (2015) 256–268
Fig 10 – Effect of scrape depth,s,onFw for VCB paste on
circular discs 20 ◦ C,V= 1 mm s −1 , ı = 5 mm,R= 25 mm, ıo
varies (=5 mm +s).
ofprotein-free lard baked at 250◦C for 4h and scraped at
V=2.0mms−1.Theblademovedthroughthesample,leaving
a0.2mmresidualfilm,untilx=38mm,atwhichpointithalted
(att=19s).Asbefore,threeregionsareevident.Intheinitial
region,markedA,thereisasteep,initialrise.Thepointat
whichFwbeginstoriseissetastheorigin.Thisbehaviouris
attributedtocomplianceand initialcreep(elasticity)inthe
material.Theexistenceofcreepwasconfirmedbyhaltingthe
motionofthebladeduringatraverse.Theforcedecayedtoa
smallvalue,F0
w,inanexponentialmanner.Videosconfirmed
thatthisdecaywasnotduetomovementofthesoil,
indicat-ingvisco-elasticbehaviourandconsistentwiththematerial
developingstrongerandnewcohesiveinteractionsasaresults
ofoxidativepolymerisation(WilsonandWatkinson,1996)
InregionB,Fwfluctuatesaroundanaveragevalue,denoted
Fw This is interpreted as arising from steady shear and
Fig 12 – Plot ofFw and displacement,x,versus time for lard baked for 4 h at 250 ◦ C Test conditions:T= 20 ◦ C,
V= 2 mm s −1 , ıo= 0.6 mm,s= 0.4 mm F 0
w marked on as the residual force remaining after scraping.
yieldingwithinthematerial,andthemagnitudeofFwistaken heretorepresentthecohesivestrengthofthelayer.The fluctu-ationsariseduetobrittlefractureandductiledeformationof thissample(i.e.crackingandcreationofnewsurfaces) Sam-plescookedatlowertemperaturesandshortertimestended
toexhibitductileyieldingandgavemoreuniformFwprofiles,
aswellasevenresiduallayers
InregionC,thebladeisstationary,neartheendofthe sam-ple.ThebladeisstillincontactwiththelayerandFwdecays withtime.Thiswasalsoobservedinthecreeptestsreferred
toabove.ItisnoticeablethatFwdoesnotdecaytozero,but approachesaresidualvalueofaround37Nm−1,suggestinga plasticcomponenttothedeformation
ThetimedependentdecayinFwwasinvestigatedby halt-ing a traverse before approaching the end of the sample,
as shown in Fig 13(a) Fw had reached a steady value of
∼115Nm−1 before motion was halted at ∼2.5s The force decaystoameasurableresidualF0
w,ofaround20Nm−1.The
Fig 11 – Effect ofVonF for (a) circular(R= 25 mm) and (b) rectangular strip lard samples 20 ◦ C, ı = 6.7 mm,s= 1 mm.
Trang 10Fig 13 – Decay in measured force after scraping is halted at timet0 Strip sample of lard baked for 4 h at 250 ◦ C The blade is moved 5 mm into a 40 mm long sample at 2 mm s −1 then stopped att0 = 2.5 s 20 ◦ C, ıo= 0.6 mm,s= 0.4 mm (a)Fw −tprofile, with residual force F o
w (b) Data in (a) plotted in the form of exponential decay.
transientdataareplottedintheformofanexponentialdecay
modelinFig.13(b)andexhibitaroughlylineartrendon
log-linear axes This suggests that the stress relaxation could
beapproximatedbyasingle-elementMaxwellmodel,but a
multi-modemodelmaybemoreappropriate
3.2.4.1 Types of removal. Thereare three typesofremoval
observedfortheselayers.Ifthelayersfailadhesively,aclean
substrateisleftbehindafterscraping(seeFig.14(a)).Adhesive
strengthwouldbeassessedbyeither(i)scrapingoffcloseto
thediscsurface(i.e.settingı∼0)or(ii)iftheadhesivestrength
issufficientlylowerthanthecohesivestrengthsuchthatthe
soil–substratebondyieldsbeforesoil–soilbondsdo.If they
failcohesively,aresiduallayerwillremainafterscraping.For
theharder,bakedlardlayers,thiswillleaveajagged,uneven
wake,ofvaryingthickness(seeFig.14(b)).Ifthelayerfailsboth
adhesively and cohesively, a mixture of the patterns in Fig.14(a)and(b)isobserved
3.2.4.2 Effect of testing conditions. Fig.15showstheeffectof scrapevelocityontheremovalbehaviourofpolymerisedlard layerspreparedbybakingat250◦Cfor4h.Eachdatum repre-sentsaseparateexperimentandthereisnoticeablevariation betweentests,whichispartlyduetotheextentof polymeri-sationnotbeingcontrollablewiththismaterial.Thevariation betweensamplesissignificantlygreaterthanthefluctuation
inFwforindividualsamples,markedbytheerrorbars There is noticeable scatter at the lowest scrape speed
(V=0.5mms−1)whichisaccompaniedbyamixtureof cohe-sive and adhesive failure At higher speeds removal is dominatedbythelattermode Theweakdependencyon V
confirms that the materials exhibit plastic behaviour The
Fig 14 – Photographs of wake region after millimanipulation scraping of lard baked at 250 ◦ C.V= 2 mm s −1 , ıo= 0.6 mm,
s= 0.4 mm Arrow indicates direction of scraping Dashed lines indicate regions where the sample was scraped away (a) Adhesive failure and (b) cohesive failure.