1. Trang chủ
  2. » Giáo án - Bài giảng

development of a millimanipulation device to study the removal of soft solid fouling layers from solid substrates and its application to cooked lard deposits

13 9 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Development of a Millimanipulation Device to Study the Removal of Soft Solid Fouling Layers from Solid Substrates and Its Application to Cooked Lard Deposits
Tác giả Akin Ali, Dominic de’Ath, Douglas Gibson, Jennifer Parkin, Zayeed Alam, Glenn Ward, D. Ian Wilson
Trường học University of Cambridge
Chuyên ngành Food and Bioproducts Processing
Thể loại Research Article
Năm xuất bản 2015
Thành phố Cambridge
Định dạng
Số trang 13
Dung lượng 3,36 MB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

With this device, a horizontal bar 30×6×1mm is movedthrough the materialat a set height from the substrate and the force on the bar mea-sured.Itisacontrolledstrainordeformationtest,where

Trang 1

foodandbioproductsprocessing 93 (2015)256–268

ContentslistsavailableatScienceDirect

jo u r n al ho m e p a g e :w w w e l s e v i e r c o m / l o c a t e / f b p

deposits

aDepartment of Chemical Engineering and Biotechnology, New Museums Site, Pembroke Street, Cambridge CB2

3RA, United Kingdom

bProctor & Gamble Technical Centres Ltd., Whitley Road, Longbenton, Newcastle-upon-Tyne NE12 9TS, UK

a b s t r a c t

Amm-scalescrapingdevicewasdevelopedtostudytheremovalbehaviourofsoftsolidfoulinglayers(thickness

0.5–10mm)fromsolidsubstrates.Abladeisdraggedthroughthecircularorrectangularsamplesatcontrolledspeed

andtheresistanceforcesmeasured.Testswithaviscousliquid(honey)andviscoplasticmaterial(aVaseline®-carbon

blackpaste)indicatedthatcohesivedeformationdominatedthemeasuredforce.Twomodelfoodsoilswere:(i)

unbakedlardand(ii)lardbakedfordifferenttimeswithandwithoutaddedovalbumin.Thecohesivestrengthof

thebakedlard,anditsremovalbehaviour,changednoticeablyfollowingautoxidativepolymerisation.Ovalbumin

delayedtheonsetofpolymerisation

©2014TheAuthors.PublishedbyElsevierB.V.onbehalfofTheInstitutionofChemicalEngineers.Thisisanopen

accessarticleundertheCCBYlicense(http://creativecommons.org/licenses/by/3.0/)

Keywords: Adhesion;Cohesivestrength;Cleaning;Fouling;Fats;Rheology

1 Introduction

The formation of fouling layers from baked fats and oils

isawidespreadprobleminfoodprocessing,causing

equip-mentdegradation,unhygienicconditionsand,onhousehold

appliances, an undesirable appearance Food fats and oils

aremixturesofmono,di-andtri-glyceridesaswellasother

hydrophobiccomponents.Duringfryingandbaking,proteins

andstarchescanbeaddedtothemelt.Foulingdepositsare

formedbyoxidativepolymerisationoftheunsaturated

com-ponentstogivesolidorsemi-solidlayers,whichcanadhere

stronglytotheprocesssurfaces.Extended(orrepeated)heat

treatmentpromotesfurtherpolymerisation,colourchanges

andultimately, athigher temperatures,degradation to

car-bonaceous(coke)layers

Corresponding author.Tel.:+447833466898

E-mailaddress:aa620@cam.ac.uk(A.Ali)

Received2May2014;Receivedinrevisedform31August2014;Accepted2September2014

Availableonline22October2014

Theselayersareamongstthemostchallengingtoremove and cleaning often requires strong chemical treatments and/or large mechanical forces Both of these can lead to degradation ofthe underlyingsubstrate andanincreasein surface roughness (i.e scratches), which can increase the propensityforfurtherfoulingandmicrobialgrowth.Cleaning baked-onfatsoilsofteninvolvesacombinationofchemical and mechanical actions, wherein a chemical reagent pro-motes softeningofthe soillayersothatit canberemoved

byfluidshear, impactingliquid jetsormechanical friction Beingabletomeasuretheforces involved,andthereby the rheologyandevolutionofmicrostructure,ofthesematerials duringcleaningishighlydesirableforunderstandingcleaning mechanismsand developingcleaningagents.Asstiff semi-solidmaterials,thesesoilsdonotlendthemselvestostudyby

http://dx.doi.org/10.1016/j.fbp.2014.09.001

0960-3085/©2014TheAuthors.PublishedbyElsevierB.V.onbehalfofTheInstitutionofChemicalEngineers.Thisisanopenaccessarticle undertheCCBYlicense(http://creativecommons.org/licenses/by/3.0/)

Trang 2

Roman

a Carreau–Yasudomodelparameter,–

fI forcecomponenttodisplacematerialaheadof

theblade,N

fII forcecomponenttoraisedisplacedmaterial,N

fIII forcecomponenttoresistmaterialunderneath

blade,N

Fw forceperunitwidth,Nm−1

Fw,0 forceperunitwidthatr/R=0,Nm−1

F0

w plasticcomponentofFw,Nm−1

FI

w forceperunitwidthtodisplacematerialahead

oftheblade,Nm−1

FII

w forceperunitwidthtoraisedisplacedmaterial,

Nm−1

FIII

w forceperunitwidthtoresistmaterialunderthe

blade,Nm−1

Fw averageforceperunitwidth,Nm−1

g accelerationduetogravity,m−2

G elasticmodulus,Pa

G viscousmodulus,Pa

m Carreau–Yasudopower-lawindex,–

r distancefromsamplecenterand

millimanipu-lationtool,m

R2

fit coefficientofdetermination,–

t o scrapingtime,s

V scrapespeed,ms−1

Vdisplace samplevelocityatthesubstrate,ms−1

Vsubstrate samplevelocityatthesubstrate,ms−1

w widthofthebladeincontactwithsample,m

wt widthofthemillimanipulationblade,m

x distancescrapedthroughsamplerelativetothe

pointoffirstcontact,m

Greek

ı clearanceunderneathmillimanipulationblade,

m

ıo initialthicknessofsoil,m

˙

 shearrate,s−1

 apparentviscosity,Pas

0 viscosityat0shearrate,Pas

∞ viscosityatinfiniteshearrate,Pas

 characteristicviscoelastictime,s

w wallshearstress,Pa

Acronyms

BHT butylatedhydroxytoluene

DSC differentialscanningcalorimetry

FT-IR Fouriertransforminfraredspectroscopy

GPC gelpermeationchromatography

SS stainlesssteel

Vas Vaseline®

VCB Vaseline®blackpaste

existinghydrodynamicdevicessuchastheparallelplateflow cell(Bakkeretal.,2003),impingingjet(Bayoudhetal.,2005), radialflowcell(Detryetal.,2007),rotatingdisc(Garcaetal.,

1997),theplynometer(Zoritaetal.,2010)andfluiddynamic gauging (Chew et al., 2004) These all require the user to observethemomentandnatureofremovalatalengthscale

ofseveralmicronsandabove

Atsmallerlengthscales,atomicforcemicroscopyhasbeen usedtocharacteriseadhesionandcohesionoffoodstuffssuch

ascaramel, sweetenedcondensedmilkand Turkishdelight (Akhtaretal.,2010)andbiofilms(Garrettetal.,2008).Ofthe techniquesmentioned,however,noneprovideadirect mea-sureoftheforceswithinasoilorthestrengthofattachment

tothefouledsurface.Withtheexceptionoftheplynometer, theyallgenerallyrequirelargeliquidvolumesand/oraretime intensive.Wepresentthecommissioningofadevicethatis easytouse,requireslittleornocleaningliquidandcanmake measurementsquickly(≤5min)

1.1 From micro- to milli-manipulation

Zhang and co-workers developed the micromanipulation techniqueattheUniversityofBirminghamforstudyingthe deformationofcells(Zhangetal.,1991)andtheirmechanical properties (Zhang et al., 1992; Yap et al., 2006) A modi-fied‘micromanipulation’devicewasdevelopedbyZhangand Fryer (Liu et al., 2002) tostudy the adhesive and cohesive forces withinsoiling layers With this device, a horizontal bar (30×6×1mm) is movedthrough the materialat a set height from the substrate and the force on the bar mea-sured.Itisacontrolledstrain(ordeformation)test,whereas the hydrodynamic devices mentioned above employ con-trolled (or estimated) shear stress conditions By adjusting the level at which the tool is pulled through the layer, the technique can investigate cohesive (soil–soil) or adhe-sive(soil–substrate)interactions.Table1summarisesstudies wheremicromanipulationhasbeenusedtostudyfoodstuffs, including proteinaceous(Liuet al.,2006a)andstarchlayers (Liuetal.,2006b).Thesestudieshaveshownhowsample rhe-ologyandsoil–substrateinterfacialpropertiesaffectboththe strengthofattachmentandthetypeofremovalobserved Theheterogeneityandthehighcohesivestrengthoffood fatsoilspromptedourdevelopmentofa‘millimanipulation’ tooldesignedtomeasurelargerforcesand workwithdeep layers,ofthickness0.2–10mm.Bakedfatlayers,forexample, havegreaterstrengthsthanthematerialreportedinTable1 Thestrengthoflayersintheaforementionedstudiesranges from∼0.3to80Jm−2(asdefinedbelow).The millimanipula-tiondevicepresentedhere,isshowntoworkonmaterialswith

awider rangeofstrength,includinghoney (∼0.4Jm−2)and bakedlard(∼420Jm−2)

TheschematicinFig.1(a)illustratestheworkingaction:

averticalstainlesssteelbladeismovedhorizontallythrough thelayeratvelocityV.Thelayerisscrapedfrominitialdepth,

ıo,tofinaldepth,ı.Theforcerequiredtoimposethestrain

ismeasured and videomicroscopes are usedtorecord the deformationbehaviour.Theforcemeasured,f,includes com-ponentsrequiredto(seeFig.1

(I) Deformmaterialinthelayerofthicknesss,aheadofthe blade,fI;

(II) Displacethedeformedmaterial, usuallyupwardsalong thefaceoftheblade,f ;

Trang 3

(mm)

Apparent cohesivestrength (Jm−2)

Apparent adhesivestrength (Jm−2)

Experimental variables investigated

hydration

Liuetal.(2002)

temperature

Increasingtemperatureand NaOHconcentration (0.1–5wt%)

Liuetal.(2006a)

exposuretoair

Liuetal.(2006b)

Tomatopaste Ni-P-PTFE

composites

substratesurface energy,sample thickness

Minimumsampleadhesion occursonsurfaceswith surfaceenergiesfrom20to

25mJm−2

Liuetal.(2006b)

substrate

Alayerofcornoilbetween substrateanddeposit reducesadhesion

Liuetal.(2006)

temperature

Higherbakingtemperatures increaseadhesivestrength

Liuetal.(2007)

o,

FI

FII

FIII

Trang 4

fcanbecomparedwiththeadhesivework.Itisnotedthat

settingthebladealongthesurface,i.e.ı=0,islikelytoinvite

contributionsfromsurfacefriction.Forthesoilsstudiedhere,

thecohesivestrength,fIisnon-zero.TheschematicinFig.1(a)

pertainstocohesiveremovalofaviscousliquidorsemi-solid

soil.Fig.1(b)showsanexampleofaVaseline®carbonblack

(VCB)pastebilletundergoingtesting.Iftheremovedsoildoes

notadheretotheblade,fIIisnegligible.Theforcetransducer

onlymeasuresforcesinthehorizontalplane;anyshearcaused

bymaterialclimbingupthebladeisnotmeasureddirectlybut

theworkrequiredtoelevatesuchmaterialisreflectedinFw

2 Materials and methods

2.1 Device

Themillimanipulationdevicewasdesignedtoworkwithsoil

samplespreparedoncircularmetaldiscsofdiameter50mm

Theunitwasbuiltaroundaforcetransducer(SauterGmbH,

FH5) witha measurementlimit of5000mN and resolution

±1mN.Thetransducerismountedonasteelx–ytabledriven

bytwosteppermotorsallowingindependentmotioninthe

xandydirectionsatspeedsrangingfrom0.5to20mms−1

Theforceismeasuredatasamplingrateof20Hz.Thestepper

motorsare controlledviaadesktopPCanddataarelogged

usingaLabVIEWTMapplication.Thedeformationisrecorded

byavideomicroscope(400XUSBMicroscope,MaplinGadgets)

Twosampleshapeswereusedforthestudiesreportedhere

Softersamples,suchashoney,Vaseline®andlard,were

pre-paredoncirculardiscs.Thetoothwidth,wt,wasselectedto

bewiderthanthesample,suchthatthelengthincontactwith

theblade,w,varieswithscrapedistance,x(seeFig.2(a)).For

harderlayers,suchasbakedlard,anarrowrectangular

sec-tionisprepared,suchthatwstaysconstantduringscraping

(seeFig.2(b)).Thetoolisheldverticalbylubricatedguiderails

(seeFig.2(c)and(d))connectedtotheforcetransducerand

ispulledhorizontallythroughthesampleatconstantspeed,

typicallyfor38mm

2.2 Sample preparation

Commissioning tests were conducted using honey

(Sains-bury’sBasicTM,aviscousliquid),Vaseline®(aviscoplasticsoft

solid)andlard(amodelfoodsoil).Honeysampleswere

pre-paredby pipetting 14g of materialon to 50mm diameter

(1mmthick)stainlesssteel(SS)316testdiscsatroom

tem-perature.Thisprocedurewasfoundtogivereproduciblelayers

approximately3.5mmthick,measuredusingthevideo

micro-scope

Vaseline® and lard samples were spread evenly across

50mmdiameterdiscswithaspatula,usingsetsofhalf-ring

formersto providesamplesofknown thickness(≤0.9mm)

AsVaseline®istranslucent,samplesweremixedwith5wt%

graphitepowder (FisherScientific,UK) togive aVCB paste

suitableforobservationwiththevideomicroscope

Model food fat layers were prepared using lard

(Sains-bury’sBasicTM),bakedfor1–5hattemperaturesof50–250◦C

Themeltingpointrangeofthelard,asmeasuredby

differ-entialscanning calorimetry(DSC,datanotpresentedhere),

was27–38◦C.Lardwasheatedto39◦Candeggwhiteprotein

(ovalbumin:Sigma–Aldrich,gradeII)wasaddedtogivea

liq-uidmixturewithproteincontentsrangingfrom0to9.5wt%

AliquotsofthemixturewerepipettedontothecentreofaSS

discandallowedtospreadout.Thediscswereplacedinan ovenforbakinginairattherequiredtemperatureand dura-tion.Sampleswereallowedtocooltoroomtemperaturebefore testing

This method of preparation was suitable for preparing layersupto200␮mthick.Someofthesethinlayerswere, how-ever,sohardthattheforcesrequiredtoremovethemexceeded theinstrumentlimit,orcausedthebladetodeflect.Thicker andsomewhatsoftersampleswere thenpreparedusingSS discswith0.6mmhighraisededges.Thelardwasloadedon

tothediscandcookedasabove.Rectangularsamples,12mm wideandapproximately40mmlong,werecreatedwhenthe samplehadcooledandbyclearingtheoutermaterialaway usingastencilandspatula(seeFig.2(c)featureD).Thetooth toolwasusedinthesetests.Theraisededgerestrictedthe blademovementto38mm

TheSSdiscsurfaceswerecleanedaftertestingby immer-sionin1Msodiumhydroxidesolutionovernight,sonicationin reverseosmosiswaterat40◦Cfor30min,followedbydrying

inairatambientconditions

Attemptstocharacterisethechemicalnatureofbakedlard weremadeusingFouriertransforminfraredspectroscopy (FT-IR)andgelpermeationchromatography(GPC).FT-IRspectra didnotshowanymarkeddifferencebetweenlardandbaked lard(datanotpresented).GPCtestingprovedinconclusive,as baked larddidnotdissolve inany ofthesolventsavailable fortesting (including acetone, tetrahydrofuran,chloroform, chlorobenzeneandtoluene)

2.3 Material rheology

Rheological measurements were conducted using a Bohlin CVO120HRcontrolledstressrheometer(MalvernInstruments, London,UK)usingparallelplateswhichwereeither(i)smooth,

20mmdiameter,or(ii)sandblasted,25mmdiameter,to pre-ventwallslip.Oscillatorytests wereconductedat20◦Cfor Vaseline®,VCBpasteandlard.Frequencysweepswere per-formedfrom0.01to50Hzwithastrainamplitude<1%

3 Results and discussion

3.1 Material rheology

3.1.1 Honey

Fig 3 shows that the honey exhibited noticeable shear thinning, with a low shear rate behaviour that is consid-eredpseudo-Newtonian.Thenon-Newtonianbehaviourwas attributedtothepresenceofcrystallisedsugarparticlesinthe honey.ThiscanbedescribedbytheCarreau–Yasudamodel:

−∞

0−∞ =(1+()˙a)(m−1)/a (4) where0 and ∞ arethe lowandhigh shear-rateviscosity,

respectively,˙istheshearrate,isacharacteristictime con-stantandparametersaandmdescribethebehaviourbetween thelowandhigh-shearrateplateaus.Forhoney, regression

of the experimental data gave 0=13.4Pas, ∞=4Pas,

=0.0025s,m=0,a=1

3.1.2 Vaseline®and VCB

The steady shear results in Fig 4(a) show that both the Vaseline® and VCBpastesexhibitalowshear, high viscos-ityplateau.Aboveacriticalshearrate,ofaround5×10−4s−1,

Trang 5

260 foodandbioproductsprocessing 93 (2015) 256–268

Fig 2 – (a) Schematic of circular samples, with w = 2

R 2 − ( R − x) 2

The shaded area denotes the location of the sample.xis the distance scraped through the layer.ris the minimum displacement between the blade and disc centre.rvaries between

−RandR,such thatr/Ralways lies between −1 and 1 (b) Schematic of rectangular samples The width of the blade, w t , is larger than the sample For the rectangular samples, w =/f(x) (c) Photograph of the millimanipulation rig showing: (A) motorisedx–ytable; (B) force transducer; (C) scraper blade held in place with guide rails; (D) adjustable height mount, with baked lard strip; (E) video microscope (d) Millimanipulation tooth in (b); dimensions in mm.

(shear stress of ∼50Pa) the apparent viscosity decreases

stronglywith increasing shearrate Thevalues ofthe low

shearapparentviscosity,ofaround105Pa,aresimilartothose

reported foradifferent Vaseline® materialbyChang et al

(2003),aswellassomeothercommonfoodspreadsthatare

noteasilycleanedbywaterrinsing(see(Yangetal.,2014))

Whenthedataareplottedagainstshearstress,asinFig.4(b),

theysuggestthatthematerialexhibitsacriticalshearstress

ofaround50Pa,abovewhichthematerialisshearthinning

Theeffectofslip,givinglowerapparentviscosity,isnoticeable

withsmoothtools

TheoscillatorysheardatafortheVaseline®basedmaterial

inFig.5showdifferencesintheirsmallstrainbehaviour,i.e

beforeyielding.Theviscousmodulus,G,fortheVaseline®is

consistentlyhigherthantheelasticmodulus,G,untilhigher

frequencies,indicatingliquid-likebehaviour,whereastheVCB

modulivaluesaremoresimilarinmagnitude,indicatingthat

agel-likestructureiscreatedbytheadditionofcarbonblack

particles

3.1.3 Lard

Thelard proved tobe too stiff for steady shear testing at

20◦C The oscillatory shear data in Fig 6, however, show

thatthelardwaspredominantlyelasticatthistemperature, withG∼15kPa,overthefrequencyrangetested.Theviscous modulus was ∼10kPa, so someviscoelasticcontribution is expected

3.2 Millimanipulation data

3.2.1 Honey

Tests withhoney employeda 1mm sheargap The forces required to deform the honey were small so these tests employedcircularshapesanda60mmwideblade.Fig.7(a) shows measuredforceversus scrapeddistanceforahoney layerofinitialthickness3.5mmsubjecttoascrapedepthof 2.5mm.Thelengthofthebladeincontactwiththefilm,w, variedwithpositionandthevariationisplottedalongsidethe measuredforce Theforceinitiallyincreasesaswincreases anddecreasesafterxreachedthepointofmaximumwidth (at x=R=31.75mm).Separatetestsestablishedthat compli-anceinthefittingsgaveanuncertaintyofaround±2mNin theforcemeasurements

The force data are plotted as normalised force versus dimensionlessscrapingdistance,r/R,inFig.7(b).Thereisan

Trang 6

Fig 3 – Apparent viscosity of honey measured at 20 ◦ C.

1 mm gap, 20 mm radius smooth plates Solid symbols

indicate increasing shear rate, open symbols return ramp

(decreasing shear rate) Dashed line shows fit of data to

Carreau–Yasuda model, Eq (4) , with parameters

 0 = 13.4 Pa s,  ∞ = 4 Pa s,  = 0.0025 s,m= 0,a= 1, R 2

fit = 0 986.

initialstepinFwoverthefirstfewmmoftravel,associated

withthesheargapbeingfilled,andasteadyincrease with

x until the disc midpoint is reachedthen decreasing as x

increases.TheasymmetryevidentinFig.7(a)isagainevident

andFwincreasessharplyasxapproachesandpassesx=2Ras

wapproacheszero.Theforceprofileisnotsymmetricalabout

x=R,andthereisanon-zeroforcewhenthebladereachesthe

edgeofthedisc(x=63.5mm)

Thelinearshearrateinthegapwasestimatedusing:

˙

=V−Vsubstrate

where Vsubstrate is the velocity at the substrate A no-slip

boundaryconditionwasassumed,giving˙=V/ı.Thelargest

shear rate expected under the blade for the velocities in

Fig 5 – Oscillatory testing of Vaseline®(Vas) and Vaseline®-black paste (VCB) at 20 ◦ C 25 mm diameter, parallel, roughened plates, 1% strain amplitude, 1.5 mm gap.

Fig.7(b),1–4mms−1,isthen4s−1.Atthisshearrate,Fig.3 indi-catesthatthehoneyisNewtonianwithaviscosityof∼14Pas Thecontributionofshear,processIII,canbeestimatedby treatingthegapunderthebladeasaone-dimensionalslit,so that:

FIII

wherewisthewallshearstressandL,thebladethickness,is

2mm.FortheconditionsinFig.7(b),theapparentshearstress ratesare1–4s−1andFIII

w=25–100mNm−1.Thesevaluesareall smallerthantheinitialFw(measuredatr/R∼−1),indicating thatFwisdominatedbydeformationanddisplacement TheFwprofilesinFig.7(b)showaproportionaldependency

on V, whichis expectedfor aNewtonian fluidundergoing

Fig 4 – Plots of apparent viscosity versus (a) shear rate and (b) shear stress for Vaseline®(labelled ‘Vas’) and

Vaseline®-carbon black (labelled ‘VCB’) paste at 20 ◦ C.

(b) is reproduced from Yang et al (2014) , with permission.

Trang 7

262 foodandbioproductsprocessing 93 (2015) 256–268

Fig 6 – Oscillatory testing of lard at 20 ◦ C Rough parallel

plates, 1% strain, 1 mm gap.

shearand deformationinthe laminarregion.Inspectionof

theFwatr/R=0,Fw,0,showedalinearcorrelationwithV,viz

Fw,0(r/R=0)=133V+0.15 (R2

whereR2

fitiscoefficientofdetermination

Videoimagesindicatedthatthedislodgedmaterial

accu-mulatedatthefront oftheblade(asshown inFig.1 and

beyondthemid-point,i.e.r/R>0,somedrippedofftheedge

ofthedisc.Thecontributionfrom displacement(processII

inFig.1)withcircular samplesisthereforecomplexand is

believedtoberesponsibleforthechangeinFwwithx.Tests

onbakedlardweresubsequentlyperformedwithrectangular

stripsofmaterialsothattheareaofsampledisplacedbythe

bladeisalmostconstant

3.2.2 VCB paste

TheresultsforremovingVCBpastelayers,atascrapedepth

of1mm,inFig.8(a)showtheincreaseinfwithscrapewidth observedwithhoneyandasimilarasymmetryintheprofiles Theforcesarenoticeably larger,reaching250mNcompared

tothe18mNobservedwithhoneyforscrapedepth,s=1mm,

V=1mms−1 The measured force is insensitiveto the gap height,ı, whichvariesfrom 2to8mminthesetests, indi-catingthatFIII

wisnegligible(estimatedas2mNm−1usingEq (6))andthatthedeviceismeasuringthecohesivestrengthof thematerial

ThenormalisedprofileinFig.8(b)shows3regionspresent

InregionA,thereisasteepinitialriseinFwfor−1≤r/R−0.85,

toabout2Nm−1.Theinsensitivitytoıisagainevident.The initialriseinAisattributedtosomeinitialcreepand compli-anceinthematerial

InregionB,thegradualincreaseinFwby1–2Nm−1with displacementislikelyduetoaccumulationofdislodged mate-rialinfrontoftheblade.Thecontributionofhydrostaticstress

toFw,arisingfromraisingthemassofdislodgedmaterial,was estimatedbygVdisplaceas∼5×10−5N(whereVdisplace isthe

volumeofdisplacedmaterial).ProcessII,wasnottherefore consideredtoaffectmillimanipulationdata.InregionC,Fw

risesmarkedly,aswapproacheszero.Thiswasalsoobserved withhoney(seeFig.7(b))andthesedataarediscarded Testson12mmwiderectangularVCBsamplesareshown

inFig.9.TheforcevaluesinFig.9(a)arelowerthanthedisc tests(Fig.8 asthewidthofthetoothisgenerallysmallerthan thechordincontactwiththesampleinthedisctests.The sim-plerdeformationzoneaheadoftheblademaybethereason whythereisnogradualriseinFw.RegionCinFig.8(b)isnot evident.Aswiththedisctests,initialsamplethicknessdoes notaffecttheresultsandthemagnitudesofFw(∼2–3Nm−1) aresimilar

Fig.10showstheeffectofscrapedepth,wherelayersof differentinitialthicknesswerescrapedtoacommonresidual thickness,of5mm.Theapparentshearrateundertheblade

inthesecasesis0.2s−1andtheFIII

w contributionsestimated fromEq.(6)isaround0.4Nm−1.Theindividualprofilesdonot

Fig 7 – Millimanipulation of honey on 63.5 mm diameter circular SS discs at 20 ◦ C ıo= 3.5 mm,s= 2.5 mm,R= 31.75 mm (a) Force,f,and blade contact length, w, forV= 1 mm s −1 Error bars on selected points show measurement uncertainty Gaps between data points are due to the limits of the force transducer resolution (b) Effect of velocity onFw , with normalised scrape force versus distance The horizontal dashed lines indicate estimated values of F III from Eq (6)

Trang 8

Fig 8 – Removal of VCB paste from 50 mm diameter discs.V= 1 mm s −1 ,s= 1 mm,R= 25 mm, 20 ◦ C (a) raw data, including blade contact length, w, displayed with the solid line (b) normalised force versus normalised radial distance Legend entries indicate initial sample thickness ıo.

exhibitthetrendsinFig.8,exceptfors=1mm.Fors=2mm

and4mm,thereisariseinFwuntilr/R∼−0.5afterwhichpoint

thereisagradualdecreaseinFw.InadditiontheFwvaluesin

regionBdonotincreaseproportionatelywiths,whichwould

beexpectedifFI

wandFII

wwererelatedtothevolumeofmaterial deformedanddisplaced.ThedeformationoftheVCBmaterial

iscomplexandisthesubjectofongoinginvestigation

3.2.3 Lard

Theprofiles obtained forscraping circular lard samples in

Fig.11(a)showsimilarfeaturestotheVCBpasteinFig.8(b)

Sampleswerealsopreparedasrectangularstrips.Fwvalues

fortherectangularsectionsinFig.11(b)were,ingeneral,lower

thatonthecirculardisc.Thereasonforthedifferencesisnot

currentlyunderstood.Thereisalsomorevariationbetween

samplesonthediscs.Thetrendsobservedremainthesame

betweentestingontherectangularsectionanddiscs;in

par-ticular,scrapespeeddidnotaffectFw

The measured forces for lard are about 3 times larger than the VCBpaste.There is,however, nosimple relation-shipbetweenfandtherheometrydata.Thescrapingspeed has no effect on Fw, indicating that FIII

w is small For soft solids that fail in acohesive manner, a flat surface isleft behind (see schematicin Fig.1(a)) Therefore, byreturning thebladeoverthescrapedsample,separatemeasurements

ofFIII

w canbemade.Forlard,thesemeasurementsconfirmed that FIII

w<0.3mN Theinsensitivity to V indicates that the deformation isprimarilydue toelasticand plastic compo-nents

3.2.4 Baked lard

The behaviour observed for baked lard different markedly fromlard.TheresultsforbakedlardreportedinFig.12were obtained with 12mm wide strip samples tested using the toothtool(Fig.2(b)–(d)).Fig.12presentsatypicalplotofFw

versustime,ratherthandisplacement,obtainedforasample

Fig 9 – Removal of VCB paste from 12 mm wide rectangular sections.V= 1 mm s −1 ,s= 1 mm, 20 ◦ C (a) Scrape profiles (b) Normalised force versusx.Legend entries indicate initial sample thickness ı

Trang 9

264 foodandbioproductsprocessing 93 (2015) 256–268

Fig 10 – Effect of scrape depth,s,onFw for VCB paste on

circular discs 20 ◦ C,V= 1 mm s −1 , ı = 5 mm,R= 25 mm, ıo

varies (=5 mm +s).

ofprotein-free lard baked at 250◦C for 4h and scraped at

V=2.0mms−1.Theblademovedthroughthesample,leaving

a0.2mmresidualfilm,untilx=38mm,atwhichpointithalted

(att=19s).Asbefore,threeregionsareevident.Intheinitial

region,markedA,thereisasteep,initialrise.Thepointat

whichFwbeginstoriseissetastheorigin.Thisbehaviouris

attributedtocomplianceand initialcreep(elasticity)inthe

material.Theexistenceofcreepwasconfirmedbyhaltingthe

motionofthebladeduringatraverse.Theforcedecayedtoa

smallvalue,F0

w,inanexponentialmanner.Videosconfirmed

thatthisdecaywasnotduetomovementofthesoil,

indicat-ingvisco-elasticbehaviourandconsistentwiththematerial

developingstrongerandnewcohesiveinteractionsasaresults

ofoxidativepolymerisation(WilsonandWatkinson,1996)

InregionB,Fwfluctuatesaroundanaveragevalue,denoted

Fw This is interpreted as arising from steady shear and

Fig 12 – Plot ofFw and displacement,x,versus time for lard baked for 4 h at 250 ◦ C Test conditions:T= 20 ◦ C,

V= 2 mm s −1 , ıo= 0.6 mm,s= 0.4 mm F 0

w marked on as the residual force remaining after scraping.

yieldingwithinthematerial,andthemagnitudeofFwistaken heretorepresentthecohesivestrengthofthelayer.The fluctu-ationsariseduetobrittlefractureandductiledeformationof thissample(i.e.crackingandcreationofnewsurfaces) Sam-plescookedatlowertemperaturesandshortertimestended

toexhibitductileyieldingandgavemoreuniformFwprofiles,

aswellasevenresiduallayers

InregionC,thebladeisstationary,neartheendofthe sam-ple.ThebladeisstillincontactwiththelayerandFwdecays withtime.Thiswasalsoobservedinthecreeptestsreferred

toabove.ItisnoticeablethatFwdoesnotdecaytozero,but approachesaresidualvalueofaround37Nm−1,suggestinga plasticcomponenttothedeformation

ThetimedependentdecayinFwwasinvestigatedby halt-ing a traverse before approaching the end of the sample,

as shown in Fig 13(a) Fw had reached a steady value of

∼115Nm−1 before motion was halted at ∼2.5s The force decaystoameasurableresidualF0

w,ofaround20Nm−1.The

Fig 11 – Effect ofVonF for (a) circular(R= 25 mm) and (b) rectangular strip lard samples 20 ◦ C, ı = 6.7 mm,s= 1 mm.

Trang 10

Fig 13 – Decay in measured force after scraping is halted at timet0 Strip sample of lard baked for 4 h at 250 ◦ C The blade is moved 5 mm into a 40 mm long sample at 2 mm s −1 then stopped att0 = 2.5 s 20 ◦ C, ıo= 0.6 mm,s= 0.4 mm (a)Fw −tprofile, with residual force F o

w (b) Data in (a) plotted in the form of exponential decay.

transientdataareplottedintheformofanexponentialdecay

modelinFig.13(b)andexhibitaroughlylineartrendon

log-linear axes This suggests that the stress relaxation could

beapproximatedbyasingle-elementMaxwellmodel,but a

multi-modemodelmaybemoreappropriate

3.2.4.1 Types of removal. Thereare three typesofremoval

observedfortheselayers.Ifthelayersfailadhesively,aclean

substrateisleftbehindafterscraping(seeFig.14(a)).Adhesive

strengthwouldbeassessedbyeither(i)scrapingoffcloseto

thediscsurface(i.e.settingı∼0)or(ii)iftheadhesivestrength

issufficientlylowerthanthecohesivestrengthsuchthatthe

soil–substratebondyieldsbeforesoil–soilbondsdo.If they

failcohesively,aresiduallayerwillremainafterscraping.For

theharder,bakedlardlayers,thiswillleaveajagged,uneven

wake,ofvaryingthickness(seeFig.14(b)).Ifthelayerfailsboth

adhesively and cohesively, a mixture of the patterns in Fig.14(a)and(b)isobserved

3.2.4.2 Effect of testing conditions. Fig.15showstheeffectof scrapevelocityontheremovalbehaviourofpolymerisedlard layerspreparedbybakingat250◦Cfor4h.Eachdatum repre-sentsaseparateexperimentandthereisnoticeablevariation betweentests,whichispartlyduetotheextentof polymeri-sationnotbeingcontrollablewiththismaterial.Thevariation betweensamplesissignificantlygreaterthanthefluctuation

inFwforindividualsamples,markedbytheerrorbars There is noticeable scatter at the lowest scrape speed

(V=0.5mms−1)whichisaccompaniedbyamixtureof cohe-sive and adhesive failure At higher speeds removal is dominatedbythelattermode Theweakdependencyon V

confirms that the materials exhibit plastic behaviour The

Fig 14 – Photographs of wake region after millimanipulation scraping of lard baked at 250 ◦ C.V= 2 mm s −1 , ıo= 0.6 mm,

s= 0.4 mm Arrow indicates direction of scraping Dashed lines indicate regions where the sample was scraped away (a) Adhesive failure and (b) cohesive failure.

Ngày đăng: 02/11/2022, 09:26

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w