1. Trang chủ
  2. » Giáo án - Bài giảng

a rapid and enhanced dna detection method for crop cultivar discrimination

6 6 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 6
Dung lượng 1,21 MB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Aftera numberofDNAfragments derivedfromFaRE1insertion sites werecloned and sequenced,we extracted eight insertion sites by considering combinations of their polymorphisms for discriminat

Trang 1

jo u r n al h om ep a g e :w w w e l s e v i e r c o m / l o c a t e / j b i o t e c

discrimination

a Graduate School of Environmental and Life Science, Okayama University, 1-1-1 Tsushimanaka Kitaku, Okayama, Okayama 700-8530, Japan

b FASMAC Co., Ltd., 5-1-3 Midorigaoka, Atsugi, Kanagawa 243-0041, Japan

c Graduate School of Biomedical Engineering, Tohoku University, 6-6-05 Aramaki-aoba, Sendai, Miyagi 980-8579, Japan

a r t i c l e i n f o

Article history:

Received 24 February 2014

Received in revised form 14 May 2014

Accepted 10 June 2014

Available online 19 June 2014

Keywords:

Cultivar discrimination

Multiplex PCR

Strawberry

Practical application

Retrotransposon

a b s t r a c t

Inmanycropsspecies,thedevelopmentofarapidandprecisecultivardiscriminationsystemhasbeen requiredforplantbreedingandpatentprotectionofplantcultivarsandagriculturalproducts.Here,we successfullyevaluatedstrawberrycultivarsviaanovelmethod,namely,thesingletaghybridization(STH) chromatographicprintedarraystrip(PAS)usingthePCRproductsofeightgenomicregions.Ina previ-ousstudy,weshowedthatgenotypingofeightgenomicregionsderivedfromFaRE1retrotransposon insertionsiteenabledtodiscriminate32strawberrycultivarsprecisely,however,thismethodrequired agarose/acrylamidegelelectrophoresis,thushasthedifficultyforpracticalapplication.Incontrast,novel DNAdetectionmethodinthisstudyhassomegreatadvantagesoverstandardDNAdetectionmethods, includingagarose/acrylamidegelelectrophoresis,becauseitproducessignalsforDNAdetectionwith dramaticallyhighersensitivityinashortertimewithoutanypreparationorstainingofagel.Moreover, thismethodenablesthevisualizationofmultiplexsignalssimultaneouslyinasinglereactionusing sev-eralindependentamplificationproducts.Weexpectthatthisnovelmethodwillbecomearapidand convenientcultivarscreeningassayforpracticalpurposes,andwillbewidelyappliedtovarious situa-tions,includinglaboratoryresearch,andon-siteinspectionofplantcultivarsandagriculturalproducts

©2014TheAuthors.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBY-NC-SA

license(http://creativecommons.org/licenses/by-nc-sa/3.0/)

1 Introduction

Thecultivatedstrawberry(Fragaria×ananassa,2n=8×=56)is

oneofthemosteconomicallyimportantfruitcropsintheworld

Itsglobalproductionin2009wasestimatedtobeover4.1million

tons(Foodand AgricultureOrganizationof theUnitedNations;

http://faostat3.fao.org/).Breeding programsof cultivated

straw-berryareconductedin manycountriestoimprovefruitquality

andyield,andtoachieveextendedstoragecapabilityanddisease

resistance.InJapan,over30nationaland/orprefectural

agricul-turalresearchcentersarecarryingoutstrawberrycultivarbreeding,

Abbreviations: STH, single tag hybridization; PAS, printed array strip.

∗ Corresponding author Tel.: +81 86 251 8312; fax: +81 86 251 8388.

E-mail addresses: y monden@cc.okayama-u.ac.jp (Y Monden),

ktakasaki@fasmac.co.jp (K Takasaki), sfuto@fasmac.co.jp (S Futo),

kniwa@ecei.tohoku.ac.jp (K Niwa), m-kawase@ecei.tohoku.ac.jp (M Kawase),

ag20004@s.okayama-u.ac.jp (H Akitake), tahara@cc.okayama-u.ac.jp ,

makoto.tahara@gmail.com (M Tahara).

which has ledto thecreation of many popular Japanese culti-vars,suchasAmaou,Sagahonoka,andHinoshizuku.TheseJapanese strawberrycultivarshavebeenhighlyimproved,whichindicates that theyhave highproductivity,earliness,andhighfruit qual-ity,includinganextendedshelflife.Thus,apreciseandeffective cultivardiscriminationsystemisrequiredtoprotecttheplant pro-prietaryrightofthosesuperiorcultivars.However,discrimination based onmorphologicaltraits is affectedby theenvironmental and/orgrowthconditions,andisrestrictedduringthe developmen-talstage(NielsenandLovell,2000).Moreover,ifthecultivarsare closelyrelated,itisextremelydifficulttodistinguishthembased

onmorphologicaltraits.Therefore,molecularmarkershavebeen developedbasedonthemethodsofrandomlyamplified polymor-phicDNA(RAPD),amplifiedfragmentlengthpolymorphism(AFLP), simplesequencerepeat(SSR),andcleavedamplifiedpolymorphic sequences(CAPS),whichenableprecisecultivardiscriminationat anydevelopmentalstage(Arnauetal.,2001;Congiuetal.,2000; Hancock et al., 1994; Kunihisa et al.,2003, 2005; Nehraet al., 1991;Tyrka etal.,2002).However,itremains difficulttoapply thesemethodstoon-siteinspection,forthefollowingreasons:it http://dx.doi.org/10.1016/j.jbiotec.2014.06.013

0168-1656/© 2014 The Authors Published by Elsevier B.V This is an open access article under the CC BY-NC-SA license ( http://creativecommons.org/licenses/by-nc-sa/3.0/ ).

Trang 2

processedproducts,someexperimentalinstrumentsarerequired

for agarose/acrylamidegel electrophoresis,and the preparation

andstainingofagelrequiresseveralhours

Retrotransposonsareubiquitousandabundantcomponentsin

virtuallyall knowneukaryoticgenomes (Feschotteetal., 2002;

Feschotte and Pritham, 2007; Huang et al., 2012; Kumar and

Bennetzen,1999;LevinandMoran,2011;Wessler,2006).Inhigher

plants,theyusuallyconstitutemorethanhalfofthewholegenomic

DNA(Bentoetal.,2013;Patersonetal.,2009;Schnableetal.,2009;

Tenaillonetal.,2010).Theyamplifythenumberoftheircopies

throughreversetranscriptionoftheirRNAandintegrationofthe

resultingcDNAsintonewgenomiclocibasedonthe

“copy-and-paste”transposition mechanism (Kumarand Bennetzen, 1999)

Becauseoftheirubiquitousdistribution,highcopynumber,and

diversedispersionwithinthegenome,theirinsertion

polymor-phismsamongcultivarshavebeenusedasmolecularmarkersin

phylogeneticanalyses,intheconstructionoflinkagemaps,andin

geneticdiversitystudies(Flavelletal.,1998;Kalendaretal.,1999,

2011;Konovalovetal.,2010;KumarandHirochika,2001;Nasri

etal.,2013;Poczaietal.,2013;Sm ´ykaletal.,2011;Syedetal.,

2005).Moreover,theuniquenessofthenewlyintegratedinsertion

siteshasanexcellentpotentialforthedevelopmentofmultiplex

DNA-basedmarkersystemsthatcanbeusedtoachievecultivar

discrimination.Infact,ourrecentresearchshowed

retrotranspo-sonbasedDNAmarkerswereusefulforcultivardiscriminationin

severalcropspecies,includingwheat(Triticumaestivum)andsweet

potato(Ipomoeabatatas)(TakaiandTahara,2011;Mondenetal.,

2014)

Inapreviousresearch,wesuccessfullyidentifiedeightgenomic

insertionsitesoftheFaRE1retrotransposonthatwereusedto

dis-criminate32strawberrycultivarsafterscreeningtheirinsertion

sitescomprehensively(Akitakeetal.,2013).FaRE1hasbeen

identi-fiedasanactiveretrotransposonfamily(Heetal.,2010;Melnikova

etal.,2012)andshowshighinsertionpolymorphismsevenamong

Japanesestrawberrycultivars,whichareknowntobegenetically

closelyrelated(Akitakeetal.,2013).Weappliedsequence-specific

amplified polymorphism (S-SAP) method to investigate FaRE1

insertionpolymorphismamong32cultivars.Thismethod

ampli-fies specificallythe DNA fragments between a retrotransposon

endanditsadjacentrestrictionenzymecuttingsite,and

visual-izesmultiplebandsthrough agarose/acrylamideelectrophoresis

(Konovalov et al., 2010; Louand Chen, 2007; Melnikova et al.,

2012;Petitet al.,2010; Syedet al., 2005;Waugh etal., 1997)

Aftera numberofDNAfragments derivedfromFaRE1insertion

sites werecloned and sequenced,we extracted eight insertion

sites by considering combinations of their polymorphisms for

discriminating 32 strawberry cultivars It was shown that the

amplificationoftheseeightinsertionsitesallowedthepreciseand

rapidscreeningofstrawberrycultivars(Akitakeetal.,2013)

How-ever,thismethodalsorequiredagarose/acrylamideelectrophoresis

forsignaldetection,whichhasthedifficultyinachievingon-site

inspection

In this study, we developed a novelcultivar discrimination

systemusingthesingletaghybridization(STH)chromatographic

printedarraystrip(PAS)method,whichaffordsthevisualization

ofmultiplex DNA signals ina singlereaction withgreat

sensi-tivity and in a dramatically short time Moreover, it does not

requirethepreparation or staining ofa gel The resultsof this

study showedthat we successfully evaluated strawberry

culti-varsbasedonthemultiplexDNAsignalsthatwerederivedfrom

theampliconsoftheFaRE1retrotransposonandvisualizedusing

STHchromatographicPAS.Thus,weexpectthatthismethodwill

facilitate rapid, efficient, and highly reliable cultivar

discrimi-nationin on-site inspectionof plant materialsand agricultural

products

2 Materials and methods

2.1 DevelopmentofDNAmarkersforstrawberrycultivar discrimination

Thisresearchwasconductedbasedontheinformationprovided fromapreviousresearch,whichdevelopedeightDNAmarkersfor discriminating32strawberrycultivars(Akitakeetal.,2013).Thus,

webrieflydescribedthecontentsofthispreviousresearch.Inthe previousresearch,32strawberrycultivarsanditswildspecies (Fra-gariavesca) were used(Supplementary Table1).First, genomic DNA was extracted fromyoung leavesusing the DNeasy Plant minikit (QIAGEN) following themanufacturer’s protocol After genomicDNAwasdigestedwithAseIorRsaIrestrictionenzyme (NewEnglandBiolabsJapan,Inc),forkedadaptorswereligatedto thedigestedDNA.Theforkedadapterswerepreparedbyannealing twoDNAoligomers:FAAseIandFAcmplforAseI,andFARsaIand

FA cmplforRsaI.PCRprimersweredesignedbasedonthesequence informationofFaRE1.WeperformedprimaryPCRwithan adapter-specific(AP2)andFaRE1-specific(FaRE1PBS)primercombination forAseI digestedDNA fragments,and alsoperformedthat with

anAP2andFaRE1-specific(FaRE1LTR150Up)primercombination forRsaIdigestedDNAfragments.Then,nestedPCRwasperformed withanadapter-specific(AP3)andFaRE1-specific(FaRE1LTREnd) primersetusingtheinitialPCRproductsasthetemplate.ThePCR comprisedaninitialdenaturationat94◦Cfor2min,whichwas fol-lowedby30cyclesat94◦Cfor60s,75◦Cfor60s(thisstepwas addedfortheamplificationofRsaIdigestedDNAfragment),58◦C for90sand72◦Cfor90s,withafinalextensionat72◦Cfor5min PCRproductswereloadedonanABI3730xlDNAAnalyzer(Applied Biosystems)forDNAfragmentanalysesafterthepurificationwith QIAquick PCR purificationkit (QIAGEN) GeneMappersoftware (AppliedBiosystems)wasusedforthevisualizationofDNA frag-ment peaks.In addition, PCR productswerecloned withTOPO

TAcloningkit(Invitrogen),and446colonieswerescreenedand sequenced.SequenceswereanalyzedandalignedusingBLASTand ClustalWprogram(Larkinetal.,2007),andthesequencesof124 differentFaRE1insertionsiteswereobtained.Outofthesesites,we selectedeightinsertionsites(Grp.18,41,57,59,61,65,76and110) basedonthecombinationsoftheirpolymorphismsamong32 cul-tivars.Theprimerandadaptersequencesinthepreviousresearch arelistedinSupplementaryTable2

Supplementarytablesrelatedtothisarticlecanbefound,inthe onlineversion,athttp://dx.doi.org/10.1016/j.jbiotec.2014.06.013 2.2 Samplepreparation

Weusedeightstrawberrycultivars(Akihime,Nyoho,Amaou, Hokowase,Benihoppe,AsukaRuby,RedPearl,andKotoka)inthis research.Theplantsofstrawberrycultivarswereobtainedfromthe TochigiPrefecturalAgriculturalExperimentStationandFukuoka AgriculturalResearchCenter.GenomicDNA wasextractedfrom youngleavesusingtheDNeasyplantminikit(QIAGEN),according

tothemanufacturer’sprotocol

2.3 PCRandsignaldetectionbyagarosegelelectrophoresis

Inthisresearch,PCRwasperformedbyamplifyingtheinternal positive control (IPC)sequence and eight FaRE1insertion sites The IPC sequence was introduced into a pArt1 vector, which was used for the control PCR (Supplementary Fig 1) (Mano

etal.,2011).ThePCRamplificationforIPCsequencewascarried out using PrimeSTAR GXL Taq Polymerase (Takara Bio, Ohtsu, Japan)withIPC200fandIPC200rprimercombinations(Table1) andthepArt1vectorasa template,andthatfor eightinsertion sites wascarried out using theKAPA2G Fast Mutiplex PCR kit

Trang 3

Table 1

Sequences of the primers used in this study.

C-PAS4 IPC200f [A1]-[Spacer]-CTAGGGAATGACGGCAGGATAG

C-PAS4 IPC200r Bi [Biotin]-CGCACGTATACATATGGAGTCAGC

C-PAS4 IPC100f 1 [A1]-[Spacer]-CCGAGCTTACAAGGCAGGTT

C-PAS4 IPC100r Bi [Biotin]-TGGCTCGTACACCAGCATACTAG

C-PAS4 GrpR Bi [Biotin]-CTTAATTTCCAAATCATATCAACGAGCCAAAACAC

C-PAS4 Grp18 2 [A2]-[Spacer]-CCTGGTTGGCAACATGATGTAAC

C-PAS4 Grp41 3 [A3]-[Spacer]-CACCAAAACCAACAACTCATACC

C-PAS4 Grp57 3 [A3]-[Spacer]-CAACTTCCACTCTTCGATCCAG

C-PAS4 Grp59 4 [A4]-[Spacer]-CAATGAGGACCTTGCAATGTAAGC

C-PAS4 Grp61 2 [A2]-[Spacer]-GACCATGTCAAAATGACCGTTCAG

C-PAS4 Grp65 4 [A4]-[Spacer]-GGTGGAGTCCTGTCCAAATAG

C-PAS4 Grp76 4 [A4]-[Spacer]-GTATTCCTCCAGTTCCGACCA

C-PAS4 Grp110 3 [A3]-[Spacer]-CACATGAGGCACTGGACTTAACG

[A1], [A2], [A3] and [A4] represent the tag sequences [Spacer] represents the

single-stranded non-public sequence.

inTable1

Supplementaryfigurerelatedtothisarticlecanbefound,inthe

onlineversion,athttp://dx.doi.org/10.1016/j.jbiotec.2014.06.013

2.4 PCRandsignaldetectionbySTHchromatographicPAS Foramplificationof thePCR productsdetectedbySTH chro-matographic PAS, PCR primers containing the single-stranded tag and spacer sequences were used (indicated as C-PAS4* primers in Table 1) The PCR amplification for IPC sequence was performed with C-PAS4IPC100f1 and C-PAS4IPC100rBi

or C-PAS4IPC200f and C-PAS4IPC200rBi primer com-binations, and that for eight FaRE1 insertion sites was performedwithFaRE1retrotransposon-specific(C-PAS4GrpRBi) and insertion site-specific (C-PAS4Grp182, C-PAS4Grp

413, C-PAS4Grp573, C-PAS4Grp594, C-PAS4Grp612, C-PAS4Grp654, C-PAS4Grp764, or C-PAS4Grp1103) primer combinations.Thegenomic templatesand PCRconditions were same as agarosegel electrophoresis(2.3) PCRproducts witha tag-spacersequenceforSTHweremixedwiththedyeand devel-opingsolution(TohokuBio-Array,TBA)(Fig.1).Subsequently,the C-PAS4membranestick(TohokuBio-Array,TBA)wasdippedinto thisdevelopingsolutionfor15min.Thesequencesoftheprimers usedarealsoshowninTable1

3 Results and discussion

3.1 DescriptionandthesensitivityoftheSTHchromatographic PASmethod

To amplify the PCR products detected by STH chromato-graphicPAS,PCRprimerscontainingthesingle-strandedtagand spacer sequenceswereused (Fig 1and Table 1).Preliminarily, the single-strandedcomplementary oligonucleotides of the tag sequencewereblottedonto theC-PAS membrane,whichledto their hybridization withthe tag sequence of the PCR products (Fig.1) ThisSTH reactiondid not requireheat-based denatur-ation In addition,thePCRproductsdidnot havetobe stained withafluorescentdyereagent,suchasethidiumbromide,andthe chromatographydevelopingreactionrequired5–15min.Thus,this methodenabledthedetectionofthesignalsatroomtemperature andinashorttime.Inaddition,theC-PASmembraneallowedthe visualizationoftheeightsignalssimultaneouslyinasinglereaction Moreover, we compared the sensitivity of signal detection betweenSTHchromatographicPASandagarosegel electrophore-sis.ThePCRproductwasamplifiedbasedontheinternalpositive control(IPC)sequence,whichwasinsertedintothepArt1vector (Supplementary Fig.1)(Manoetal., 2011).The resulting prod-uct was purified from the agarose gel Afterpreparing various concentrations(0.1,0.25,0.5,1.0,2.5,5.0,10,25,and50nM)of thispurifiedproduct(Fig.2 theirsignalsweredetectedusingan

Fig 1.Procedure used for signal detection via the STH chromatographic PAS method (1) Preparation of total genomic DNA (2) PCR amplification using combinations of primers with a tag-spacer sequence and biotin-labeled primers Red line, tag sequence; gray line, spacer sequence; and green line: primer (3) DNA signal detection based on single tag hybridization (STH) The complementary oligonucleotides of the tag sequence (blue line) were preliminarily printed on the membrane, which executes single tag hybridization between the tag sequence of the PCR product and the membrane (For interpretation of the references to color in figure legend, the reader is referred to the

Trang 4

Fig 2.Comparison of the sensitivity of signal detection between STH chromatographic PAS and agarose gel electrophoresis The use of the C-PAS4 membrane allowed us to detect even 0.25 nM of IPC PCR products (A) In contrast, the minimum quantity detectable on agarose gel was 2.5 nM of IPC PCR products (B) Thus, the detectable sensitivity

of C-PAS4 was 10 times higher than that of agarose gel IPC, internal positive control.

agarosegelelectrophoresisandSTHchromatographicPAS(Fig.2)

WefoundthattheminimumamountofthePCRproductdetectable

byagarosegelelectrophoresiswas2.5nM,whereasthatdetected

bychromatographyPAS(C-PAS)was0.25nM(Fig.2).Thisindicated

thatthesensitivityoftheC-PASwas10timesgreaterthanthatof

agarosegelelectrophoresis.Thus,theSTHchromatographicPAS

Fig 3.Results of multiplex PCR on agarose gel The PCR products were resolved on

a 5% agarose gel in 1× TAE buffer The sizes of PCR amplicons (Grp 18, 41, 57, 59, 61,

65, 76, and 110) are shown in Table 2 The banding pattern in this figure corresponds

to the results shown in Table 2 C, control DNA; 1, Akihime; 2, Nyoho; 3, Amaou; 4,

Hokowase; 5, Benihoppe; 6, Asuka Ruby; 7, Red Pearl; 8, Kotoka; and M: All Purpose

methodhasanextremelyhighsensitivityregardingsignal detec-tion

3.2 MultiplexPCRassayonagarosegelelectrophoresisand cultivardiscriminationusingtheSTHchromatographicPAS method

ToevaluatetheSTHchromatographicPASmethodfor straw-berrycultivardiscrimination,wefocusedontheeightgenomicloci (Grp.18,41,57,59,61,65,76,and110)derivedfromthe inser-tionsitesoftheFaRE1retrotransposon(Akitakeetal.,2013).Itwas shownthatthecombinationsoftheseinsertionsitesdiscriminate thesestrawberrycultivarsprecisely(Table2).Thus,weperformed

Table 2

Results of the genotyping of FaRE1 insertion sites among strawberry cultivars.

Product size (bp) Amplicon name

Strawberry cultivars

195 Grp 57

162 Grp 61

142 Grp 65

128 Grp 59

119 Grp 76

100 Grp 110

85 Grp 18

74 Grp 41

Note: white cells, no product; blue cells, the presence of a product 1, Akihime; 2, Nyoho; 3, Amaou; 4, Hokowase; 5, Benihoppe; 6, Asuka; 7, Red Pearl; 8, Kotoka.

Trang 5

Fig 4. STH chromatographic assay showing the procedures used in this method (A) The red line indicates the positional marker [A-1], [A-2], [A-3] and [A-4] represent the tag IPC, internal positive control product (B) Signal of the PCR amplicons (Grp 18, 41, 57, 59, 61, 65, 76, and 110) used for strawberry cultivar discrimination.

thatwerederivedfromtheseeightinsertionsitessimultaneously,

andvisualizedthesignalsonagarosegelelectrophoresispriortothe

STHchromatographicPASmethod.Fig.3showstheexactbanding

patternofthePCRampliconsofallcultivars,asexpected(Table2)

Thus,itwasshownthatthesimultaneousdetectionoftheseeight

productsallowstheprecisediscriminationofthesestrawberry

cul-tivars

Next, we detected the signals of the PCR products derived

fromtheseeightinsertion sites(Grp.18,41, 57,59, 61,65, 76,

and110)usingtheSTHchromatographicPASmethod.Thistime,

weused theC-PAS4membrane, whichallows thevisualization

of the four signals simultaneously (Fig 4A) The combination

of the PCR products and the tag sequences on three types of

C-PAS4(C-PAS4-1,-2,and-3)isshowninFig.4B(theIPC

prod-uctcontainingthe[A-1] tagsequencewasusedasacontrol).In

addition, other PCR products were combined with three types

([A-2],[A-3],and[A-4])oftagsequences(Fig.4B).Fig.4Ashows

thepracticalprocedureusedtoperformtheSTHchromatographic

PASmethod.First,thePCR products,thedye,and the

develop-ing solution weremixed Subsequently, theC-PAS4 membrane

was placed in this solution for 15min and the signals were

detectedasshown in Fig.4B The signalpatternof allsamples

wasfullyconsistentwiththeresultsofthemultiplexPCRassay

(Fig.3)

Table 3

Comparison of C-PAS with agarose gel electrophoresis.

electrophoresis

Minimum detectable quantity

Need to consider the size of PCR products for signal detection

of mutiplex PCR)

a This time includes the preparation and the staining of the gel.

4 Conclusions

Inthisstudy,weusedtheSTHchromatographicPASmethod forstrawberrycultivardiscrimination.Thisnovelsignaldetection methodhasseveraladvantagesovertraditionalmethods,suchas agarosegelelectrophoresis,becauseitenablesthedetectionof sig-nalswithdramaticallyhighsensitivityandinashorttimewithout anypreparationorstainingofgels(Fig.2andTable3).Moreover, thismethodcanbeusedtovisualizeseveralsignalsderivedfrom severalindependentPCRproductsofanysizesimultaneously.In contrast,thedetectionofthesignalsderived fromthese ampli-consonanagarosegelrequirescautionregardingsize,toachieve sufficientresolutionofthesemultiplexPCRamplicons;moreover,

Trang 6

ampliconsofthesamesizecannot beresolved(Table3).Inthe

caseofSTHchromatographicPAS,however,severalindependent

PCRampliconswiththesamesizecanbedistinguishedprecisely

(Table 3) Importantly,this multiplexsignal detection suggests

thatwemightdiscriminatecropcultivarswithinthemixedand

processedproductspreciselybyusingcultivar-specificDNA

frag-ments.Furthermore,this methoddoesnotrequireexperimental

instrumentation,whichmeansthatthisnovelmethodisquite

valu-ableforapplication notonlytolaboratoryresearch,butalsoto

on-siteinspectionofplantcultivarsandagriculturalproducts

Acknowledgements

This work was supported by a Research and Development

Projectsfor ApplicationinPromoting NewPolicy ofAgriculture

Forestry and Fisheries grant from the Ministry of Agriculture,

ForestryandFisheriesofJapan,andbytheProgramtoDisseminate

TenureTrackingSystemfromtheMinistryofEducation,Culture,

Sports,ScienceandTechnology(MEXT),Japan(toY.M.)

References

Akitake, H., Tahara, M., Monden, Y., Takasaki, K., Futo, S., 2013 Strawberry cultivar

identification by retrotransposon insertion polymorphisms DNA Polymorph.

21, 64–72 (in Japanese).

Arnau, G., Lallemand, J., Bourgoin, M., 2001 Are AFLP markers the best

alter-native for cultivar identification? Acta Hortic 546, 301–306, Retrieved from

http://www.actahort.org/books/546/546 37.htm

Bento, M., Tomás, D., Viegas, W., Silva, M., 2013 Retrotransposons represent the most

labile fraction for genomic rearrangements in polyploid plant species Cytogenet.

Genome Res 140, 286–294, http://dx.doi.org/10.1159/000353308

Congiu, L., Chicca, M., Cella, R., Rossi, R., Bernacchia, G., 2000 The use of

ran-dom amplified polymorphic DNA (RAPD) markers to identify strawberry

varieties: a forensic application Mol Ecol 9 (2), 229–232, Retrieved from

http://www.ncbi.nlm.nih.gov/pubmed/10672167

FAO, 2014 Food and Agriculture Organization of the United Nations, Available from

http://faostat3.fao.org/

Feschotte, C., Jiang, N., Wessler, S.R., 2002 Plant transposable elements: where

genetics meets genomics Nat Rev Genet 3 (5), 329–341, http://dx.doi.org/

10.1038/nrg793

Feschotte, C., Pritham, E., 2007 DNA transposons and the evolution of eukaryotic

genomes Annu Rev Genet 41, 331–368, http://dx.doi.org/10.1146/annurev.

genet.40.110405.090448

Flavell, A.J., Knox, M.R., Pearce, S.R., Ellis, T.H.N., 1998 Retrotransposon-based

inser-tion polymorphisms (RBIP) for high throughput marker analysis Plant J 16 (5),

643–650, Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/10036780

Hancock, J.F., Callow, P.A., Shaw, D.V., 1994 Randomly amplified polymorphic DNAs

in the cultivated strawberry Fragaria × ananassa J Am Soc Hortic Sci 119 (4),

862–864.

He, P., Ma, Y., Zhao, G., Dai, H., Li, H., Chang, L., Zhang, Z., 2010 FaRE1: a

transcrip-tionally active Ty1-copia retrotransposon in strawberry J Plant Res 123 (5),

707–714, http://dx.doi.org/10.1007/s10265-009-0290-0

Huang, C.R.L., Burns, K.H., Boeke, J.D., 2012 Active transposition in genomes Annu.

Rev Genet 46, 651–675,

http://dx.doi.org/10.1146/annurev-genet-110711-155616

Kalendar, R., Flavell, A.J., Ellis, T.H.N., Sjakste, T., Moisy, C., Schulman, A.H., 2011

Anal-ysis of plant diversity with retrotransposon-based molecular markers Heredity

106 (4), 520–530, http://dx.doi.org/10.1038/hdy.2010.93

Kalendar, R., Grob, T., Regina, M., Suoniemi, A., Schulman, A.H., 1999 IRAP and

REMAP: two new retrotransposon-based DNA fingerprinting techniques Theor.

Appl Genet 98, 704–711, http://dx.doi.org/10.1007/s001220051124

Konovalov, F.A., Goncharov, N.P., Goryunova, S., Shaturova, A., Proshlyakova, T.,

Kudryavtsev, A., 2010 Molecular markers based on LTR retrotransposons

BARE-1 and Jeli uncover different strata of evolutionary relationships in

diploid wheats Mol Genet Genomics 283, 551–563, http://dx.doi.org/10.1007/

s00438-010-0539-2

Kumar, A., Bennetzen, J.L., 1999 Plant retrotransposons Annu Rev Genet 33,

479–532, http://dx.doi.org/10.1146/annurev.genet.33.1.479

Kumar, A., Hirochika, H., 2001 Applications of retrotransposons as genetic tools

in plant biology Trends Plant Sci 6 (3), 127–134, Retrieved from http://www.

ncbi.nlm.nih.gov/pubmed/11239612

Kunihisa, M., Fukino, N., Matsumoto, S., 2003 Development of cleavage

ampli-fied polymorphic sequence (CAPS) markers for identification of strawberry

cultivars Euphytica 134 (2), 209–215, http://dx.doi.org/10.1023/B:EUPH.

0000003884.19248.33

Kunihisa, M., Fukino, N., Matsumoto, S., 2005 CAPS markers improved by cluster-specific amplification for identification of octoploid strawberry (Fra-garia × ananassa Duch.) cultivars, and their disomic inheritance Theor Appl Genet 110 (8), 1410–1418, http://dx.doi.org/10.1007/s00122-005-1956-1 Larkin, M.A., Blackshields, G., Brown, N.P., Chenna, R., McGettigan, P.A., McWilliam, H., Valentin, F., Wallace, I.M., Wilm, A., Lopez, R., Thompson, J.D., Gibson, T.J., Higgins, D.G., 2007 Clustal W and Clustal X Version 2.0 Bioinformatics 23, 2947–2948, http://dx.doi.org/10.1093/bioinformatics/btm404

Levin, H.L., Moran, J.V., 2011 Dynamic interactions between transposable ele-ments and their hosts Nat Rev Genet 12 (9), 615–627, http://dx.doi.org/ 10.1038/nrg3030

Lou, Q., Chen, J., 2007 Ty1-copia retrotransposon-based SSAP marker develop-ment and its potential in the genetic study of cucurbits Genome 810, 802–810, http://dx.doi.org/10.1139/G07-067

Mano, J., Yanaka, Y., Ikezu, Y., Onishi, M., Futo, S., Minegishi, Y., Ninomiya, K., Yot-suyanagi, Y., Spiegelhalter, F., Akiyama, H., Teshima, R., Hino, A., Naito, S., Koiwa, T., Takabatake, R., Furui, S., Kitta, K., 2011 Practicable group testing method to evaluate weight/weight GMO content in maize grains J Agric Food Chem 59 (13), 6856–6863, http://dx.doi.org/10.1021/jf200212v

Markoulatos, P., Siafakas, N., Moncany, M., 2002 Multiplex polymerase chain reaction: a practical approach J Clin Lab Anal 16, 47–51, http://dx.doi.org/ 10.1002/jcla.2058

Melnikova, N.V., Kudryavtseva, A.V., Speranskaya, A.S., Krinitsina, A.A., Dmitriev, A.A., Belenikin, M.S., Upelniek, V.P., Batrack, E.R., Kovaleva, I.S., Kudryavtsev, A.M., 2012 The FaRE1 LTR-retrotransposon based SSAP markers reveal genetic polymorphism of strawberry (Fragaria × ananassa) cultivars J Agric Sci 4 (11), 111–118, http://dx.doi.org/10.5539/jas.v4n11p111

Monden, Y., Yamamoto, A., Shindo, A., Tahara, M., 2014 Efficient DNA finger-printing based on the targeted sequencing of active retrotransposon insertion sites using a bench-top high-throughput sequencing platform DNA Res., http://dx.doi.org/10.1093/dnares/dsu015

Nasri, S., Abdollahi Mandoulakani, B., Darvishzadeh, R., Bernousi, I., 2013 Retro-transposon insertional polymorphism in Iranian bread wheat cultivars and breeding lines revealed by IRAP and REMAP markers Biochem Genet 51 (11–12), 927–943, http://dx.doi.org/10.1007/s10528-013-9618-5

Nehra, N.S., Kartha, K.K., Stushnoff, C., 1991 Isozymes as markers for identification

of tissue culture and greenhouse-grown strawberry cultivars Can J Plant Sci.

71 (4), 1195–1201, http://dx.doi.org/10.4141/cjps91-167 Nielsen, J.A., Lovell, P.H., 2000 Value of morphological characters for cultivar identi-fication in strawberry (Fragaria × ananassa) N Z J Crop Hortic Sci 28 (2), 89–96, http://dx.doi.org/10.1080/01140671.2000.9514128

Paterson, A.H., Bowers, J.E., Bruggmann, R., Dubchak, I., Grimwood, J., Gundlach, H., Harberer, G., Hellsten, U., Mitros, T., Poliakov, A., et al., 2009 The sorghum bicolor genome and the diversification of grasses Nature 457 (7229), 551–556, http://dx.doi.org/10.1038/nature07723

Petit, M., Guidat, C., Daniel, J., Denis, E., Montoriol, E., Bui, Q.T., Lim, K.Y., Kovarik, A., Leitch, A.R., Grandbastien, M., Mhiri, C., 2010 Mobilization of retro-transposons in synthetic allotetraploid tobacco New Phytol 186, 135–147, http://dx.doi.org/10.1111/j.1469-8137.2009.03140.x

Poczai, P., Varga, I., Laos, M., Cseh, A., Bell, N., Valkonen, J.P., Hyvönen, J., 2013 Advances in plant gene-targeted and functional markers: a review Plant Meth-ods 9 (1), 6, http://dx.doi.org/10.1186/1746-4811-9-6

Schnable, P.S., Ware, D., Fulton, R.S., Stein, J.C., Wei, F., Pasternak, S., Liang, C., Zhang, J., Fulton, L., Graves, T.A., et al., 2009 The B73 maize genome: complex-ity, diversity, and dynamics Science 326 (5956), 1112–1115, http://dx.doi.org/ 10.1126/science.1178534

Sm ´ykal, P., Baˇcová-Kerteszová, N., Kalendar, R., Corander, J., Schulman, A.H., Pavelek, M., 2011 Genetic diversity of cultivated flax (Linum usitatissimum L.) germplasm assessed by retrotransposon-based markers Theor Appl Genet 122 (7), 1385–1397, http://dx.doi.org/10.1007/s00122-011-1539-2

Syed, N.H., Sureshsundar, S., Wilkinson, M.J., Bhau, B.S., Cavalcanti, J.J.V., Flavell, A.J., 2005 Ty1-copia retrotransposon-based SSAP marker development in cashew (Anacardium occidentale L.) Theor Appl Genet 110 (7), 1195–1202, http://dx.doi.org/10.1007/s00122-005-1948-1

Takai, T., Tahara, M., 2011 Discovery of the retrotransposon showing genome inser-tion polymorphisms among wheat cultivars DNA Polymorph 20, 80–90 (in Japanese).

Tenaillon, M.I., Hollister, J.D., Gaut, B.S., 2010 A triptych of the evolution of plant transposable elements Trends Plant Sci 15 (8), 1–8, http://dx.doi.org/10.1016/ j.tplants.2010.05.003

Tyrka, M., Dziadczyk, P., Horty, J.A., 2002 Simplified AFLP procedure as a tool for identification of strawberry cultivars and advanced breeding lines Euphytica

125 (2), 273–280, http://dx.doi.org/10.1023/A:1015892313900 Waugh, R., McLean, K., Flavell, A.J., Pearce, S.R., Kumar, A., Thomas, B.B., Powell, W., 1997 Genetic distribution of Bare-1-like retrotransposable ele-ments in the barley genome revealed by sequence-specific amplification polymorphisms (S-SAP) Mol Gen Genet 253, 687–694, Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/9079879

Wessler, S.R., 2006 Transposable elements and the evolution of eukaryotic genomes Proc Natl Acad Sci U.S.A 103 (47), 17600–17601, http://dx.doi.org/ 10.1073/pnas.0607612103

Ngày đăng: 02/11/2022, 09:02