Introduction Currentlyverymuchisknownabouttheperturbative behaviorofmanytheorieswithorwithoutgaugefields.Betafunctionsforthe Φ4theoryandQEDare knownuptothefifthorderwhereasforQCD, uptothef
Trang 1Contents lists available atScienceDirect
Physics Letters B
www.elsevier.com/locate/physletb
A nonperturbative method for the scalar field theory
Renata Jora
National Institute of Physics and Nuclear Engineering, PO Box MG-6, Bucharest-Magurele, Romania
a r t i c l e i n f o a b s t r a c t
Article history:
Received 20 August 2014
Received in revised form 28 November 2014
Accepted 23 December 2014
Available online 30 December 2014
Editor: A Ringwald
WecomputeanallordercorrectiontothescalarmassintheΦ4theoryusinganewmethodoffunctional integrationadjustedalsotothelargecouplingsregime
©2014TheAuthor.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense
(http://creativecommons.org/licenses/by/4.0/).FundedbySCOAP3
1 Introduction
Currentlyverymuchisknownabouttheperturbative behaviorofmanytheorieswithorwithoutgaugefields.Betafunctionsforthe
Φ4theoryandQEDare knownuptothefifthorderwhereasforQCD, uptothefourthorder[1–7] However, thereisalimited knowledge regardingthenonperturbative behaviorofthesametheories.Recentlyattempts[8]havebeenmadefordeterminingtheexistenceinsome renormalizationschemeofallorderbetafunctionsforgaugetheorieswithvariousrepresentationsoffermions.Itisratherusefultosearch foralternativemethods, whichmayrevealeitherthehigherordersofperturbationtheoriesoreventhenonperturbative regime
HereweshallconsiderthemassiveΦ4 theoryasalaboratoryforimplementingamethodthatcanbefurtherappliedtomore compre-hensivemodels.Thereisan ongoingdebatewithregardtothebehavioroftherenormalizedcouplingλ atsmallmomentareferredtoas
“thetrivialityproblem”[9–11] Withthehopethatourapproachmightshedlightevenonthisproblem, weintroduceanewvariablein thepathintegralformalismwhichallowsforamoretractablefunctionalintegrationandseriesexpansion.Thenwecomputeinthisnew methodthecorrectionsto themassofthe scalarinall orderofperturbation theory.Thisapproach shouldbe regardedasan alternate renormalizationprocedure.Sincethe corresponding massanomalous dimension γ (m2) =d ln m2
d μ2 hasthefirst order(oneloop)universal coefficient, weverifythatthefirstordercorrectioniscorrect.However, weexpectthatthenextordersaredifferent
2 The set-up
Weshallillustrateourapproachforasimplescalartheory,givenbytheLagrangian:
L = L0+ L1, L0=1
2(∂μΦ)
∂μΦ
−1
2m
2Φ2, L1= − λ
Forconvenience,wewillworkbothintheMinkowskiandEuclidianspace
ThegeneratingfunctionalintheEuclidian spaces hastheexpression:
W[J] =
dΦexp
−
d4x
1 2
∂Φ
∂ τ
2 +1
2(Φ)
2+1
2m
2
0Φ2+ λ
4! Φ
4+ JΦ
(2)
andcanbewrittenas
W[J] =exp
d4xL1
δ
δJ
where
E-mail address:rjora@theory.nipne.ro
http://dx.doi.org/10.1016/j.physletb.2014.12.050
0370-2693/©2014 The Author Published by Elsevier B.V This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) Funded by SCOAP 3
Trang 2W0[J] =
dΦexp
d4x( L0+ JΦ)
FromEq.(3)isclearhowtheperturbativeapproachcanwork.Ifλisasmallparameter, onecanexpandtheexponentialintermsofλ
andsolvesuccessive contributionsaccordingly.However, weareinterestedintheregime whereλislargeandonecannotusetheabove expansion
Wewillillustrateourapproachsimplyonasimplefunction.Assumethat wehavethefollowingone-dimensionalintegralwhichcannot
besolvedanalytically:
I=
dx exp
where f ispolynomialofx.Fora small, theexpansionina makessense.Fora→ ∞, theTaylorexpansionuses:
lim
a→∞
d nexp[−af(x) ]
whichdoesnotleadtoacorrectanswer
Weshall use,however, asimple trick.We replaceinthepolynomial f someofthe variables x witha newvariable y (forexample
x4→x2y2).Thenwewrite:
I=
dxdyδ(x−y)exp
−af(x,y) =
dxdydz exp
−i(x−y)z exp
−af(x,y) =
dxdydz exp
−i(x−y)z−af(x,y) (7)
Thisdoesnothelptoomuchinthepresentform However, if f(x,y) =x2y2 oranyother functionthatcontains x2, wecanformthe perfectsquare:
−ixz−ax2y2= − √
axy+ iz
2√
a y
2
− z2
IntroducedinEq.(7)thisleads:
I=const
d√1
a y dz exp
− z2
4ay2
Thenexpansionin 1a makessenseandonecanwrite:
I=const
dxdz√1
a y
1− z2
4ay2+
Thisexpansionmayseemilldefinedandhighlydivergent.Forexample, ifoneintegratesoverz,thenone alreadyencountersinfinities However, inthefunctionalmethodoneisdealingwithfunctionsinsteadofsimplevariablesandone encountersdivergencesalsointhe usualexpansioninsmallparameters.We willconsidertheaboveapproachasourstartingpointandsolvetheproblemofdivergencesas theyappear
WewillstartwiththesimplepartitionfunctionforaΦ4 theorywithoutasource:
W[0] =
dΦexp
i
d4x[ L0+ L1]
(11)
WeconsidertheextendedfunctionalδdefinedintheMinkowskispaceas(seeAppendices Aand B):
δ(Φ) =const
dK exp
i
d4x M KΦ
(12)
whichintheEuclidian spacebecomes:
δ(Φ) =const
dK exp
−
d4xKΦ
(13)
WethenrewriteEq.(11)in Minkowskispaceas
W[0] =
dΦdΨ δ(Φ − Ψ )exp
i
d4x
L0− λ
8Φ
2Ψ2
=const
dΦdΨdK exp
i
d4xK(Φ − Ψ )
exp
i
d4x
L0− λ
8Φ
2Ψ2
=const
1
√
λdΦdK exp
i
d4x2
λK
2
exp
i
d4xKΦ2
exp
i
d4xL0
(14)
Inordertoobtainthisresult, wemadethefollowingchangeofvariableinthesecondlineofEq.(14):K→KΦ,Ψ → Ψ
Φ√
λ.Notethat theλtermgetsrescaledby3 suchthattotakeintoaccountthevariouscontributionoftheFouriermodes
WewillestimatethefirstorderoftheintegralinEq.(14)givenby:
Trang 31
√
λdΦdK
1 exp
i
d4xKΦ2
exp
i
d4xL0
(15)
Inordertosolvetheintegral, wewrite:
d4x
KΦ2+ L0 =
d4x
1
V2
k n+k m+k p=0
(Re K m+i Im K m)(ReΦn+i ImΦn)(ReΦp+i ImΦp)
− 1
2V
k n
m20−k2n
WedenotethebilinearformintheexponentialinEq.(16)by:
Φ
K
V2− 1
2V
2K0
V − m20−p n2
[δ2n+1, 2n+1+ δ2n+2, 2n+2]
wherethecountingstartsfromn=0 andwe arrangedforexampletheReΦn andImΦn componentsinthe2n+1,respectively, 2n+2 columnsofaninfinitelydimensionalvector
ThentheintegralinEq.(15)canbesolvedeasilyasaGaussian integral:
const
1
√
λdΦdK exp
i
d4xKΦ2
exp
i
d4xL0
=
det[K
V2+ 1
2V[2K0
V − (m20−p2) [δ2n+1, 2n+1+ δ2n+2, 2n+2]]]1/2.
(18)
NotethatonecanwritealsoaresultforthefullpartitionfunctioninEq.(14):
const
1
√
λdΦdK exp
i
d4x2
λK
2
exp
i
d4xKΦ2
exp
i
d4xL0
=
dK exp
i
d4x2
λK
2
1 det[K
V2+ 1
2V[2K0
V − (m20−p2) [δ2n+1, 2n+1+ δ2n+2, 2n+2]]]1/2. (19)
Thenextstepistodeterminethepropagatorthroughthisprocedure
3 The propagator
Thepropagatorisgivenby:
Ω|TΦ(x1)Φ(x2) |Ω = lim
T→∞
dΦΦ(x1)Φ(x2)exp[iT
−T d4xL ]
dΦexp[iT
ForourpartitionfunctionEq.(20)isrewrittenas
Ω|TΦ(x1)Φ(x2) |Ω =
1
√
λ dΦdKΦ(x1)Φ(x2)exp[i
d4x2λ K2]exp[i
d4xKΦ2]exp[i
d4xL0] 1
√
λ dΦdK exp[i
d4x2λ K2]exp[i
d4xKΦ2]exp[i
d4xL0]
= 1
V2
m
exp
−ip m(x1−x2) i V
δ δ( m2−p2m )
dΦdK exp[i
d4x2λ K2]exp[i
d4xKΦ2]exp[id4xL0]
dΦdK exp[i
d4x2λ K2]exp[i
d4xKΦ2]exp[id4xL0] (21) Note that the first line in Eq (21) is the standard definition of the two-point function The second line in Eq (21) needs some clarification.From thefirstlineintheequation itcanbe seenthat thescalartwo-point function mayreceive contributionseitherfrom thekinetictermorfromthetermsthatcontain K Weneedtoshowthatalsothesecondlineisjustified.Inordertoseethat, oneshould considerthesimplefunctionalintegralinEq.(21)andtreatitindependentlywithout anyreferencetotheFeynmandiagrams Thenthe firstlineofEq.(21)leadsalsoto:
Ω|TΦ(x1)Φ(x2) |Ω
=
1
√
λ dΦdKΦ(x1)Φ(x2)exp[i
d4x2λ K2]exp[i
d4xKΦ2]exp[i
d4xL0] 1
√
λ dΦdK exp[i
d4x2λ K2]exp[i
d4xKΦ2]exp[i
d4xL0]
= 1
V2
m
n
exp[−ip m x1]exp[−ip n x2]i V2
dΦdK exp[i
d4x2λ K2] δ
δ K (−p m−p n )exp[i
d4xKΦ2]exp[id4xL0]
dΦdK exp[i
d4x2λ K2]exp[i
d4xKΦ2]exp[id4xL0]
= 1
V2
m
n
exp[−ip m x1]exp[−ip n x2](−i)V2
dΦdK δ K (−p δ m−p n )exp[i
d4x2λ K2]exp[i
d4xKΦ2]exp[id4xL0]
dΦdK exp[i
d4x2λ K2]exp[i
d4xKΦ2]exp[id4xL0]
= 1
V2
m
n
exp[−ip m x1]exp[−ip n x2]
−2
λ
V
dΦdK K(p n+p m)exp[i
d4x2λ K2]exp[i
d4xKΦ2]exp[id4xL0]
dΦdK exp[i
d4x2K2]exp[i
d4xKΦ2]exp[id4xL0] (22)
Trang 4Weshallattempttoestimatetheintegraloverthemodes K(p)inEq.(22).Forthatweexpand theexponentialofthetrilinearterm In firstorder, wegettheterm
which evidently brings contributiononly forq= −r, p m= −p n sothe only Kmode that contributes isthe zero mode.In third order (secondorderiszero), weobtaintermsofthetype:
K(p m+p n)K( −q1−r1)K( −q2−r2)K( −q3−r3)Φ(q1)Φ(r1)Φ(q2)Φ(r2)Φ(q3)Φ(r3) (24)
Ifanyoftheq i= −r i, wearebacktothepreviouscasewhereonlyK0modecontributes Assumewithoutlossofgeneralitythatq1= −q2,
r1= −r3,q3= −r2.Thissettles theintegraloverΦ whereasfor K weobtain:
There are three possibilities for this integral: (1) p m+p n=q1+r1, q1−r2= −r1−r2, (2) p m+p n= −q1+r2, q1+r1=r1+r2,
(3) p m+p n= −r1−r2,q1+r1=q1−r2.All ofthesepossibilities leadto p n= −p m.Thisargument continuesforhigherorders inthe expansionsuchthatquitejustifiedwecanexpressthepropagatorfromthebeginningasthederivativewithrespecttom2−p2
m Sincethequantitym2−k m2 appearsonlyinthedeterminantinEq.(19), wecancompute:
δ
δ(m20−p m2)
det
K
V2+ 1
2V
2K0
V − m2−p2
δ2n+1, 2n+1+ δ2n+2, 2n+2
−1/2
= −1
2
det
K
V2− 1
2V
2K0
V − m2−p2
δ2n+1, 2n+1+ δ2n+2, 2n+2
−1/2
×Tr
1
K
V2 + 1
2V[2K0
V − (m20−p2)(δ2n+1, 2n+1+ δ2n+2, 2n+2) ] ( −1)
1
2V(δ2m+1, 2m+1+ δ2m+2, 2m+2)
=const1
2
det
K
V2− 1
2V
2K0
V − m20−p2
δ2n+1, 2n+1+ δ2n+2, 2n+2
−1/2 2
2
V K0− (m20−p m2)
=const
det
K
V2− 1
2V
2K0− m2−p2
δ2n+1, 2n+1+ δ2n+2, 2n+2
−1/2
1
2K0
V − (m2−p2
In Eq.(26) the first three lines are the simple resultof differentiating a determinant The first factor in the third line of Eq.(26)
contains theFourier modesofthe field K with momenta differentthan zero(pμ=0) denoted simplyby K and those withmomenta
pμ=0 denotedby K0.However, themodeswith pμ=0 areirrelevantforthereasonweshalloutlinebelow.First, letusconsider K(x)
asasquareintegrablefunctionintheHilbertspacewhichsatisfies:
d4xK2(x) = 1
V
p
whereMisaquantitylargebutfinite.Thismeansthat K ( V p )<
√
M
√
V.Incontrast, K0
V isfiniteasisgivenby:
K0
Wecould havedropped fromthebeginningthe factor V1 fromits expression butit helpswithdimensional analysis.Thus althoughwe shallkeep K(p=0) intheexpression atsome pointthe limit V → ∞ willbe takensuch thatall thesetermsin thedeterminantwill cancelandtheintegraloftheexponentialoftheK(p n)termsinthenumeratorwillgetcanceledbythatinthedenominator.Inconclusion thezeromodeisusedasasubstituteforallthe othermodesandsumsupalltheircontribution
Themode K0 actslikeanadditionalcontributiontothescalarmassandneedstobemaintainedandintegratedover.Inconsequence
inallcalculationsthatfollow, oneshouldconsideronlythemodesK0 whichsimplifiesthecalculationsconsiderably
ThenEq.(21)becomes:
Ω|TΦ(x1)Φ(x2) |Ω = 1
V2
m
exp
−ip m(x1−x2) i V
×
V K0−(m2−p2
m )exp[i
det[K
V 2+1
2V[2K0 V −( m2−p2)(δ 2n+ 1, 2n+ 1+δ2n + 2, 2n+ 2)]]1
dK exp[i
det[K
V 2+ 1
2V[2K0
V −( m2−p2)(δ 2n+ 1, 2n+ 1+δ2n + 2, 2n+ 2)]]1
(29)
Wedenote:
1
λ
2
V =ba0, m20−p2m=c2, 2
V =a0,
det
K
V2+ 1
2V
2K0
V − m20−p2
(δ2n+1, 2n+1+ δ2n+2, 2n+2)
Trang 5
dK dK0exp[2iba0K20+ d4x2ibK2] 1
( a0K0−c2)[det[a0K0+B]]1
dK dK0exp[ibK2+ d4xibK2] 1
[det[a0K0+B]]1
= −1
c2
dK dK0exp[2iba0K02+ d4x2ibK2][1+a0K0
c2 +a2c K42+ ] 1
[det[a0K0+B]]1
dK dK0exp[ibK02+ d4xibK2] 1
[det[a0K0+B]]1
(31)
Weextractedafactorof V1 fromthedeterminantanddropped thecorresponding constantfactoreverywhere.Inorderto determine theratioinEq.(31), weevaluateeachtermintheexpansioninthedenominator:
I n=
dK0dK(a0K0)
n
c 2n exp
2iba0K02 exp
d4x2ibK2
det[a0K0+B] −1/2
=
dK0dK 1
a0
d[( a0K0) n+ 1
c 2n ( n+1)]
2iba0K20 exp
d4x2ibK2
det[aK0+B] −1/2
= −
dK0dK 1
a0
(a0K0)n+1
c 2n(n+1) (4iba0K0)exp
2iba0K02 exp
d4x2ibK2
det[aK0+B] −1/2
−
dK0dK (a0K0)
n+1
a0c 2n(n+1)exp
2iba0K02
k
a0 a0K0−c k2
exp
d4x2ibK2
det[a0 K0+B] −1/2
= − 4ibc4
a0(n+1)I n+2−
dK dK0
(a0K0)n+1
c 2n(n+1)
k
1
c k2
1+a0K0
c k2 + (a0K0)2
c k4 +
×exp
2iba0K02 exp
d4x2ibK2
det[a0K0+B] −1/2. (32)
Hereweusedtheformulaofdifferentiationofadeterminant
FromEqs.(32)and(39), weobtainthefollowingrecurrenceformula:
(n+1)I n+I n+2c4
4ib
a0 +
k
1
c4
k
+I n+1c2
k
1
c2
k
+ +I n+r c 2r
k
1
c 2r k
First, wemultiplythewholeEq.(33)by V1 andthenintroduce I n c 2n= J n togetthenewrecurrenceformula:
1
V(n+1)J n+ J n+1
1
V
k
1
c2k + J n+2
2ib+ 1
V
k
1
c4k
Finally, sincewedenotedthepartitionfunctionbyI0 fromEqs.(29)and(34), onecanderive:
Propagator= −1
c2
n
I n/I0= −1
c2
n
1
where J0=I0isthefullpartitionfunction
Beforegoingfurther, weneedtodeterminethecoefficientsinEq.(34).Forthatwefirststate
1
V
k
1
c k 2r = 1
V
k
1
(m20−p2k)r= (−1)r
Notethat onlytheintegrals withk=1,2 are divergentwhereastheotheronesarefinite.Weshalluseasimplecut-offto regularize themuponthecase.Thenweget:
q1=i 1
16π2
Λ2−m2ln
Λ2
m20
16π2
−1+ln
Λ2
m20
, q n , n >2=i 1
16π2
(m2)2−n
4 Discussion and conclusions
Theterms J n inthetwo-point functioninEq.(35)correspondtovariousloopcorrectionsandonecancuttheseriestoobtainresults
invariousorders ofperturbationtheory.However, weshallnot attempttodothishere Wewillratheraimto obtainifpossiblean all orderresultforthecorrectiontothemassofthescalar.Wedothiswiththehopethattheapproachinitiated herecanbeextendedeasily
totheorieswithspontaneous symmetrybreaking andevento thestandard model.Itis clearthat anapproach that couldestimate the correctiontotheHiggsbosonmasscould beofgreat interest Onecanwritequitegenerallyan exactexpressionforthepropagatorofa scalar:
Trang 6wherem isthephysicalmassandM2(p2)istheone particleirreducibleself-energy (forsimplicity, we rename p2m=p2 fortherestof thepaper).Inourapproachthepropagatorisgivenby:
i
p2−m20
n
( −1)n J n
I0
1
NowifweidentifyEq.(38)withEq.(39)andexpandthefirstequationinseriesin 1
( p2−m2) n, weobtain:
i
p2−m2
n
( −1)n J n
I0
1
p2−m2−M2(p2) ( −1)n J n
I0 = m2−m20−M2
p2 n+Y n
p2
J n
I0 = m20−m2−M2
p2 n+ (−1)n Y n
p2
whereY n(p2)isanarbitraryserieswiththeproperty:
n
Y n
Nowweshallconsiderthefollowingrenormalizationconditionswhichstate:
M2
p2
p2=m2=0, dM
2(p2)
dp2
WeapplythefirstconditiontoEq.(40)todeterminethat:
( −1)n J n
I0 p2=m2= m2−m20n
+Y n
m2
= m2−m20n
1+ Y n (m2−m2)n
(43)
Wewillshow thattheterm Y n(m2)inEq.(43)should besetto zero.Forthat wefirstnote thatfromEq.(41)onecan deducethat thereisatleastone n forwhich Y n ( m2)
( m2−m2) n<0.Thenthereisasolutionm forwhich(m2−m2)n= − 1
Y n ( m2)= α (n)n with α (n)real.This solutionisazeroofthecorresponding J n.But J n(m2)hastheexpression:
dK0K0n 1
sohasapoleata0K0= α (n)insteadofazero.Weobtainacontradictionwhichmeansthatthereisnon suchthat Y n ( m2)
( m2−m2) n <0 sothe seriesinEq.(41)hasallthetermsY n(m2) =0
Thenwesimplytake:
J n
Wedenote
andsumintherecurrenceformulainEq.(34)alltermswiththeindicesn+k, k≥3 for p2=m2:
k≥3
J n+k
I0 q k=X n
k
i
16π2m4
X
m20
n
1
(n−1)(n−2) = i
16π2X n+1
X+ m2−X
ln
m2−X
m20
(47)
Thentherecurrenceformulabecomes:
(n+1)a0X n+q1X n+1+
2i
λ +q2
X n+2+ i
16π2X n+1
X+ m20−X
ln
m2
0−X
m20
=0
(n+1)a01
X +q1+
2i
λ +q2
16π2
X+ m20−X
ln
m20−X
m20
=0
q1+
2i
λ +q2
16π2
X+ m20−X
ln
m20−X
m2 0
Hereinthelastlinewetookthelimita0= 1 →0
Trang 7Notethat although we used the conditions in Eq.(42), we should not consider our approach equivalent withany ofthe standard renormalizationprocedures
ThenEq.(48)willbecome:
q1+ m20−m22i
λ +q2
16π2
m20−m2
+m2ln
m2
m20
Theequation above determinesthe physicalmassin termsofthe baremassandof thecut-offscale Insteadwe observethat fora largecut-offscaleonecandivideEq.(49)byq1 andretainthefirstandsecondterms Then,
m2≈m20+ 2i q1
λ +q2≈m20+
Λ2−m20ln[Λ2
m2]
1+ λ
32π2[−1+ln[Λ2
m2]]
λ
Notethat thisresult leads tothe same firstorder coefficient ofthe massanomalous dimension asin the standard renormalization procedures
Acknowledgements
The work of R.J was supported by a grant of the Ministry of National Education, CNCS-UEFISCDI, project number PN-II-ID-PCE-2012-4-0078
Appendix A
Inthefollowing, wewillshowthattherelationinEq.(13)makesenseperfectsenseinthefunctionalapproach.Westartwith:
dK exp
−
d4xKΦ
k0>0
d Re K n d Im K nexp
−1
V(ReΦn+i ImΦn)(Re K n+i Im K n)
k0>0
d Re K n d Im K nexp
−1
V ReΦn Re K n− i
V ImΦn Re K n
exp
1
V ImΦn Im K n− i
V ReΦn Im K n
Next, letusconsideraregularintegralofthetype:
dx exp[−ipx−ap]dx=
dx
1− (ap) +1
2(ap)
2+
exp[−ipx]
=
dx
1− (−i)aδ
δ +a21
2( −i)2 δ
2
δ 2+
exp[−ipx]
=
1− (−i)aδ
δ +a21
2( −i)2δ
2
δ 2+
LetusapplythisresulttoEq.(A.1)withthevariable a replaceddependingonthecasebyReΦn orImΦn:
dK dΦf(Φ)exp
−
d4xKΦ
=const
k0>0
d ReΦn d ImΦn f(ReΦk,ImΦk) ×
1−ReΦn( −i) δ
δIm+
δ(ImΦn)
×
1−ImΦn( −i) δ
δReΦn+
δ(ReΦn)
Wewillprovethatbyconsideringafewtermsintheaboveexpansion.Thezerothordertermcontainstwodeltafunctionsandclearly leadsto f(0,0).Anotherpossibletermis:
k0>0
d ReΦn d ImΦn f(ReΦk,ImΦk)ReΦn
δ
δImΦn δ(ImΦn)δ(ReΦn) =0 (A.4)
byvirtueoftheδ(ReΦ )function.Anotherpossibletermis:
Trang 8
k0>0
d ReΦn d ImΦn f(ReΦk,ImΦk)ReΦn δ
δImΦnδ(ImΦn)ImΦn
δ
δReΦnδ(ReΦn)
= −
k0>0
ReΦnImΦn
δ
δReΦn
f(ReΦk,ImΦk)ReΦn
δ
δImΦn δ(ImΦn)ImΦn
δ
δReΦn
δ(ReΦn)
= −
k0>0
ReΦnImΦnImΦn
δ
δImΦn δ(ImΦn)f(0,ImΦn) =f(0,0) (A.5)
Itcanbeshownthatallothertermsareeitherzeroorproportionalto f(0,0)whichconcludesourproofthattheintegralinEq.(A.3)
givesawelldefineddeltafunction
Appendix B
Weshallpresenthereanapproximateestimateofthepropagatorforanarbitraryregularizationschemeforthelimitoflargecouplingλ
WestartfromtherecurrencerelationinEq.(34)whichwerewritehereforcompleteness:
1
V(n+1)J n+J n+1
1
V
k
1
c2
k
+ J n+2
2ib+ 1
V
k
1
c4
k
Wedenote:
1
V
k
1
wheres n maybeconsideredinanyregularizationscheme.First, wewillmakeachangeofvariableK0=√K0
λandrewrite J n= S n
λ n/2 where
S n represents the samequantity as J n, this timein thevariable K0.Notethat withthischangeof notationfor λ verylarge thefactor exp[2iba0
K0
λ ]inEq.(32)becomesnegligible
TherecurrenceformulabecomesintermsofS n:
1
V(n+1)S n/λn /2+S n+1/λ( n+1)/2s1+S n+2/λ( n+2)/2[2ib+s2] +S n+3/λ( n+3)/2s3+ =0 (B.3)
ForlargeV andλ, oneobtainsinfirstorder:
S n+2= −S n+1
√
λs1
todetermine S n= (−1)n−1S1[ √λ s1
2ib+s2]n−1= (−1)n−1x n−1λ( n−1)/2S1
Inordertodetermine S1, weconsiderthezerothorderrecurrencerelation:
1
V S0+
n=3
S1( −1)n−1x n−1λ( n−1)/2/λn /2s n=0 (B.5)
Thisyields:
S1= −1
V
√
n=3
( −1)n−1x n−1s n
(B.6)
AccordingtoEq.(35), thepropagatorisgivenby:
Propagator= −1
c2
n
1
c 2n
S nλ−n /2
/S0= −1
c2
S0+
n=1
1
c 2n( −1)n−1x n−1λ( n−1)/2λ−n /2S1
S0
= −1
c2
S0+ √ 1
λ(c2+x)S1
S0= −1
c2
1− 1
c2+x
1
V[ n=3( −1)n−1x n−1s n]
wherex= s1
2ib+s2 (see thenotation inEq.(30)).A straightforwardcomputationforthequantitiesinEq.(B.7)inthelimitoflargeλleads to:
Propagator≈ −1
c2
1− Λ2 1
1
c2+ Λ2
whereΛ2=function of(Λ2) < Λ2.Notethatinthenotationinthepaper, c2=m2−p2
Trang 9Thisisaparticularcaseof“triviality” knowntobe afeatureofthe Φ4 theoriesinthelimit whereλ → ∞.Toshow this, werewrite
Eq.(B.8)as
Propagator= 1
p2−m20
1− Λ2 1
1
m20+ Λ2−p2
= Λ2− Λ21
Λ2
1
p2−m20+ Λ21
Λ2
1
p2−m20− Λ2 (B.9)
Accordingto[12]atheoryistrivialinthestrongcouplingregimeifthepropagatorcanbewrittenas
Propagator=
n
Z n
where Z n (allofthemcanbezeroexceptone)aretheweightsandm n arethespectra inthelargecouplinglimit.Asitcanbeobserved easilyourresultinEq.(B.9)isaparticularcaseoftrivialitywiththemassesm21=m20andm22=m20+ Λ2
References
[1] A.A Valdimirov, D.I Kazakov, O.V Tarasov, Sov Phys JETP 50 (3) (1979) 521.
[2] S.G Gorishny, A.L Kataev, S.A Larin, L.R Surguladze, Phys Lett B 256 (1991) 81.
[3] T van Ritbergen, J.A.M Vermaseren, S.A Larin, Phys Lett B 400 (1997) 379, arXiv:hep-ph/9701390.
[4] J.A Vermaseren, S.A Larin, T van Ritbergen, Phys Lett B 405 (1997) 327–333, arXiv:hep-ph/9703284.
[5] H Kleinert, J Neu, V Schulte-Frolinde, K.G Chetyrkin, S.A Larin, Phys Lett B 272 (1991) 39, arXiv:hep-th/9503230.
[6] A.L Kataev, S.A Larin, JETP Lett 96 (2012) 61, arXiv:1205.2810 [hep-ph].
[7] P.A Baikov, K.G Chetyrkin, J.H Kuhn, J Rittinger, J High Energy Phys 1207 (2012) 017, arXiv:1206.1284 [hep-ph].
[8] C Pica, F Sannino, Phys Rev D 83 (2011) 11601, arXiv:1011.3832.
[9] K.G Wilson, J.B Kogut, Phys Rep 12 (1974) 75.
[10] I.M Suslov, arXiv:0804.0368, 2008.
[11] D.I Podolsky, arXiv:1003.3670, 2010.
[12] M Frasca, Int J Mod Phys A 22 (2007) 2433–2439, arXiv:hep-th/0611276.
... K0 actslikeanadditionalcontributiontothescalarmassandneedstobemaintainedandintegratedover.Inconsequenceinallcalculationsthatfollow, oneshouldconsideronlythemodesK0... 1
( a< /small>0K0−c2)[det[a< /small>0K0+B]]1... n)termsinthenumeratorwillgetcanceledbythatinthedenominator.Inconclusion thezeromodeisusedasasubstituteforallthe othermodesandsumsupalltheircontribution
Themode