Therefore, understanding the regional impacts of climate change on irrigation demand for crop production is important for water-shed managers and agricultural producers to understand for
Trang 1Studies
jo u r n a l h o m e p a g e :w w w e l s e v i e r c o m / l o c a t e / e j r h
Sean A Woznickia, A Pouyan Nejadhashemia,∗,
Masoud Parsinejadb
a Department of Biosystems and Agricultural Engineering, Michigan State University, East Lansing, MI,
United States
b Department of Irrigation and Reclamation Engineering, University of Tehran, Karaj, Iran
a r t i c l e i n f o
Article history:
Received 8 January 2014
Received in revised form 12 December 2014
Accepted 17 December 2014
Available online xxx
Keywords:
Irrigation demand
Climate change
SWAT
Crop yield
Adaptation
Uncertainty
a b s t r a c t
Study region:The Kalamazoo River Watershed, southwest Michigan, USA.
Study focus:Climate change is projected to have significant impacts on agri-cultural production Therefore, understanding the regional impacts of climate change on irrigation demand for crop production is important for water-shed managers and agricultural producers to understand for effective water resources management In this study, the Soil and Water Assessment Tool was used to assess the impact of climate change on corn and soybean irrigation demand in the Kalamazoo River Watershed Bias-corrected statistically down-scaled climate change data from ten global climate models and four emissions scenarios were used in SWAT to develop projections of irrigation demand and yields for 2020–2039 and 2060–2079 Six adaptation scenarios were devel-oped to shift the planting dates (planting earlier and later in the growing season) to take advantage of periods with greater rainfall or lower temperature increases.
New hydrological insights for the region:Uncertainty in irrigation demand was found to increase moving from 2020–2039 to 2060–2079, with demand generally decreasing moving further into the future for corn and soybean A shift in timing of peak irrigation demand and increases in temperature lead
to corn yield reductions However, soybean yield increased under these con-ditions Finally, the adaptation strategy of planting earlier increased irrigation demand and water available for transpiration, while delaying planting resulted
in demand decreases for both crops.
©2014TheAuthors.PublishedbyElsevierB.V.Thisisanopen
accessarticleundertheCCBY-NC-NDlicense (http://creativecommons.org/licenses/by-nc-nd/4.0/)
∗ Corresponding author at: Department of Biosystems & Agricultural Engineering, Farrall Agriculture Engineering Hall, 524
S Shaw Lane, Room 225, Michigan State University, East Lansing, MI 48824, United States Tel.: +1 517 432 7653;
fax: +1 517 432 2892.
E-mail address: pouyan@msu.edu (A.P Nejadhashemi).
http://dx.doi.org/10.1016/j.ejrh.2014.12.003
2214-5818/© 2014 The Authors Published by Elsevier B.V This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Trang 2xxx.e2 S.A Woznicki et al / Journal of Hydrology: Regional Studies xxx (2015) xxx.e1–xxx.e18
1 Introduction
Populationgrowthandlandusechangeduetoagriculturalexpansionanddeforestationhave sig-nificantlyincreasedpressureonglobalfreshwaterresources(Nejadhashemietal.,2012).Asclimate changebecomesmoreprevalentglobally,thefutureavailabilityoffreshwaterforhuman consump-tion,agriculturalproduction,and manufacturingbecomesmoreuncertain.Bytheendofthe21st century,theprojectedrangeofglobaltemperatureincreasesrelativeto1980–1999isbetween1.1 and6.4◦C,dependingongreenhousegasemissions(Solomonetal.,2007).Meanwhile,themagnitude
ofprojectedprecipitationchangesvarieswidelydependingongeographicregionandspatialscale
impacts.Onaday-to-daybasis,moreheavyprecipitationeventsarepredicted,eveninsomeregions wheremeanrainfallislikelytodecrease(Solomonetal.,2007).Thesechangesareexpectedtoexert additionalpressureonagriculturalproduction,whileatmosphericCO2hasthepotentialtoimprove photosynthesisbyupto30%(LongandOrt,2010)
Anumberofstudieshaveattemptedtounderstandtheeffectsofclimatechangeonwaterusein agricultureintheformofchangesinnetirrigationrequirements,demand,andcropwateruse.Thisis importantbecausetheagriculturalindustryisthelargestuseroffreshwater–waterwithdrawalsfor irrigationaccountfor70%ofallwateruseglobally(Fischeretal.,2007).However,amajorityofthese studieswereperformedonlargespatialscales(e.g.global,continental,orregional)atlowresolution (e.g.monthlytemperatureandprecipitationdata),withafewwatershed-scaleexceptions(Gondim
Span-ishwatershedusingdynamicallydownscaleddailyclimatedataandtheSoilandWaterAssessment Tool(SWAT).Dependingonthecrop(amongcorn,apples,andalfalfa),irrigationrequirementswere projectedtoincreaseby40–250%bytheendofthe21stcentury,attributeddirectlytodecreasesin growingseasonwateravailability,increasesinevapotranspiration,andchangesincropphenology.In
aBrazilianwatershed,Gondimetal.(2012)determinedthatirrigationwaterdemandwillincreaseby 8–9%bythemid-21stcenturyusingmonthlyclimateprojections.Demandincreaseswereattributed
toprojectedrainfalldecreases(11–18%)andevapotranspirationincreases(6.5–8%).Harmsenetal
cumula-tiveprecipitation,referenceevapotranspiration(ET0),andtheresultingprecipitationdeficitbetween thetwoinPuertoRico.PrecipitationdeficitinFebruaryincreasedupto90mmdependingon emis-sionsscenarioandlocation,whileinSeptemberprecipitationexcessincreasedbyupto277mm.Xiong
loweremissionsscenarios andincreaseby44%and36%in the2020sand 2040s,respectivelyfor higheremissionsscenarios.Thomas(2008)examinedirrigationdemandacrossChinaforthe2030s, projectingbothincreasesanddecreasesindemanddependingontheregion.Forexample,decreasing evapotranspirationinsomelocationsresultindemanddecreasesby100mm,whiledrierregionsin westernChinacanexpectincreasesinirrigationdemand.Globally,Fischeretal.(2007)projectedthat
by2080two-thirdsofirrigationrequirementincreasescanbeattributedtowarmingandchangesin precipitationpatterns,whiletheremainingthirdofincreasesareduetoextendedgrowingseasons
intemperatureandsub-tropicalregions.Overall,globalnetirrigationrequirementsincreasebyover 50%indevelopingregionsand16%indevelopedregions.Schaldachetal.(2012)examinedchanges
inirrigationwaterrequirementsin2050inNorthAfricanandEuropebasedonclimateandlanduse change.Dependingontheregion,climatemodel,andsocioeconomicconditions,demandmaydecrease
byupto30%orincreasebyupto264%,indicatinglargeuncertaintiesinprediction.Forexample,in Zimbabwecornirrigationwaterrequirementswereprojectedtoincreaseby66%bythe2050sand 99%bythe2090s,althoughtherewasconsiderableuncertaintyintheseprojections(Nkomozepiand
2090swereprojectedtobe2.4%and7.9%,respectively(ChungandNkomozepi,2012)
Previousstudiesthatdeterminedtheimpactsofclimatechangeonirrigationdemandexamined
asmallnumberofmodelsandscenariosandthereforecouldnotcapturethewiderangeofclimate modelpredictions.Theproposedstudyisuniqueinthattenglobalclimatemodels(GCMs)combined withfouremissionsscenariosareusedtoconsiderthewiderangeofuncertaintyinclimatemodels andtheirimpactonirrigationdemand.UsingalimitednumberofGCMsresultsinalimitedviewof
Trang 3plausiblefutureclimate,unreliableprojectionsofthefuture,andconsequentlypoordecision-making andadaptation(Goharietal.,2013).Inaddition,moststudiesconsiderlargespatialscales(e.g.global
orregional)withlowresolution,limitingapplicabilityforproducersinneedofadaptationstrategies
Inthisstudy,theclimatologicaldataandirrigationdemandisexaminedatafinetemporalresolution (daily),whilemoststudiesconsidermonthlyorannualtimescales.Thegoalofthisstudyisto under-standhowirrigationdemandisimpactedbyclimatechangeforcornandsoybean,twocommoncrops grownintheKalamazooRiverWatershed,Michigan.Thespecificobjectivesofthisstudyareto:(1) determinetheimpactsofclimatechangeonkeyelementsinwaterbalance;(2)understandthefuture changeinirrigationdemand;(3)mapthespatialvariabilityinirrigationdemand;and(4)examine possibleadaptationstrategiesbasedonshiftingplantingdate
2 Materials and methods
2.1 Studyarea
TheKalamazooRiverWatershed,hydrologicunitcode(HUC)04050003,wasthesubjectofthis study(Fig.1).LocatedinsouthwestMichigan,thewatershedareaisapproximately4844km2,with theKalamazooRiverdrainingintoLakeMichigan.Elevationrangesfrom176mto386mabovesea level,while50%ofthewatershedareaislessthan270m
Thewatershedisprimarilyagriculturalandforested.About46%ofthelandisdedicatedto agricul-ture,primarilycorn,soybean,andpasture.Deciduousforestandforestedwetlandscover35%ofthe watershed,whileurbanlandoccupies14%oftheland.Theremaininglanduseiscomprisedofvarious vegetablecrops.Soilswithinthewatershedarepredominantlysandy.Sandyloam,loam,sand,and loamysandmakeup32%,24%,11%,and9%,respectively.HydrologicsoilgroupsAandBare domi-nant,covering35%and49%ofthewatershed,respectively.Meanwhile,Dsoilsonlyoccuron3%ofthe watershedarea
2.2 SWATmodeldescription
TheSoil and WaterAssessment Tool(SWAT), developed bytheUnited States Departmentof Agriculture-AgriculturalResearchService(USDA-ARS,)simulatestheimpactofvaryingtopography, soils,landuse,andmanagementpracticesonhydrology,waterquality,andoverlongtimeperiods
thatiscapableofsimulationonadailytime-step.SWATdelineatesawatershedintosubwatersheds basedontopographycharacteristics.Subwatershedsarefurtherdiscretizedintohydrologicresponse units(HRUs)basedonhomogeneouslanduse,soiltype,andslopecharacteristics.Calculationsare gen-erallycompetedattheHRUlevelandaggregatedtothesubwatershedandwatershedscales.There aremultiplecomponentssimulatedbytheSWATmodel,includingweather,hydrology,soilerosion andsedimenttransport,nutrientcyclingandtransport,plantgrowth,andlandmanagementpractices
OverlandhydrologyinSWATisbasedonthewaterbalance(Neitschetal.,2011).Surfacerunoffis calculatedusingtheSCScurvenumberequation(Mockus,1972),whichisbasedonrainfall,surface storage,interception,infiltrationpriortorunoff,andaretentionparameterbasedonsoils,landuse management,slope,andsoilwatercontent.Multiplepathwaysofwaterinthesoilaresimulated, includingplantuptake,evaporation,percolationintoshallowanddeepaquifers,andlateralflowfor streamflowcontribution.Maincomponentsofthelandphaseofthehydrologiccyclearechangein soilwatercontent,precipitation,surfacerunoff,evapotranspiration,percolationoutoftherootzone, andreturnflowfromgroundwaterintotherootzone
PotentialevapotranspirationissimulatedinSWATusingthePenman–Monteithmethod(Monteith,
1965),whichaccountsforenergynecessarytosustainevaporation,surfaceresistance,aerodynamic resistance,andstrengthofwatervaporremovalmechanisms.Actualevapotranspirationiscalculated
byaccountingforevaporationofrainfallinterceptedbytheplantcanopy,potentialtranspirationbased
onplantgrowthunderidealconditions,andsoilwaterevaporation
Trang 4xxx.e4 S.A Woznicki et al / Journal of Hydrology: Regional Studies xxx (2015) xxx.e1–xxx.e18
Fig 1. Kalamazoo River Watershed; (a) land use, (b) weather station and streamflow gauging station locations.
CropgrowthinSWATissimulatedbyaccumulationofheatunits(differencebetweendailymean temperatureandbasetemperatureforcropgrowth)throughoutthegrowingseason(Neitschetal.,
2011).Maturityisreachedwhenthenumberofaccumulatedheatunitsequalspotentialheatunits ActualPotentialgrowthissimulatedusingleafareadevelopment,lightinterception,andbiomass productionassumingspecies-specificradiationuseefficiency.Canopycover,height,androot devel-opmentarealsosimulatedbasedonheatunits.Water,nitrogen,andphosphorusuptakebytheplant
Trang 5aresimulatedbasedonsoilwatercontent,fractionofnitrogeninplantbiomass,andfractionof phos-phorusinplantbiomass,respectively.SWATsimulatescropgrowthconstraintssuchaswaterstress, temperaturestressandnutrientstress(Neitschetal.,2011).Waterstressisbasedontherelationship betweenactualandpotentialplanttranspiration.Temperaturestressismodeledexponentiallywith dailyaverageairtemperatureandoptimaltemperaturesforplantgrowth,wheredivergencefrom optimalconditionsresultsingrowth-reducingstress
IrrigationapplicationinSWATcanbemanuallyscheduledorautomaticallyappliedbasedonsoil waterdeficitbelowfieldcapacity(Neitschetal.,2011).Watercanbewithdrawnfromareach,reservoir, shallowaquifer,deepaquifer,orsourceoutsidethewatershed.Limitscanbeplacedonwithdrawal basedonminimumstreamflow,fractionoftotalstreamflowthatcanbewithdrawn,oramaximum irrigationamountthatcannotbeexceededinoneday.Otherparametersforconsiderationarean irrigationefficiencyfactor(accountingforconveyanceandevaporativelosses)andasurfacerunoff ratio(fractionofirrigatedwaterthatisconvertedtorunoff)
2.3 Datacollection
2.3.1 Physiographicdata
SWATmodelsetupandparameterizationrequirestheuseofmultiplespatialdatasets.Topography datawasobtainedfromtheUnitedStatesGeologicalSurveyNationalElevationDatasetintheformofa
10mresolutiondigitalelevationmodel,whichwasusedinwatersheddelineation.The2011Cropland DataLayer(30mresolution)developedbytheUnitedStatesDepartmentofAgriculture-National Agri-culturalStatisticsService(USDA-NASS)wasselectedforlanduse/landcoverrepresentation.Spatial andtabularsoildatawasobtainedfromtheUSDANaturalResourcesConservationServiceSoilSurvey GeographicDatabaseata1:24,000resolution.Commonagriculturalpracticesandrotationswithin thewatershedwereimplementedforcorn,soybean,andwinterwheatlanduses
2.3.2 Climatedata
Historicalclimatedatafrom1980to1999wasobtainedfromtheNationalClimaticDataCenter Dailyprecipitation,maximumtemperature,andminimumtemperaturevariableswereavailablefor nineprecipitationandtemperaturegaugeswithinthewatershed
ProjectedfutureclimatescenarioswereobtainedfromtheUnitedStatesGeologicalSurvey(USGS) GeoDataPortal(http://cida.usgs.gov/climate/gdp/).Thescenariosareasuiteofbias-corrected statis-ticallydownscaleddailyprecipitation,maximumtemperature,andminimumtemperaturedatawith
a1/8◦spatialresolution,availablefrom1960to2100(Hayhoeetal.,2013).Basedonthisresolution,
34gridcellswereusedinSWAT.Datafromtencoupledatmosphere–oceangeneralcirculation mod-els(AOGCMs)drivenbyfourIntergovernmentalPanelonClimateChange(IPCC)SpecialReporton EmissionsScenarios(SRES)storylines(Nakicenovicetal.,2000)wereused.AOGCMsincludedwere thefollowing:ParallelClimateModel(PCM),CommunityClimateSystemModelversion3(CCSM3), GeophysicalFluidDynamicsLaboratory(GFDL)2.0,GFDL2.1,HadleyCentreCoupledModelversion
3(HADCM3),BergenClimateModelversion2(BCM2),CoupledGlobalClimateModelT47 (CGCM3-T47),CGCM3-T63,CentreNationaldeRecherchesMeteorologiques(CNRM),ECHAM5(developedby theMaxPlanckInstitute),andECHO(developedbyMeteorologicalInstituteoftheUniversityofBonn (Germany),InstituteofKMA(Korea),andModelandDataGroup)
EachmodelwasforcedwithatleasttwoSRESstorylinesdevelopedusingprojectionsofpopulation change,demographics,technology,andsocio-economicfactorstoestimategreenhousegasemissions
higher(A1FI),mid-high(A2),mid(A1B),andlower(B1).Usingmultipleclimateprojectionsand sto-rylinesallowsforconsiderationofvariousparametric,structural,andforcinguncertainties(Knutti
etal.,2010).Theresultingnumberofscenarios(combinationofGCMsandSRESstorylines)was35 AtmosphericCO2concentrationswereobtainedfromtheBERNcarboncyclemodel,whichvarybased
onyearandSRESstoryline(IPCC,2001).CO2concentrationsforSRESstorylinesandtimeslicesused arepresentedinTable1
Twofuturetimesliceswereselectedforanalysis:2020–2039and2060–2079.SWATmodel pro-jectionsofirrigationdemandforthesetimesliceswerecomparedtothe1980–1999modelcontrol
Trang 6xxx.e6 S.A Woznicki et al / Journal of Hydrology: Regional Studies xxx (2015) xxx.e1–xxx.e18
Table 1
Atmospheric CO 2 concentrations.
(ppm)
A1FI (ppm)
A2 (ppm)
B1 (ppm)
Adapted from IPCC (2001).
period.ByanalyzingthechangesbetweenthecontrolandfuturetimeslicesacrossallmodelsandSRES storylines(herebyreferredtoasa“scenario”),anensembleofprojectedimpactsofclimatechange
onirrigationdemandisdeveloped.Monthlyprecipitationandtemperatureforthecontrolandfuture timeslicesarepresentedinFigs.2and3,respectively
2.4 Calibrationandvalidation
SWATmodelcalibrationandvalidationofstreamflowandcropyieldwereperformedtoensure thatthemodelreplicatesobservedphysicalbehaviorbeforeextendingthestudytounderstandthe impactsofchangeonwaterquantityandcropgrowthinthewatershed.Dailystreamflowcalibration andvalidationoccurredatthreeUSGSgaugingstationsinthewatershed:04105000(BattleCreekat BattleCreek,MI),04105500(KalamazooRivernearBattleCreek,MI),and04106000(KalamazooRiver
atComstock,MI).TheUSGSstationno.04106000wascalibratedfrom1985to1992andvalidatedfrom
1993to1999.Theremainingstations(04105000and04105500)werecalibratedfrom1980to1989 andvalidatedfrom1990to1999.Calibrationandvalidationwascompletedusingobservedclimate datafromnineweatherstationsdisplayedinFig.1).Theperiodsofcalibrationandvalidationwere selectedbasedonthetimeperiodofavailabledata
Threestatisticalcriteriawereusedtoevaluategoodness-of-fitbetweenthesimulatedandobserved streamflowdata:Nash–Sutcliffeefficiency(NSE),rootmeansquareerror-observationsstandard devi-ationratio(RSR),andpercentbias(PBIAS).Rangingfromnegativeinfinitytoone(withavalueofone indicatingperfectfit),NSEdeterminestherelativemagnitudeoftheresidualvariancecomparedto theobserveddatavariance(Moriasietal.,2007).RSRstandardizesrootmeansquareerrorusingthe
Fig 2. Kalamazoo River Watershed monthly total precipitation for model control period (1980–1999) versus (a) 2020–2039 and (b) 2060–2079 across all climate scenarios.
Data from Hayhoe et al (2013).
Trang 7Fig 3.Kalamazoo River Watershed mean daily maximum and minimum temperature for model control period (1980–1999) versus (a) 2020–2039 and (b) 2060–2079 across all climate scenarios).
Data from Hayhoe et al (2013).
standarddeviationofobservations,withvaluesrangingfromzerotoalargepositivenumber(where
alowernumberindicatesbettermodelperformance).PBIASmeasuresthetendencyofthesimulated datatoover-predictorunder-predictcomparedtotheobserveddata,wheretheoptimalvalueiszero andsmallpositiveandnegativepercentagesareacceptable
Basedonstreamflowgoodness-of-fitrecommendationsbyMoriasietal.(2007)foramonthly time-step,asatisfactoryNSEisgreaterthan0.50,satisfactoryRSRislessthanorequalto0.70,andsatisfactory PBIASliesbetween−25%and+25%
Annual crop yield calibration was performed for the two major crops in the Kalama-zoo River Watershed: corn and soybean Observed crop yields from the control period (1980–1999)were obtainedat thecounty level from theNational AgriculturalStatistics Service
Water-shedwascalculatedbasedontheportionofeachcountyinwhichthewatershedresides.County-level cropyieldsarereportedbyNASSinbushels/ac,whileSWATestimatescropyieldinmetrictons/ha with20%moisturecontentatharvest(Srinivasanetal.,2010).PBIASwasusedastheevaluationcriteria followingapreviousstudyoncropyieldcalibrationbySrinivasanetal.(2010)
2.5 Irrigationdemand
Determinationofirrigationdemandbyagriculturalcropsisbasedonthesoil–waterbalance(NEH,
1993),presentedinEq.(1)
WhereIRRisirrigationdemand(mm),Pisprecipitation(mm),Dpisdeeppercolationfromthecrop rootzone(mm),ROissurfacerunoff(mm),GWisgroundwatercontributiontothecroprootzone (mm),andSWisthechangeinsoilwaterinthecroprootzone(mm).OndaysinwhichIRRwas negative(usuallyduetoaprecipitationevent)thenumberwasforcedtozero
2.6 Adaptationstrategies
Plantingdateswereshiftedinordertoexaminepossibleclimatechangeadaptation.Forthecontrol scenario,thetotalirrigationdemandbycornandsoybeanwascalculatedforthegrowingseason
Trang 8xxx.e8 S.A Woznicki et al / Journal of Hydrology: Regional Studies xxx (2015) xxx.e1–xxx.e18
Table 2
Daily streamflow calibration and validation results.
a http://waterdata.usgs.gov/usa/nwis/uv?04105000.
b http://waterdata.usgs.gov/usa/nwis/uv?04105500.
c http://waterdata.usgs.gov/usa/nwis/uv?04106000.
d Nash–Sutcliffe efficiency.
e Percent bias.
f Root mean square error-observations standard deviation ratio.
(May–September).Meanwhile,plantingdatewasshiftedby±10,±20,and±30daysasanadaptation
toprojectedfutureclimates.Thisallowsforbeneficialchangesincropwateruseorharvestyield
byavoidingtemperaturestressduringkeycropdevelopmenttimesorutilizinggreaterprecipitation volumes.Finally,thetotalirrigationdemandandyieldswerecomparedagainstthecontrolscenarios forcornandsoybean
3 Results and discussion
3.1 Calibrationandvalidation
3.1.1 Streamflowcalibration
Dailystreamflowcalibrationandvalidationweresatisfactoryforalllocationsaccordingto guide-linesdevelopedbyMoriasietal.(2007).Goodness-of-fitresultsfor alllocationsarepresentedin
station(04105000)ispresentedinFig.4
Fig 4. Observed vs SWAT simulated streamflow for USGS station 04105000.
Trang 9Fig 5.Observed vs SWAT simulated (a) corn yield and (b) soybean yield.
3.1.2 Cropyieldcalibration
Atime-seriescomparisonofobservedandsimulatedannualcornandsoybeanyieldsfortheentire KalamazooRiverWatershedarepresentedinFig.5aandb,respectively.Thearea-weightedaverage PBIASvaluesforcornandsoybeanatthewatershedlevelwere1.9%and9.4%,respectively.Lowpositive PBIASvaluesindicatethattheSWATmodelslightlyunder-predictedyields,particularlyforsoybean, thoughthevaluesarewithinsatisfactorylimits.Poorcalibrationinsomeyearsforsoybean(e.g.1992)
isduetothewiderangeofyieldsobservedatthecountylevel,whiletheKalamazooRiverWatershed liesintencounties.Thismakesit difficulttoachieveanaccuratesimulatedvaluewhenmultiple locationsinthewatershedhaveverydifferentyields
3.2 Keyelementsinwaterbalance
Thedynamicsofthewaterbalanceareprojectedtobealteredduetoclimatechange,although someuncertaintyisapparentregardingthemagnitudeofthesechanges,butthetrendsamongwater quantityvariablesarerelativelyconsistent.Fisher’sleastsignificantdifference(LSD)wasperformedto determinesignificantdifferencesbetweenwaterbalancevariablesacrosstimeslices.Averageannual waterquantityvariablesunderallscenariosfortheKalamazooRiverWatershedarepresentedinFig.6 Averageannualprecipitationisgenerallyprojectedtoincreasemovingfromthecontrolperiodto 2060–2079,asindicatedbyincreasesinthescenariomeans.However,someclimatescenariosproject annualprecipitationdecreasesupto60mm.Almost80%ofthescenariospredictannualprecipitation increasesby2020–2039,whileby2060–207990%ofscenariospredictincreases
Almostallvariablesresultedinstatisticallysignificantchangesmovingfromthecontrolperiod
to2020–2039or2060–2079.Percolationtrendsarecorrelatedwithprecipitation,asmostscenarios projectionsresultinpercolationincreasesfollowinggreaterprecipitationvolumes.Finally,decreases
inspringsnowmeltoccurinalmostallscenariosbecausemorewinterprecipitationfallsintheform
ofrainduetowarmertemperatures.Changesinsurfacerunoffwerestatisticallyinsignificant,with
anequalnumberofscenariosprojectingslightincreasesordecreases.Thesechangesdependonthe magnitudeoftheprecipitationchangeandresultingET,soilwaterholdingcapacity,andpercolation
Trang 10xxx.e10 S.A Woznicki et al / Journal of Hydrology: Regional Studies xxx (2015) xxx.e1–xxx.e18
Fig 6.Watershed-wide water balance, where bars represent means and error bars represent maximum and minimum among all climate scenarios.
AverageannualETdecreasesslightlyfor80%ofscenariosin2020–2039and2060–2079,likely becauseatmosphericCO2concentrationsincrease.IncreasingCO2levelscausepartialclosureofplant stomatabecausetheydonotneedtoopenaswidelytoobtainnecessaryCO2 forphotosynthesis
3.3 Irrigationdemand
Cornandsoybeanirrigationdemandwereprojectedtochangeinresponsetoalteredfutureclimate, withchangesvaryingdependingonthemonth.Asobservedwiththewaterbalance,monthlydemand becomesmoreuncertainmovingfurtherintothefuturewithawiderrangeofpossibilitiesdepending
ontheclimatemodelandSRESstoryline.Monthlyarea-weightedirrigationdemandfor cornand soybeanacrossalltimeslicesarepresentedinFig.7aandb,respectively
CornirrigationdemandisgreatestinJuneandJuly,withlowestdemandsoccurringinMayand September(Fig.7a).AveragedemandacrossallscenariosandscenariosincreasesinMay,June,and September,whiledecreasesintheaveragesoccurforJulyandAugust.Thesechangesaremore pro-nouncedin2060–2079thanin2020–2039,whichreflectsthegreatertemperatureincreasesandmore pronouncedprecipitationchangesprojectedinthelate21stcentury(Figs.3and4).Peakirrigation demandshiftsfromoccurringgenerallyinJulyforthe1980–1999controltimeslicetomore com-monlyoccurringinJune.Thisshiftismoreapparentmovingfurtherintothefuture:demandisslightly greaterinJunefor2020–2039,butJulyaveragedemandfor2060–2079isabout20mmlessthanin June.GreateruncertaintyfurtherintothefutureisapparentforJune,July,andAugust,withagreater rangebetweenthefirstandthirdquartiles(boxes)andwhiskers/outliers.Theincreaseinuncertainty
isreflectedinthecoefficientofvariation (CV)acrossallscenarios foreachmonth/timeslice For example,CVinJulyincreasesfrom4%(1980–1999)to12%(2060–2079),whileAugustCVsmove from7%to21%inthesametimeperiod.Thesechangesindicatetheclimatescenarios’uncertainty
inprojectingfutureprecipitation,particularlyinJulyandAugust.Meanwhile,thefutureuncertainty increasesaresmallerinMay(CVfrom5%to11%)andSeptember(CVfrom6%to11%)movingfrom 1980–1999to2060–2079
Averageseasonaltotalsforcornirrigationdemandandcropyieldacrossallscenariosandtimeslices arepresentedinTable3.Changesinirrigationdemand,whethertheyareincreasesordecreases,vary
bymodelandSRESstoryline.By2020–2039,thewatershed-wideaveragechangeincornirrigation demandovertheentiregrowingseasonisbetween+20mmand−30mm.Movingto2060–2079,this changeisbetween+19mmand−41mmfrom1980to1999.Mostscenariosgenerallyprojectdecreases
intotalseasonalirrigationdemand(57%and71%predictdecreasesby2020–2039and2060–2079, respectively).Consequently,97%ofscenariospredictyielddecreasesby2020–2039,whileallofthem