ORIGINAL ARTICLEA new parameter for Ramanujan’s theta-functions and explicit values Nipen Saikia Department of Mathematics, Rajiv Gandhi University, Rono Hills, Doimukh 791 112, Arunacha
Trang 1ORIGINAL ARTICLE
A new parameter for Ramanujan’s
theta-functions and explicit values
Nipen Saikia
Department of Mathematics, Rajiv Gandhi University, Rono Hills, Doimukh 791 112, Arunachal Pradesh, India Received 5 January 2012; revised 12 January 2012; accepted 12 January 2012
Available online 31 January 2012
KEYWORDS
Theta-functions;
Parameters;
Explicit values
Abstract We define a new parameter A k,n involving Ramanujan’s theta-functions /(q) and w(q) for any positive real numbers k and n and study its sev-eral properties We also prove some gensev-eral theorems for the explicit evaluations
of the parameter A k,n and find many explicit values Finally, we establish an explicit formula for values of w(e2np) for any positive real number n in terms
of A k,n and give examples.
ª 2012 King Saud University Production and hosting by Elsevier B.V.
All rights reserved.
1 Introduction
For q :¼ e2piz, Im(z) > 0, define Ramanujan’s theta-functions /(q), w(q), and
f q) as
1319-5166 ª 2012 King Saud University Production
and hosting by Elsevier B.V All rights reserved.
Peer review under responsibility of King Saud
University.
doi: 10.1016/j.ajmsc.2012.01.004
Production and hosting by Elsevier E-mail address: nipennak@yahoo.com
Arab Journal of Mathematical Sciences (2012) 18, 105–119
King Saud University
Arab Journal of Mathematical Sciences
www.ksu.edu.sa
www.sciencedirect.com
Trang 2/ðqÞ :¼ X1
n¼1
qn2 ¼ #3ð0; 2zÞ
wðqÞ :¼X1
n¼0
qnðnþ1Þ=2¼ 21q1=8#2ð0; zÞ;
and
fðqÞ :¼ ðq; qÞ1¼ q1=24gðzÞ;
where #2, #3 are classical theta-functions [7, p 464], g denotes the Dedekind eta-function and
ða; qÞ1:¼Y1
k¼0 ð1 aqkÞ:
In his first notebook[6, vol I, p 248] S Ramanujan recorded many elementary and non elementary values of /(q) and w (q) All these values were proved by Berndt[4, p 325] and Berndt and Chan[5] They also found new explicit values /(q) Recently, Yi[8,9]evaluated many new values of /(q) and f(q) using modular identities, transformation formulae for theta-functions and the parameters
rk;n; r0k;n; hk;n, and h0k;n, defined, respectively, by
k1=4qðk1Þ=24fðqkÞ; q¼ e
2p ffiffiffiffiffi n=k
p
r0k;n:¼ fðqÞ
k1=4qðk1Þ=24fðqkÞ; q¼ e
p ffiffiffiffiffi n=k
p
hk;n:¼ /ðqÞ
k1=4/ðqkÞ; q¼ e
p ffiffiffiffiffi n=k
p
and
h0k;n:¼ /ðqÞ
k1=4/ðqkÞ; q¼ e
2p ffiffiffiffiffi n=k
p
Baruah and Saikia[2]also obtained several new explicit values of the theta-func-tion w(q) by finding explicit values of the parameters gk,n and g0
k;n which are de-fined, respectively, by
k1=4qðk1Þ=8wðqkÞ q¼ e
p ffiffiffiffiffi n=k
p
and
g0k;n:¼ wðqÞ
k1=4qðk1Þ=8wðqkÞ; q¼ e
p ffiffiffiffiffi n=k
p
In sequel to the above work, we now define a new parameter Ak,nfor any positive real numbers k and n and involving theta-functions /(q) and w(q) as
Trang 3Ak;n¼ /ðqÞ
2k1=4qk=4wðq2kÞ; q¼ e
p ffiffiffiffiffi n=k
p
In this paper, we study several properties of Ak,n which are analogous to those
of hk,n and gk,n and also establish its connections with the parameter rk,n and Ramanujan’s class invariants We prove some general theorems for the explicit evaluations of Ak,nby using some new theta-function identities and find many ex-plicit values of Ak,n We also offer a general formula for explicit evaluations of w(q) in terms of Ak,n and find some particular values
In Section 2, we record some transformation formulae for theta-functions and list the explicit values of rk,nand hk,nfrom[1]and[8]for ready reference in the later sections
In Section 3, we prove some new theta-function identities which will be used in the subsequent sections
In Section 4, we study several properties of Ak,nand establish relations connect-ing Ak,n with rk,n and Ramanujan’s class invariants
In Section 5, we prove some general theorems for the explicit evaluations of Ak,n and find many explicit values of Ak,n by using the results in Sections 2–4
Finally, in Section 6, we offer a general formula for the evaluations of w(q) in terms of Ak,n and find some particular values
To end this introduction, we define Ramanujan’s modular equation Let K, K0,
L, and L0denote the complete elliptic integrals of the first kind associated with the moduli k, k0, l, and l0, respectively Suppose that the equality
nK
0
0
holds for some positive integer n Then a modular equation of degree n is a rela-tion between the moduli k and l which is implied by(1.8) Ramanujan recorded his modular equations in terms of a and b, where a = k2and b = l2 We say that b has degree n over a By denoting zr= /2(qr), where q = exp(pK0/K), ŒqŒ < 1, the multiplier m connecting a and b is defined by m = z1/zn
2 Preliminary results
Lemma 2.1 [3, p 43, Entry 27(ii)] If a and b are such that the modulus of each exponential argument is less than 1 and ab = p, then
2 ffiffiffi
a
p
wðe2a 2
Þ ¼ ffiffiffi b
p
ea2= /ðeb 2
Lemma 2.2 [3, p 122, Entry 10(i), (ii), (iii)] We have
/ðqÞ ¼ ffiffiffiffi
z1
p
/ðqÞ ¼ ffiffiffiffiz
1
p
/ðq2Þ ¼ ffiffiffiffi
z
p
Trang 4Lemma 2.3 ([3, p 123, Entry 11(iii), (iv), (v)]) We have
wðq2Þ ¼
ffiffiffiffi
z1
p
a1=4
wðq4Þ ¼
ffiffiffiffi
z1
p
f1 ffiffiffiffiffiffiffiffiffiffiffi
1 a
p
g1=2
2 ffiffiffi 2
p
wðq8Þ ¼
ffiffiffiffi
z1
p
f1 ð1 aÞ1=4g
We also note that if we replace q by qnin the Lemmas 2.2 and 2.3, then z1and a will be replaced by zn and b, respectively, where b has degree n over a
Lemma 2.4 ([3, p 233, (5.2), (5.5)]) If m = z1/z3 andb has degree 3 over a, then
1 a ¼ðm þ 1Þð3 mÞ
3
3 ð3 þ mÞ
Lemma 2.5 ([3, p 231, Entry 5(x)]) If b has degree 3 over a, then
mð1 aÞ1=2þ ð1 bÞ1=2¼ 3
mð1 bÞ1=2 ð1 aÞ1=2
Lemma 2.6 ([1,8]) If rk,nis as defined in (1.1), then
r 2;3 ¼ ð1 þ ffiffiffi
2
p
Þ1=4; r 2;12 ¼ 2 5=24 ð2ð1 þ ffiffiffi
2
p
þ ffiffiffi 6
p
ÞÞ1=8; r 4;4 ¼ 2 5=16 ð1 þ ffiffiffi
2
p
Þ1=4;
r 4;16 ¼ 2 3=8 ð1 þ ffiffiffi
2
p
Þ1=2ð16 þ 15 2 1=4 þ 12 ffiffiffi
2
p
þ 9 2 3=4 Þ1=8; r 5;5 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5 þ ffiffiffi 5 p 2
s
;
r 5;20 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5 þ ffiffiffi 5 p p
51=4 1 ; r2;5¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ ffiffiffi 5 p 2
s
; r 2;20 ¼ð1 þ
ffiffiffi 5
p
Þ5=8ð2 þ 3 ffiffiffi
2
p
þ ffiffiffi 5
p
Þ1=8 ffiffiffi
2
r2;9¼ ð ffiffiffi
2
p
þ ffiffiffi 3
p
Þ1=3; r 2;36 ¼f2ð1 þ 35
ffiffiffi 2
p
28 ffiffiffi 3
p
Þg1=8
ð ffiffiffi 3
p
ffiffiffi 2
p
Þ2=3 ; r2;8¼ 2
3=16 ð1 þ ffiffiffi
2
p
Þ1=4;
r 2;32 ¼ 2 3=16 ð1 þ ffiffiffi
2
p
Þ1=4ð16 þ 15 2 1=4 þ 12 ffiffiffi
2
p
þ 9 2 3=4 Þ1=8; r 2;3=2 ¼ 2 7=24 ð1 þ ffiffiffi
3
p
Þ1=4;
r 2;6 ¼ 2 1=24 ð1 þ ffiffiffi
3
p
Þ1=4; r 2;5=2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 5
p
þ 1
p
þ ffiffiffi 2 p
r2;10¼ 1
2 ð1 þ ffiffiffi 5
p Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 5
p
þ 1
q
þ ffiffiffi 2 p
; r2;10¼ 1
2 ð1 þ ffiffiffi 5
p Þð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 5
p
þ 1
q
þ ffiffiffi 2
p Þ
;
r2;25=2¼5
1=4 þ 1
2 5=8 ; r2;50¼ 2
5=8
5 1=4 1; r4;2¼ 2
1=8 ð1 þ ffiffiffi
2
p
Þ1=8; r4;3¼ ð2 þ ffiffiffi
3
p
Þ1=4;
Trang 5r4;5¼ 1ffiffiffi
2
5
p þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 2ð1 þ ffiffiffi 5
p Þ q
; r4;7¼ ð8 þ 3 ffiffiffi
7
p
Þ1=4;
r 4;8 ¼ 2 1=4 ð1 þ ffiffiffi
2
p
Þ3=8 4 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 2þ 10 ffiffiffi 2 p q
; r 4;9 ¼1
2 þ3
1=4
ffiffiffi 2
p þ
ffiffiffi 3 p
2 ;
r4;25¼1
5 4 p
þ ffiffiffi 5
p
þ ffiffiffiffiffi
5 3
4 p
; r4;49¼1
4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4 þ ffiffiffi 7
p þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
21 þ 8 ffiffiffi 7 p q r
þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ffiffiffi
7
p þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
21 þ 8 ffiffiffi 7 p q
;
r4;6¼ ð1 þ ffiffiffi
2
p
Þ3=8 2ð1 þ ffiffiffi
2
p
þ ffiffiffi 6
p Þ
; r4;10¼ð1 þ
ffiffiffi 5
p
Þ9=8ð2 þ 3 ffiffiffi
2
p
þ ffiffiffi 5
p
Þ1=8
r 4;18 ¼ 2 1=8 ð ffiffiffi
3
p
þ ffiffiffi 2
p Þð1 þ 35 ffiffiffi
2
p
28 ffiffiffi 3
p
Þ1=8; r 2;18 ¼ 211=24ð1 þ ffiffiffi
3
p
Þ1=3ð1 þ ffiffiffi
3
p
þ ffiffiffi 2
p
3 3=4 Þ1=3;
r2;72¼ 213=48ð ffiffiffi
2
p
1Þ5=12ð ffiffiffi
2
p
þ ffiffiffi 3
p
Þ1=3ð4 ffiffiffi
2
p
þ 2 ffiffiffi 3
p
þ 33=4ð ffiffiffi
3
p
þ 1ÞÞ1=3:
Baruah and Saikia[1] corrected Yi’s incorrect value of r2,72
From[8, p 12, Theorem 2.1.2(i)–(iii)], we note that
Lemma 2.7 ([8]) If hk,n is as defined in (1.3), then
h3;3¼ ð2 ffiffiffi
3
p
3Þ1=4; h3;9¼1 2
1=3þ 41=3 ffiffiffi 3
ffiffiffi 2
p ffiffiffi 3
p
1;
h3;5¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5
p
1 2
s
:
3 Theta-function identities
In this section, we prove some new theta-function identities which will be used in the subsequent sections
Theorem 3.1 If P¼ /ðqÞ
q1=2wðq4Þ and Q¼
/ðq2Þ qwðq8Þ then P2þ32
Q2þ 4P
2
Q2 Q
2
P2
þ 8 ¼ 0:
Proof Transcribing P by using (2.3) and (2.6)and simplifying, we obtain ffiffiffiffiffiffiffiffiffiffiffi
1 a
p
2
Similarly, transcribing Q by using(2.4) and (2.7) and simplifying, we arrive at
Q4ð1 þ ffiffiffiffiffiffiffiffiffiffiffi
1 a
p
Þ2 ð16 þ 2Q2Þ2 ffiffiffiffiffiffiffiffiffiffiffi
1 a
p
Trang 6Employing(3.1)in(3.2) and simplifying, we obtain
Dividing (3.3)by P2Q2 and rearranging the terms, we complete the proof h Theorem 3.2 If P¼ /ðqÞ
q1=2wðq4Þ and Q¼
/ðq3Þ
q3=2wðq12Þ
2
Q2Q
2
P2
PQ
P
¼ 0:
Proof Transcribing P and Q using (2.3) and (2.6)and simplifying, we obtain
x :¼ ffiffiffiffiffiffiffiffiffiffiffi
1 a
p
2
8þ P2 and y :¼ ffiffiffiffiffiffiffiffiffiffiffi
1 b
p
2
where b has degree 3 over a
Employing(3.4)in Lemma 2.5, we obtain
and
3y
Eliminating m between(3.5) and (3.6)and then simplifying, we arrive at
2pffiffiffiffiffiffixy
ðpffiffiffiffiffiffixy
Squaring(3.7)and simplifying, we obtain
4pffiffiffiffiffiffixy
Squaring(3.8)and then factorizing by employing(3.4), we deduce that
ðP4 32PQ 6P3Q 6PQ3 P3Q3 Q4Þ
It is examined that there exists a neighborhood about origin, where the first factor
of(3.9) is not zero Then the second factor is zero in this neighborhood By the identity theorem the second factor is identically zero Thus, we conclude that
Dividing (3.10)by P2Q2and rearranging the terms, we complete the proof h
Theorem 3.3 If P¼ /ðqÞ
q3=4wðq6Þ and Q¼
/ðqÞ /ðq3Þ
Trang 7then P4¼432 288Q
4þ 128Q6 16Q8
Q8 6Q4þ 8Q2 3 : Proof Transcribing P by using (2.3) and (2.5)and Q by (2.2), we obtain
P¼ 2 ffiffiffiffi
m
b
and Q¼ ffiffiffiffi
m
p
where b has degree 3 over a and m = z1/z3
From(3.11), we deduce that
P4 ¼ 16Q4 1 a
b
Employing Lemma 2.4 in (3.12)and simplifying, we find that
Substituting for m from (3.11) in (3.13) and then simplifying, we complete the
4 Properties of Ak,n
Theorem 4.1 For all positive real numbers k and n, we have
(i) Ak,1= 1,
(ii) Ak,1/n= 1/Ak,n
Proof Using the definition of Ak,nand Lemma 2.1, we easily arrive at (i) Replac-ing n by 1/n in Ak,nand using Lemma 2.1, we find that Ak,nAk,1/n= 1 which com-pletes the proof of (ii) h
Remarks 4.2 By using the definitions of /(q), w(q) and Ak,n, it can be seen that
Ak,nhas positive real value and that the values of Ak,nincrease as n increases when
k> 1 Thus, by Theorem 4.1(i), Ak,n> 1 for all n > 1 if k > 1
Theorem 4.3 For all positive real numbers k, m, and n, we have
Ak;n=m¼Amk;n
Ank;m:
Proof Using the definition of Ak,n, we obtain
Trang 8Ank;m ¼ n
1=4/ðe2p ffiffiffiffiffiffiffiffi
n=mk
p Þ
m1=4/ðe2p ffiffiffiffiffiffiffiffi
m=nk
p Þ
Using Lemma 2.1 in the denominator of right hand side of(4.1)and simplifying,
we complete the proof
Corollary 4.4 For all positive real numbers k and n, we have
Ak2 ;n¼ Ank;nAk;n=k:
Proof Setting k = n in Theorem 4.3 and simplifying using Theorem 4.1(ii), we obtain
Replacing m by n, we complete the proof h
Theorem 4.5 Let k, a, b, c, and d be positive real numbers such that ab = cd Then
Aa;bAkc;kd¼ Aka;kbAc;d:
Proof From the definition of Ak,n, we deduce that, for positive real numbers k, a,
b, c, and d,
Aka;kbA1a;b¼e
pðk1Þ ffiffiffiffi ab p
= wðe2p ffiffiffiffi
ab p Þ
k1=4wðe2kp pffiffiffiffiab
and
Akc;kdA1c;d ¼e
pðk1Þ pffiffifficd
= wðe2p pffiffifficd
Þ
k1=4wðe2kp pffiffifficd
Now the result follows readily from(4.3), (4.4) and the hypothesis ab = cd h Corollary 4.6 For any positive real numbers n and p, we have
Anp;np ¼ Anp2 ;nAp;p:
Proof The result follows immediately from Theorem 4.5 with a = p2,
b= 1,c = d = p and k = n h
Now, we give some relations connecting the parameter Ak,n with rk,n and Ramanujan’s class invariants
Trang 9Theorem 4.7 Let k and n be any positive real numbers Then
(i) Ak;n¼r
2
4k;n
rk;n
, (ii) An;k ¼r
2
4n;k
r2
4k;n
Ak;n
Proof Let q¼ ep ffiffiffiffiffi
n=k
p Using the results /ðqÞ ¼f
2ðqÞ fðq2Þ and wðqÞ ¼
f2ðq2Þ fðqÞ from [3, p 39] in the definition of Ak,n, we find that
2kÞf2ðqÞ
Employing the definition of rk,n from (1.1)in(4.5), we complete the proof of (i) Proof of (ii) follows easily from (i) h
Corollary 4.8 For all positive real numbers n and p, we have
(i) A1;n¼ r2
4;n,
(ii) An;n¼r
2
4n;n
rn;n
, (iii) Anp;np ¼ An;np2Ap;pr2
4;p 2
Proof To prove (i), we set k = 1 in Theorem 4.7(i) and use the result rk,1= 1 from (2.10) Proof of (ii) follows from Theorem 4.7(i) with k = n To prove (iii), we set a = 1,b = p2, c = d = p, and k = n in Theorem 4.5 and use part (i) Theorem 4.9 For all positive real number n, we have
(i) An;2 ¼g
2
8n
g2n,
(ii) An=2;2¼ 21=2gnG2n
Proof (i) From[8, p 18, Theorem 2.3.3(i)], we note that
where the class invariant gn is given by
gn ¼ 21=2q1=24vðqÞ;
where q :¼ ep pffiffin
; nis a positive real number, and v(q) = (q;q2)1 Setting n = 2 and replacing k by n, we get
Trang 102
2;4n
where we used the result rk,n= rn,k from (2.10)
Using the result(4.6) in(4.7), we complete the proof
To prove (ii), we replace n by n/2 in part (i) and use the result
g4n= 21/4gnGn from [4, p 187, Entry 2.1], where the class invariant Gn is given
by Gn= 21/2q1/24v(q) h
5 Explicit evaluations of Ak,n
In this section, we prove some general theorems on Ak,n and then use these theo-rems to find explicit values of Ak,n
Theorem 5.1 We have
25=2 A22;nþ 1
A22;4n
!
þ 2A2;n
A2;4n
A2;4n
A2;n
þ 8 ¼ 0:
Proof We use the definition of Ak,nin Theorem 3.1 to prove the theorem h Theorem 5.2 We have
(i) A2;2¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ ffiffiffi
2 p p
, (ii) A2;4¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 2þ ffiffiffi
2
p
þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
7þ 5 ffiffiffi 2 p p
r
, (iii) A2;1=2¼ 1= ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ ffiffiffi 2 p p
¼
ffiffiffiffiffiffiffiffiffi 2 pffiffi2 2
q , (iv) A2;1=4¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 2þ ffiffiffi
2
p
þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
7þ 5 ffiffiffi 2 p p
r
¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð ffiffiffi 2
p
1Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
7þ 5 ffiffiffi 2 p p
ffiffiffi 2 p
=
r
Proof Setting n = 1/2 in Theorem 5.1 and using Theorem 4.1(ii), we obtain
27=2
A22;2þ 4
A42;2 A4
2;2
!
Solving(5.1)and using the fact in Remark 4.2, we complete the proof of (i) Again setting n = 1 in Theorem 5.1 and using Theorem 4.1(i), we obtain
25=2 1þ 1
A2
!
A2 A2
2;4
!
Trang 11Solving(5.2)and using the fact in Remark 4.2, we prove (ii).
Proofs of (iii) and (iv) easily follow from parts (i) and (ii), respectively and the Theorem 4.1(ii) h
Theorem 5.3 We have
A2;n
A2;9n
A2;9n
A2;n
þ 25=2 A2;nA2;9nþ 1
A2;nA2;9n
þ 6 A2;n
A2;9n
þA2;9n
A2;n
¼ 0: Proof Proof follows from Theorem 3.2 and the definition of Ak,n h
Theorem 5.4 We have
(i) A2;3¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ ffiffiffi
2
p
þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9þ 6 ffiffiffi 2 p p
q
, (ii) A2;9¼ 3 þ 2 ffiffiffi
2
p þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 2ð9 þ 6 ffiffiffi
2
p Þ
q
, (iii) A2;1=3 ¼ ð3 2 ffiffiffi
2
p
Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9þ 6 ffiffiffi 2 p p
þ ffiffiffi 2
p
2, (iv) A2;1=9 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 2ð9 þ 6 ffiffiffi
2
p Þ
q
ð3 þ 2 ffiffiffi
2
p Þ
Proof Setting n = 1/3 in Theorem 5.3 and using Theorem 4.1(ii), we obtain
1
A42;3 A4
2;3
!
A22;3þ A2
2;3
!
Solving(5.3)and using the fact in Remark 4.2, we arrive at (i)
Again setting n = 1 in Theorem 5.3 and using Theorem 4.1(i), we obtain 1
A22;9 A22;9
!
þ ð6 þ 25=2Þ 1
A2;9
þ A2;9
Solving(5.4)and using the fact in Remark 4.2, we complete the proof of (ii) Noting A2,1/3= 1/A2,3and A2,1/9= 1/A2,9from Theorem 4.1(ii), we prove (iii) and (iv), respectively h
Theorem 5.5 We have
(i) A3;2¼ ð2 þ 2 ffiffiffi
2
p Þð1 þ ffiffiffi
2
p
þ ffiffiffi 6
p Þ
, (ii) A4;4¼ 21=4 1þ ffiffiffi
2
p
Þ3=4ð16 þ 1521=4þ 12 ffiffiffi
2
p
þ 923=4
, (iii) A5;5¼ 21=2ð5 þ ffiffiffi
5
p
Þ1=2ð51=4 1Þ2¼ 27=2ð5 þ ffiffiffi
5
p
Þ1=2ð51=4þ 1Þ2ð ffiffiffi
5
p
þ 1Þ2, (iv) A5;2¼ 21=2ð1 þ ffiffiffi
5
p
Þ3=4ð2 þ 3 ffiffiffi
2
p
þ ffiffiffi 5
p
Þ1=4, (v) A9;2¼ 21=4ð ffiffiffi
3
p
þ ffiffiffi 2
p Þð1 þ 35 ffiffiffi
2
p
28 ffiffiffi 3
p
Þ1=4, (vi) A8;2¼ 23=16ð1 þ ffiffiffi
2
p
Þ1=4ð16 þ 1521=4þ 12 ffiffiffi
2
p
þ 23=4Þ1=4, (vii) A ¼ 23=4ð1 þ ffiffiffi
3
p
Þ1=4,