1. Trang chủ
  2. » Thể loại khác

Logic as a tool a guide to formal logical reasoning ( PDFDrive ) 207

1 1 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Deductive Reasoning in First-order Logic
Trường học Unknown University
Chuyên ngành Formal Logical Reasoning
Thể loại N/A
Định dạng
Số trang 1
Dung lượng 69,86 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

k 4.3.3 Natural Deduction for first-order logic with equality The system of Natural Deduction presented so far does not involve rules for the equality.. Such rules can be added to produc

Trang 1

k

4.3.3 Natural Deduction for first-order logic with equality

The system of Natural Deduction presented so far does not involve rules for the equality

Such rules can be added to produce a sound and complete system of Natural Deduc-tion for first-order logic with equality, as follows In each of the rules below, t, t i , s i

are terms

(Ref)

t=t

(Sym)

t1=t2

t2=t1

(Tran)

t1=t2, t2 =t3

t1=t3

(ConFunc)

s1=t1, , s n=t n

f(s1, , s n) =f(t1, , t n) for everyn-ary functional symbolf (ConRel)

s1=t1, , s n=t n

p(s1, , s n)→ p(t1, , t n) for everyn-ary predicate symbolp

Example 136 Using Natural Deduction with equality, derive

∀ x ∀ y(f(x) =y → g(y) =x)ND ∀ z(g(f(z)) =z)

where f, g are unary function symbols.

(∀ I) (→ E)f(x) =f(x) (∀E)

(∀E) ∀ x ∀ y(f(x) =y → g(y) =x)

∀ y(f(x) =y → g(y) =x)

f(x) =f(x)→ g(f(x)) =x

g(f(x)) =x

∀ z(g(f(z)) =z) Finally, two important general results are as follows

Theorem 137 [Equivalent replacement] For any formula A(x ) and terms s, t free for x

in A , the following is derivable in ND:

s=t ND A[s/x]↔ A[t/x].

The proof can be done by induction onAand is left as an exercise

The proof of the following fundamental result, for ND with equality, will be outlined

in Section 4.6

Ngày đăng: 28/10/2022, 16:02