1. Trang chủ
  2. » Thể loại khác

Logic as a tool a guide to formal logical reasoning ( PDFDrive ) 242

1 1 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 1
Dung lượng 44,05 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

References for further reading For more detailed proofs of soundness and completeness of deductive systems for first-order logic, see: van Dalen 1983 and Chiswell and Hodges 2007 for a c

Trang 1

k

Undecidability Theorem? Alas, no The catch is that there may be an infinite number of such candidate sets of ground instances to check

References for further reading

For more detailed proofs of soundness and completeness of deductive systems for first-order logic, see: van Dalen (1983) and Chiswell and Hodges (2007) for a

com-pleteness proofs for ND; Shoenfield (1967), Hamilton (1988), Mendelson (1997), and Enderton (2001) for completeness of H; Nerode and Shore (1993), Fitting (1996), and Ben-Ari (2012) for completeness of ST and RES; Smullyan (1995) and Smith (2003)

for completeness of ST; Ebbinghaus et al (1996) and Hedman (2004) for completeness

of RES; and Boolos et al (2007) for completeness of the Sequent calculus presented

there

For more on Herbrand’s Theorem see Shoenfield (1967), Nerode and Shore (1993), and Fitting (1996) For expositions and discussions of Gödel’s Incompleteness Theorems, see

Jeffrey (1994), Ebbinghaus et al (1996), Enderton (2001), Hedman (2004), and Boolos

et al (2007).

Exercises

In the following exercises, FO stands for first-order logic, H, ND, ST, and RES refer

to the respective deductive systems for FO introduced here, and D refers to any of these

deductive systems All references to definitions and results in Section 2.7 now refer to the respective definitions and results for FO

4.6.1 Prove Proposition 60 for FO

4.6.2 Prove Proposition 62 for:

4.6.3 Prove Proposition 63 for:

4.6.4 Prove Proposition 68 generically for each deductive system D.

4.6.5 Prove Proposition 70 generically for each deductive system D.

4.6.6 Prove Theorem 157 for:

4.6.7 Prove Theorem 158 for:

4.6.8 Prove Lemma 164

Ngày đăng: 28/10/2022, 15:49