Tlreoreins of tlie :-'l'ransform 327 of the Laplace trarrsforrn see Cliaptrr 4 7.. It slioulrl be many properties ol: tlie 1,aplac.e transform also apply to tlic x-transform.. The most i
Trang 113.4 Tlreoreins of tlie :-'l'ransform 327
of the Laplace trarrsforrn (see Cliaptrr 4 7 ) T h a t is no coincideticcl ab we saw
in Section 13.3.2 that the ansforni of a series can be thotiglit of as :
( w i t inuous-timc signal con g pmely of delta impulses It slioulrl be
many properties ol: tlie 1,aplac.e transform also apply to tlic x-transform
The most impor tarit tlteorrrri:, of the ;-tuansforrr~ arc snnimarised in Table 13.1 They cair i)ISo be sliowri without rcferrirrg to the Laplace transform by iiiscrting them irrto (13 1) In contrast to tlic tlieoiems 01 the Laplace transform the intlc pcnc-lei~t variable i s deliiied orrly for iiitegei v a l u c ~ In thc square brackets [ 1, no
s h i f t s /t E- Z &re allowed As for the similarity tlieorczn (4.241, for samplt~tl signals
t i w orily scaling of the time axis that i:, pe'rinitted i s cx = -1, so that bccomes the time reversal theorcm for the c-traiisforni Reversing tlie index of a series of values t m i be dorre simply by w d i i i g thcin backwards
rc pclrmit tecl and corrcspondirigly for the shift thcorcm, only in
Shift,
Mult iplicatiorr
by k:
Time :eversal
Tirne-dorrraiii z-domain
x X ( x ) 1- b Y ( z ) R W > RC>C{.cJ? ROC(y)