1. Trang chủ
  2. » Y Tế - Sức Khỏe

TRENDS IN MATHEMATICAL PSYCHOLOGY ppt

493 328 0
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Trends In Mathematical Psychology
Tác giả E. Degreef, J. Van Buggenhaut
Trường học Centrefor Statistics and Operational Research Brussels, Belgium
Chuyên ngành Psychometrics
Thể loại Sách tham khảo
Năm xuất bản 1984
Thành phố Amsterdam
Định dạng
Số trang 493
Dung lượng 20,28 MB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

TRENDS IN MATHEMATICAL PSYCHOLOGY... TRENDS IN MATHEMATICAL PSYCHOLOGY 1984 NORTH-HOLLAND... 1984 All rights reserved.. Library of Comgmm Catmlogl~g 11 PmbUeathm Datm MBin.entry under

Trang 2

TRENDS IN MATHEMATICAL PSYCHOLOGY

Trang 4

TRENDS IN MATHEMATICAL PSYCHOLOGY

1984

NORTH-HOLLAND

Trang 5

Elsevier Science Publishers B.V 1984

All rights reserved No part of this publication may be reproduced stored in a retrieval system or transmitted in any form o r by any means electronic mechanical photocopying recording o r otherwise without the prior

permissionof thecopyright owner

ISBN: 0 4 4 87512 3

Publishers:

ELSEVIER SCIENCE PUBLISHERS B V

P.O Box 1991 1ocN) B Z Amsterdam

T h e Netherlands

Sole disiribur0r.r for the U.S.A und (briadu

ELSEVIER SCIENCE PUBLISHING C O M P A N Y INC

52 Vanderbilt Avenue

New York N.Y 1OUI7

U S A

Library of Comgmm Catmlogl~g 11 PmbUeathm Datm

MBin.entry under title:

Trends in mathematical psychology

(Advances in psychology ; 2 0 )

Papers presented at the 14th European Mathematical

Ssychology Group Meeting, held in Brussels, Sept 12-14,

1983

Includes indexes

Psychometrics Congresses I Degreef, E., 1953-

TI Buggenhaut, J van, 1937- 111 European

Mathematical Psychology Group

Psychology Group Meeting (14th : 1983 : Brussels,

Belgium)

Netherlands) 4 20

IV European Mathematicd'

V Series: Advances in psychology ( h t e r d a m ,

BF39.T74 1984 150' 28'7 84-6032

ISBN 0-444-87512-3 ( U S )

P R I N T E D IN THE N E T H E R L A N D S

Trang 6

PREFACE

T h i s volume g a t h e r s most o f t h e papers p r e s e n t e d a t t h e 1 4 t h Eurooean Mathe-

m a t i c a l Psychology Grouo Meetinq The m e e t i n g took p l a c e i n B r u s s e l s f r o m Sentember 12 t o September 14, 1983 and was h o s t e d by t h e V r i j e U n i v e r s i -

t h e i d e a t o make a s e l e c t i o n o f t h e c o n t r i b u t i o n s and t o g a t h e r them i n a book

I n o r d e r t o s t r u c t u r e t h e whole, we t o o k t h e l i b e r t y t o groun t h e papers

i n t o t h r e e p a r t s , knowing t h a t t h e c l a s s i f i c a t i o n can be discussed;

o f t h e papers, indeed, can f i n d a p l a c e i n more than one p a r t

ble hope t h a t t h e s t u d i e s c o l l e c t e d here, f a i r l y r e o r e s e n t t h e d i f f e r e n t

p e r s p e c t i v e s and t h a t t h e volume as a whole w i l l be a dynamic r e s o u r c e f o r those who want t o keeD a b r e a s t o f f l a t h e m a t i c a l Psychology i n g e n e r a l and

Trang 7

This Page Intentionally Left Blank

Trang 8

Tree r e n r e s e n t a t i o n s o f a s s o c i a t i v e s t r u c t u r e s i n semantic and

Trang 9

G , Oe S o e t e , W.S DCa.tbo, C.Pl FUMLU, J.D CmoU

ifleak and s t r o n g models i n o r d e r t o d e t e c t and measure o o v e r t y

Trang 10

an Poisson model f o r misreadings

model and d i c h o t o m i z a t i o n o f graded resnon-

P.G.P! .TanAeen, E.E Qobkam

Trang 11

This Page Intentionally Left Blank

Trang 12

PARTICIPANTS

H A B D I , L a b o r a t o i r e de p s y c h o l o g i e , Ancienne Facul t e , Rue Chabot Charny,

21000 Di j o n , France

H ALGAYER, D o n n d o r f o r s t r 93, D-8580 Bayreuth, Federal R e p u b l i c Germany

J ANDRES, R a t h a u s s t r 53, 53 Bonn 3, Federal R e p u b l i c Germany

J.-P BARTHELEMY, ENST, Deoartement d ' I n f o r m a t i q u e , 46 Rw B a r r a u l t

75634 P a r i s Cedex 13, France

A BOHRER CRS, S e c t i e voor P s y c h o l o g i s c h Onderzoek, Kazerne K l e i n K a s t e e l -

t j e , 1000 B r u s s e l , Belgium

H F J M BUFFART, P s y c h o l o g i sch L a b o r a t o r i urn , Kathol i e k e U n i v e r s i t e i t

Nijmegen, Postbus 9104, 6500HE Nijmegen, The N e t h e r l a n d s

M.A CROON, K a t h o l i e k e Hopeschool T i l b u r g , Hogeschoollaan 225, T i l b u r g , The Nether1 ands

E DEGREEF, CSOO, V r i j e U n i v e r s i t e i t B r u s s e l , P l e i n l a a n 2, 1050 B r u s s e l , Belgium

L DELBEKE, P s y c h o l o g i s c h I n s t i t u u t , K a t h o l i e k e U n i v e r s i t e i t Leuven,

T i e n s e s t r a a t 102, 3000 Leuven, Belgium

G DE MEUR, U n i v e r s i t e L i b r e de B r u x e l l e s , CP 135, 1050 B r u x e l l e s , Belgium

G DE SOETE, D i e n s t v o o r Psychologie, R i j k s u n i v e r s i t e i t Gent, H e n r i

Dunantlaan 2, 9000 Gent, Belgium

M DESPONTIN, CSOO, V r i j e U n i v e r s i t e i t B r u s s e l , P l e i n l a a n 2, 1050 B r u s s e l , Be1 gium

P DICKES, U n i v e r s i t e de Nancy 11, Bd A l b e r t I , BP 3397, 54015 Nancy-Cedex, France

S GROSSBERG, Center f o r A d a p t i v e Systems, Boston U n i v e r s i t y , 111 C u m i n g t o n

S t r e e t , Boston, Massachusetts 02215, USA

P.K.G GUNTHER, S i e b e n g e b i r g s t r 11, D-5330 K o n i g s w i n t e r 41, F e d e r a l R e p u b l i c Germany

M HAHN, M o l l w i t z s t r 5, D-1000 B e r l i n 19, Federal R e p u b l i c Germany

K HERBST, I n s t i t u t filr Psychologie, U n i v e r s i t a t Regensburg, U n i v e r s i t a t s t r

31, D-8400 Regensburg, Federal R e p u b l i c Germany

D HEYER, I n s t i t u t f i r P s y c h o l o g i e , U n i v e r s i t a t K i e l , Ohlshausenstr 40/60, D-2300 K i e l , Federal R e p u b l i c Germany

M.G.H JANSEN, I n s t i t u u t voor Onderwi jskunde, R i j k s u n i v e r s i t e i t Groningen, Westerhaven 16, 9718 AW Groningen , The N e t h e r l a n d s

V.Y KRYLOV, Department o f Mathematical Psychology, I n s t i t u t e o f Psychology, USSR, Academy o f Sciences, Moscow 129366, 13 Yaroslavskaya, USSR

N LAKENBRINK, A u f dem Kampf 11, D-2000 Hamburg 63, Federal R e p u b l i c Germany

X LUONG, L a b o r a t o i r e de Mathematiques, U n i v e r s i t e de Besancon, Besancon, France

R.R MAC DONALD, Department o f Psychology, U n i v e r s i t y o f S t i r l i n g , S t i r l i n g FK94LA S c o t l a n d

Trang 13

C MULLER, L e h r s t u h l fur P s y c h o l o g i e 111, U n i v e r s i t a t Regensburg, Postfach

K R A I N I O , U n i v e r s i t y o f H e l s i n k i , P e t a k s e n t i e 44, 00630 H e l s i n k i , F i n l a n d F.S ROBERTS Qutqers, S t a t e U n i v e r s i t y c f f'ew Jersey Deep o f 'lath a t New Brunswick, H i l l Center f o r t h e '4athematical Sciences, Rush Camous, New Rrunswick, New J e r s e y 08903, 1J.S.A

E.E ROSKAM, Vakgroep Mathematische P s y c h o l o g i e , K a t h o l i e k e U n i v e r s i t e i t Nijmegen Postbus 9104, 6500 HE Nijmegen, The N e t h e r l a n d s

M ROUBENS, F a c u l t e P o l y t e c h n i q u e de Mons, 9 Rue de Houdain, 8-7000 Mons, Belgium

SUCK, U n i v e r s i t a t Osnabruck, P o s t f a c h 4469, 45 Osnabruck, F e d e r a l

Republ i c Germany

TEROUANNE, UER Mathematiques, U n i v e r s i t e Paul V a l e r y , BP 5043, 34032

M o n t p e l l i e r - Cedex, France

VAN ACKER, 1 Chaussee de Wavre, 1050 B r u x e l l e s , B e l g i u m

VAN BUGGENHAUT, CSOO V r i j e U n i v e r s i t e i t B r u s s e l , P l e i n l a a n 2

J.C VAN SNICK F a c u l t 6 des Sciences Economiques e t S o c i a l e s U n i v e r s i t e de

1 ' E t a t a Mons, 17 P l a c e Warocque, 7000 Mons, Belgium

V.F VENDA Department o f E n g i n e e r i n g Psychology, I n s t i t u t e of Psychology, USSR Academy o f Sciences, Moscow 129366, 13 Yaroslavskaya USSR

R VERHAERT, CSOO, V r i j e U n i v e r s i t e i t B r u s s e l , P l e i n l a a n 2 , 1050 B r u s s e l ,

B e l g i u m

Trang 14

Participants

N D VERHELST, Subfacul t e i t der psychologie, vakgroep PSM, R i jksuniversi-

t e i t Utrecht, Sint-Jacobsstraat 14, 3511 BS Utrecht, The Netherlands

Ph VINCKE, I n s t i t u t de Statistique, Universite Libre de Bruxelles,

CP 210, 8-1050 Bruxelles, Belgium

Trang 15

This Page Intentionally Left Blank

Trang 16

P A R T I PERCEPTION, LEARNING AND MEMOR Y

Trang 17

This Page Intentionally Left Blank

Trang 18

E Degreef and J Van Bu genhaut (editors)

0 Elsevier Science Dublisfers B V (North-Holland), 1984

TREE REPRESENTPTIONS OF ASSOCIATIVE STPUCTUpE5 I N SFFWNTIC AND

E P J SOD1 C VFF1ORY RE SF ARCH Herve Abdi

L a b o r a t o i r e de Ps.vcholoaie, D i j o n Jean-Pierre Barth12l&ny F.PJ.q.T., P a r i s Xuan Luona

L a b o r a t o i r e de Mathematioues, Besanqon lnle exnose some research i n the area o f psycholorry o f

The u t i l i z a t i o n o f c l u s t e r i n q methods f o r a t t e s t i n a t h e o r a a n i r a t i o n o f memo-

r v o r r e v e a l i n g i t s s t r u c t u r e has been s t r o n y l y advocated r e c e n t l y by some authors i n d i f f e r e n t areas o f c o g n i t i v e Fsycholooy (see, among o t h e r s :

M i l l e r (1969) , Henley (1969), F r i e n d l y (19781, Rosenbera e t a1 (1968) , (1972), ( 1 9 8 2 ) ) Most o f t h e used methods amount t o r e n r e s e n t the o r i g i n a l m a t r i x

b y an U l t r a w t r i c Tree Recently, t h e r e has been an a t t e m p t t o b u i l d sow

methods l e a d i n g t o r e n r e s e n t a t i o n s l e s s s t r i n g e n t than the c l a s s i c a l U1 t r a -

m e t r i c Tree, i e the A d d i t i v e Tree (see C a r r o l l & Chang (1973), Cunningham (1974), (1978); S a t t a t h R Tversky (1977)) Ye nronose h e r e a f t e r an (econo-

m i c a l ) h e u r i s t i c g i v i n a an A d d i t i v e Tree from a o r o x i m i t y m a t r i x and i l l u s t r a -

t e i t w i t h some examples b o r r o w i n g f r o m o u r c u r r e n t research o r from c l a s s i -

c a l oaners

T h i s naner i s t h r e e f o l d : we f i r s t d e s c r i b e

Trang 19

2 A RUNCH OF EXAWLES

2.1 RAPTLET': : " ' i l ' f T C THE GHOSTS"

I n 1932, R a r t l e t t asked i: few suhdects t o read an l r w r i c a n I n d i a n f o l k t a l e (named "The '.tar o f the chosts"! and t o r e c a l l the s t o r i t on r e v e r a l occasions ( a w t h o d c a l l e d "rerleatec' r e n r o d u c t i o n " ) ; i n a v a r i a n t o f the method ( i e

" y e r i a l r e n r o d u c t i o n " ) a chain o f d i f f e r e n t s u h i e c t s i s used, the f i r s t

heinq shown the o r i c l i n a l t e x t and then r e c a l l i n n f o r the second s u b j e c t who would nass i t t o a t h i r d and s o on These c l a s s i c a l e x n e r i w n t s o f P a r t l e t t

w i l l serve here t o i l l u s t r a t e a s e t o f i n f o r m a t i c nrocedures, the aim of which i s t o b u i l d s o w distances hetween t e x t s

I t must be c l e a r t h a t when we sneak of t h e t e x t oiven by a s u b i e c t , we

c o u l d sqeak as w e l l o f a s e t o f themes o r ideas aiven by a suhdect D r o v i - dino an adequate codinc; o f the raw data

The t e x t s are f i r s t t r a n s f o m d i n a d i s k f i l e , then f o r each t e x t we b u i l d the Lexicon associated w i t h i t This Lexicon c o u l d be e i t h e r a Boolean Lexicon (i e i t rnerelv i n d i c a t e s the Presence o r the Absence o f the i t e m

o f Vocabulary) o r an i n t e o e r Lexicon ( i e i t i n d i c a t e s t h e numher o f Occur- rences o f each i t e m ) From the d i C f e r e n t Lexicons (Boolean or I n t e g e r ) we

b u i l d - by union - a General Lexicon t h a t d e f i n e s the Vocabularv shared hy the d i f f e r e n t t e x t s

R ) Construction o f distances hetween t e x t s

k n e n d i n q on the p o i n t o f view adonted, we c o u l d d e f i n e d i f f e r e n t distances;

as an i l l u s t r a t i o s we examine t h r e e ways:

( i \ the t e x t s as suhsets of the Vocabulary

( i i ) the t e x t s as R i - o a r t i t i n n s o f the Vocahularv

( i i i )a "orobabi 1 i s ti c " q e n e r a 1 i t a t i o n

Dpncte by L i the Lexicon associated w i t h a t e x t T i , the aeneral Lexicon hy

V = 0 L i and by the comlement o f L i i n V

i

Trang 20

Tree representations associative structures

d ( T i , T j ) = 2( l L i n L i l + l E q n l ) ( l L i ~ ~ l + l E n L j l )

= 2( lT"Kil)( I L i A L j I ) ( i i i ) I n o r d e r t o take e x n l i c i t l y account o f t h e I n t e g e r Lexicons we c o u l d

T h i s r e s e a r c h l a y s on t h e b o r d e r between t h e work on t h e o r o a n i z a t i o n o f t h e semantic memory and t h e work unon the " i m p l i c i t Dsycholoqy" The ourpose i s

t o d e s c r i b e t h e s u b j e c t i v e o r s a n i z a t i o n o f t h e q u a l i f i e r s o f t h e c h a r a c t e r

As a m a t t e r o f f a c t , i t has o f t e n been n o t e d t h a t we t e n d t o qroup s u b j e c -

t i v e l y some f e a t u r e s o f c h a r a c t e r as i f we has an " I m o l i c i t Theory o f Per-

s o n a l i t y " ( c f e.a., Rosenherrr e t a1 (1972), 'Veoner and V a l l a c h e r ( 1 9 7 7 ) )

I n t h i s e x p e r i m e n t we s e l e c t f i f t y e i q h t q u a l i f i e r s o f t h e c h a r a c t e r ( u s i n a some Thesauruses and a b i t o f l i t e r a t u r e , ) These q u a l i f i e r s a r e then

o r i n t e d on s e o a r a t e cards and a i v e n i n d i v i d u a l l y t o t w e n t y - e i o h t s u b j e c t s

w i t h t h e r e q u e s t t h a t he o r she s o r t t h e cards i n t o D i l e s w i t h t h e c o n s t r a i n t

t h a t " t h e cards i n a same w i l e g i v e t h e f e e l i n g t o no t o o e t h e r " ; s u b j e c t s were f r e e t o choose t h e numher o f D i l e s f o r s o r t i n n ( f o r a r e v i e w o f t h e

p r o and c o n t r a o f t h e s o r t i n a method, see Rosenbern ( 1 9 8 2 ) )

N o t i c e t h a t one c o u l d " fuzzy " t h e "boolean" d i s t a n c e i n (i) and ( i i ) by

t a k i n g t h e f u z z y e q u i v a l e n t o f t h e u n i o n and i n t e r s e c t i o n , i .e Min and Max

*

Trang 21

6

Hence, each subject exoresses his oninion by a nartition on the s e t of the

n u a l i f i e r s , a n d f o r usino as a 0-rlethodoloay ( c f Kerlinoer (1973)) the afore evoked distances between nartitions could e a s i l y be used The p a r t i -

t i o n given by a subject i s associated with a matrix whose rolls and columns ren-esert the Q u a l i f i e r s , a n d where we p u t a 1 a t the intersection of a row

and a column i f the nualifiers are not sorted i n the same n i l e by the sub-

i e c t Obviously t h i s i s a distance matrix ( c f W l l e r ( 1 9 6 9 ) \ , and so will

he the matrix definetiby the sum o f the matrices of tbe d i f f e r e n t subjects

I n this matrix we simnly count the number of suhjects who do n o t n u t tooe- ther the q u a l i f i e r s

by the sum o f the so-called incidence matrix (where a 1 means t + a t the q u a -

l i f i e r s are i n the same n i l e ) , f n r commodity reasons t h i s i s the m a t r i x we qive l a t e r ( c f Table 3 )

I t must be noted, in nassinq, t h a t the Data obtained a n d consenuently the distance matrix denend uoon the w t h o d s desinned f o r o b t a i n i n n such Data

I n n a r t i c u l a r , other wthods ( e 0 word associations, o r distances between words in free-recall, e t c ) lead to other results (see Pbdi (1383))

hierarchical clusterinn usinq Johnson's (1967) connectedness a n d diarceter mthod These results are recalled i n 4 ( c f Table 4 and Fioure 5 )

The second i s extracted from a study conducted b v Henlev (1969)

tained from twenty one subjects a n estimation of the distance between twelve

animal terms ( f o r each subject she simoly counts the number of terms sepa-

r a t i n g the terms of i n t e r e s t i n a l i s t given by the subiect nrovided w i t h the instruction t o " l i s t a l l the animals thev could"); the matrices are then standardized and the mean f o r each cell (e.4 across subjects) give the entrv o f a dissimilarity matrix

Finallv, Friendly (1979), i n a naoer akind t o the two orevious ones,

Pually vie could have & f i r e d a matrix o f co-occurences

Fiftv college students, each sorted fortv-eiaht words ac-

She oh-

Trang 22

Tree representations of associative structures

s t r o n c r l y advocate t h e use o f h i e r a r c h i c a l c l u s t e r i n ? t o diaaram t h e memory

o r p a n i z a t i o n

e x c e p t t h a t t h e o r i o i n a l d a t a came from f r e e r e c a l l exDeriments The data were "a n r i o r i " o r q a n i z e d i n t h r e e subsets: animal terms, n a r t s o f t h e huran body, vegetables The a i r o f t h e s t u d y was t h e r e c o v e r y o f t h i s a D r i o r i

t h e Sranh, i e b e i n q a t r e e bfe d e t a i l t h i s p o i n t i n a moment

3.1 TRFFS

A q e n e r a l d e f i n i t i o n o f a Tree can be a c y c l e f r e e , connected, u n d i r e c t e d aranh; f o r convenience assume a v a l u a t i o n on t h e edqes, and d e f i n e t h e d i s - tance between two v e r t i c e s as t h e l e n a t h o f t h e n a t h f r o m one v e r t e x t o t h e

o t h e r

The U l t r a m e t r i c Tree c o u l d he c h a r a c t e r i z e d - besides o t h e r c o n d i t i o n s - by

t h e c l a s s i c a l " u l t r a m e t r i c i n e q u a l i t y " Three v e r t i c e s - say x,y,z - on

Trang 23

H Abdi, ].-P Bartliildmy X Luong

So t h e n r o b l e m i s t o h u i l d un t h e h e t i e r u i t r a m e t r i c a n n r o x i m a t i o n of a c i - ven s i m i l a r i t y

( c f <neath and 5okal (1973), H a r t i g a n ( 1 9 7 1 ) ) I n s t e a d o f i m n o s i n ? t h e

u l t r a w t r i c i n e q u a l i t y on t h e r e n r e s e n t a t i o n o f a d i s s i m i 1 a r i t v ( o r d i s t a n c e )

m a t r i x , some a u t h o r s have nronosed t o weaken t h e u l t r a m t r i c i n e q u a l i t y i n

o r d e r t o o b t a i n a m r e o e n e r a l and more n a t u r a l r e D r e s e n t a t i o n ( c f C a r r o l and Chano ( 1 9 7 3 ) , Cunnincham (1?174), (1978) ; S a t t a t h and Tverskv (1977) cal1c.C' f o l l o w i n g t h e a u t h n r s we? rlhtcd t r e e , f r e e t r e e , n a t h l e n g t h t r e e o r

u n r o o t e d t r e e ( c f amonn o t h e r s : Cicrr'an (1958) , Fakami and V a l ! (1964) , nuneman (1971), Dobson (1974))

f o l l o w i n g i n e o u a l i t y , h o l d i n q f o r e v e r y f o u r - u n l e t - say x,y,u,v - :

d ( x , y ) t d(u,v) s 'lax [d(x.u) + d ( y , v ) ; d ( x , v ) + d ( y , u ) l

I t can be shown t h a t t h e u l t r a m e t r i c i n e q u a l i t y i s s t r o n ? e r than the a d d i -

t i v e i n e q u a l i t y which, i n t u r n , i m o l i e s t h e t r i a n g l e i n e o u a l i t y

The a l g o r i t h m s f o r f i t t i n r l an a d d i t i v e t r e e t o a n r o x i m i t v m a t r i x a r e l e s s numerous than those desioned f o r t h e s a e c i e s u l t r a m e t r i c t r e e The c o n s t r u c -

t i o n o f t h e a d d i t i v e t r e e can be s e a a r a t e d ( f o r t h e c l a r i t y of t h e exolana-

t i o n ) i n t o two p a r t s :

1) t h e f i n d i n g o f t h e t r e e - s t r u c t u r e (we darc! n o t use t h e t e r m s k e l e t o n )

2 ) t h e e s t i m a t i o n o f t h e v a l u a t i o n o f t h e branches o f t h e t r e e

The c l a s s i c a l apnroach ( a s i l l u s t r a t e d b y Cunninqham (1974), (1978);

S a t t a t h and Tversky ( 1 9 7 7 ) ) makes a d i r e c t use o f t h e a d d i t i v e i n e q u a l i t v

f o r the f i n d i n g o f t h e t r e e - s t r u c t u r e , and then e s t i v a t e s t h e v a l u a t i o n

w i t h a l e a s t - s q u a r e method F o r o u r n a r t , we pronose a n o t h e r anproach t h a t

we d e t a i l i n a moment and c o n t r a s t w i t h t h e c l a s s i c a l one

3.2 CONSTR!KTION Or TIIE :REF STRUCTURE

f r o m A and f o r a l l (u,v} f r o v E ( w i t h x+u, x+v, ypu, y p v ) , t h e f o l l o w i n g

i n e n u a l i t y i s v e r i f i e d

d(x,y) t d(u,v) < f l i n Id(x,u) + d(y,v); d(x,v) + d(.v,u)l (1)

I f E corresponds t o t h e t e r m i n a l v e r t i c e s o f a t r e e , t h e n t h e f o l l o w i n g

Trang 24

i n e q u a l i t v h o l d s f o r a l l f o u r - u n l e t (x,y,u,v):

d(x,y) + d(u,v) i d(x,u) + d(y,v) s d(x.v) + d(v,u)

( o r any o f t h e f i v e i n e q u a l i t i e s t h a t can he deduc?d f r o m t h i s

m u t a t i o n )

Then i f { x , y l i s a l o o s e c l u s t e r on a t r e e , from ( 2 ) and (1) f o

d(x,y) + d(u,v) < d(x,u) + d(y,v) = d(x,v) + d(y,u)

So, i n t h e f o l l o w i n p t r e e w i t h t e r m i n a l v e r t i c e s x,y,u,v

Y

( 2 ) one by p e r -

1 ows :

{x,y} on t h e one hand, and { u , v l on t h e o t h e r a r e l o o s e c l u s t e r s , and ( 2 )

i s then d e f i n e d I n o a r t i c u l a r , x and y, u and v a r e t o adont t h e f o l l o -

Trang 25

10 H Abdi, J.-R BarfkiEmy a d X Luong

L e t ( E,d) be an a d d i t i v e t r e e and k equal t o 2

d i s t a n c e g i v e s t o e v e r y branch o f t h e t r e e t h e l e n g t h 1

the:

The s o - c a l l e d c a n o n i c a l

tlw we can g i v e

Prooosi t i o n : I f t h e c a n o n i c a l d i s t a n c e between trio t e r m i n a l v e r t i c e s

- say a,b - i s two, then k-Sc(a,h) i s maximal and k-Sc(a,u)=k-Sc(b,u)

compute then a s c o r e m a t r i x Me l o o k f o r t h e p a i r w i t h t h e maximal s c o r e

- say a,b -, t h e n we merne a,b t o F i v e c and we Dose:

Trang 26

3.3 ESTIMATIOK OF THE VALUPTION OF THE EDGES

o f t h e branches and t denotes t h e transDosed m a t r i x

Voreover S a t t a t h and Tverskv i n d i c a t e t h e e x i s t e n c e - b u t w i t h o u t g i v i n g

i t - o f a method a v o i d i n n t h e comnutation o f t h e i n v e r s e o f a m a t r i x ( 8 )

o f t h e d i s t a n c e ; i e we embed t h e d i s s i m i l a r i t i e s i n an E u c l i d e a n space, and use t h e g e o m e t r i c a l D r o n e r t i e s o f t h i s sDace i n o r d e r t o o b t a i n an e s t i -

The q e n e r a l i d e a o f o u r nrocedure i s t o make a o e m t r i c a l e s t i m a t i o n

d(z,u) = [d(a,u) + d(b,u) - d(a,b)l / 2

I n t h e more g e n e r a l case where d i s a d i s s i m i l a r i t y , we i n t r o d u c e a " c e n t r a l

f r o m E Now z r e o r e s e n t s { a , b l ; we make t h e h y n o t h e s i s t h a t z must be

b r o u q h t n e a r e r t o 0 According t o t h i s , we can determine by t h e geometry

t h e new d i s s i m i l a r i t y d(z,u) f o r aT1 u f r o m E - I a , b l The nrocessus i s

t h e n r e i t e r a t e d p a r a l l e l l y w i t h t h e s c o r e procedure d e s c r i b e d p r e v i o u s l y

Trang 27

3.4 EVALUATInN OF THE ALGnRITHt’

The nrocedure we oronosed i s c l e e r l v ‘ i c l r i s t i c , and so, i t c o u l d he i n t ? -

r e s t i n o t o have an e v a l u a t i o n o f t h e q u a l i t y o f i t One n o s s i b l e way can be

t n oenerate some random d i s t a n c e m a t r i c e s , t o h u i l d t h e a d d i t i v e t r e e , t h e n

t o r e h u i l d the d i s t a n c e m a t r i x and t o n e a s u m C k c‘ecirec c f f i t between t h e

o r i g i n a l m a t r i x and t h e r e h u i l t m a t r i x

choose as a measure o f f i t t h e c l a s s i c a l o r o d u c t mment c o r r e l a t i o n ! h u t i t

i s we11 known t h a t r i s s t r o n a l y r e l a t e d t o some o t h e r measures o f f i t , e 0

4 S O T QESULTS

The d i f f e r e n t f i g u r e s and t a b l e s a r e q i v e n a t t h e end o f t h e oaDer

J 1 THE WAR OF THF GHOSTS

!,!e examine h e r e t h e r e s u l t s o b t a i n e d w i t h t h e d i s t a n c e between t e x t s seen

as B i - p a r t i t i o n s ( a s d e f i n e d i n 2 1 R i i ) F i g u r e 1 g i v e s t h e a d d i t i v e

t r e e o b t a i n e d w i t h t h e “ r e p e a t e d r e n r o d u c t i o n ” method have i n c l u d e d

Trang 28

, lree representations of associative structures 13

t h e o r i g i n a l t e x t f o r ease o f comparison F o r convenience, we g i v e t h e

d i s t a n c e m a t r i x (Table 1) an6 t h e "ao r e s u l t i n g o f a F a c t o r i a l A n a l y s i s o f

o t h e r , s o do L 1 and UPIC b u t O R I G and L 120 a r e q u i t e f a r f r o m each o t h e r

So t h e two methods d i f f e r when a g e n e r a l view i s n o t o b v i a u s

The e f f i c i e n c y o f o u r a l g o r i t h m apoears here: we needed seven

P r o b a b l y because t h e i m p l i c i t model h e r e i s one o f c l u s t e r r a t h e r

To be more o r e c i s e , t h e s o r t i n g i n s t r u c -

Trang 29

between s u b j e c t s ( c f t h e d a t a m a t r i x ) l e a d s o h v i o u s l y t o a " c l u s t e r " s o l u -

t i o n N e v e r t h e l e s s , s o r e d i s t i n c t c l u s t e r s o f q u a l i f i e r s can he i d e n t i f i e d and he i n t e r o r e t e d i n t e r m n f " i m a l i c i t p s y c h o l o n y " , h u t t h i s i n t e r p r e t a -

t i o n s (see t e x t ) The s u b j e c t s a r e denoted by t h e l e t t e r ( s ) b e g i n n i n g t h e

L a b e l , t h e f i g u r e s f o l l o w i n o t h e l e t t e r ( s ) i n d i c a t e t h e number o f days be- tween t h e f i r s t p r e s e n t a t i o n o f " t h e war o f t h e Ghosts" and t h e r e c a l l

Trang 30

C R I ~ N A L L I

F i o u r e 1

A d d i t i v e t r e e o b t a i n e d f r o m t h e d i s t a n c e m a t r i x of Table 2 The s u b j e c t s a r e denoted by t h e l e t t e r ( s ) b e q i n n i n o t h e l a b e l ,

t h e f i g u r e f o l l o w i n ? t h e l e t t e r ( s ! - i n d i c a t e t h e number o f days

between t h e f i r s t P r e s e n t a t i o n n f t h e '%r o f t h e Ghosts" and t h e r e c a l l

Trang 31

The s u b j e c t s a r e denoted bv the l e t t e r ( s ) beginnincl the l a h e l ,

the f i g u r e s follorrina the l e t t e r ( s ) i n d i c a t e the numher o f days

between the f i r s t n r e s e n t a t i o n of “ t h e ‘Jar of the Ghosts” and

t h e r e c a l l

Trang 32

Fiaure 3 Additive t r e e obtained from the distance matrix b u i l t f r o p the

d a t a o f R a r t l e t t (1932): "Serial reproduction"

The l a b e l s g i v e the s e r i a l o r d e r

Trang 37

Co-occurence m a t r i x for 48 Enalish nouns

The c e l l s indicate the number o f subjects who o u t the words i n the

same p i l e (number of subjects: 5 0 )

Data from W l l e r ( 1 9 6 9 )

s

5

Trang 38

Tree representations associative structures 23

o m

A I D COUNSEL

vow

HONOR

E A S E REGRET

Trang 40

P r o x i m i t y m a t r i x between animal terms f r o m l!enley (1969)

D r Y LION

MOUSE

F i o u r e 9

E u c l i d e a n r e p r e s e n t a t i o n ( f a c t o r i a l a n a l y s i s o f d i s t a n c e ) o f t h e

d i s t a n c e m a t r i x o f Table 5 ( H e n l e y ' s animal t e r m s )

Ngày đăng: 14/03/2014, 22:20

TỪ KHÓA LIÊN QUAN

w