Developing microscopic statistical physics and macroscopic classical thermodynamic descriptions in tandem, Statistical and Thermal Physics: An Introduction provides insight into basi
Trang 1Statistical and Thermal Physics
Concepts and relationships in thermal and statistical physics form the foundation for
describing systems consisting of macroscopically large numbers of particles Developing
microscopic statistical physics and macroscopic classical thermodynamic descriptions
in tandem, Statistical and Thermal Physics: An Introduction provides insight into
basic concepts at an advanced undergraduate level Highly detailed and profoundly
thorough, this comprehensive introduction includes exercises within the text as well as
end-of-chapter problems
The first section of the book covers the basics of equilibrium thermodynamics and
introduces the concepts of temperature, internal energy, and entropy using ideal gases
and ideal paramagnets as models The chemical potential is defined and the three
thermodynamic potentials are discussed with use of Legendre transforms The second
section presents a complementary microscopic approach to entropy and temperature,
with the general expression for entropy given in terms of the number of accessible
microstates in the fixed energy, microcanonical ensemble The third section emphasizes
the power of thermodynamics in the description of processes in gases and condensed
matter Phase transitions and critical phenomena are discussed phenomenologically.
In the second half of the text, the fourth section briefly introduces probability theory
and mean values and compares three statistical ensembles With a focus on quantum
statistics, the fifth section reviews the quantum distribution functions Ideal Fermi and
Bose gases are considered in separate chapters, followed by a discussion of the
“Planck” gas for photons and phonons The sixth section deals with ideal classical gases
and explores nonideal gases and spin systems using various approximations The final
section covers special topics, specifically the density matrix, chemical reactions, and
irreversible thermodynamics.
Trang 2Thermal Physics
Trang 4A TAY L O R & F R A N C I S B O O K
CRC Press is an imprint of the
Taylor & Francis Group, an informa business
Boca Raton London New York
Department of Physics, Florida State University Tallahassee, USA
and
School of Physics, University of the Witwatersrand Johannesburg, South Africa
Trang 5Boca Raton, FL 33487-2742
© 2011 by Taylor & Francis Group, LLC
Taylor & Francis is an Informa business
No claim to original U.S Government works
Version Date: 20131107
International Standard Book Number-13: 978-1-4398-5054-1 (eBook - PDF)
This book contains information obtained from authentic and highly regarded sources Reasonable efforts have been made to publish reliable data and information, but the author and publisher cannot assume responsibility for the validity of all materials or the consequences of their use The authors and publishers have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained If any copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint.
Except as permitted under U.S Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information stor- age or retrieval system, without written permission from the publishers.
For permission to photocopy or use material electronically from this work, please access right.com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400 CCC is a not-for-profit organization that pro- vides licenses and registration for a variety of users For organizations that have been granted a pho- tocopy license by the CCC, a separate system of payment has been arranged.
www.copy-Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are
used only for identification and explanation without intent to infringe.
Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com
and the CRC Press Web site at
http://www.crcpress.com
Trang 8Contents
Acknowledgments xxiii PhysicalConstants xxv
Part I Classical Thermal Physics: The Microcanonical
Ensemble
SectIon Ia Introduction to Classical Thermal Physics
Concepts: The First and Second Laws of
Trang 10SectIon IB Microstates and the Statistical Interpretation
Trang 11SectIon Ic Applications of Thermodynamics to
Gases and Condensed Matter, Phase
Transitions, and Critical Phenomena
Trang 12SectIon IIa The Canonical and Grand Canonical
Ensembles and Distributions
Trang 1310.3 ENSEMBLES IN STATISTICAL PHYSICS 203
10.5 CALCULATION OF THERMODYNAMIC PROPERTIES FOR A SPIN SYSTEM USING THE CANONICAL
SectIon IIB Quantum Distribution Functions, Fermi–Dirac
and Bose–Einstein Statistics, Photons, and
Trang 15SectIon IIc The Classical Ideal Gas, Maxwell–Boltzmann
Statistics, Nonideal Systems
Trang 16SectIon IID The Density Matrix, Reactions and Related
Processes, and Introduction to Irreversible
Trang 20Preface
mentalimportanceinthedescriptionofsystemsthatconsistofmacro-scopicallylargenumbersofparticles.Thisbookprovidesanintroductionto the subject at the advanced undergraduate level for students inter-estedincareersinbasicorappliedphysics.Thesubjectcanbedevelopedin different ways that take either macroscopic classical thermodynam-icsormicroscopicstatisticalphysicsastopicsforinitialdetailedstudy.Considerableinsightintothefundamentalconcepts,inparticulartem-peratureandentropy,canbegainedinacombinedapproachinwhichthemacroscopicandmicroscopicdescriptionsaredevelopedintandem.Thisistheapproachadoptedhere
Thermalandstatisticalphysicsconceptsandrelationshipsareoffunda-Thebookconsistsoftwomajorparts,withineachofwhichthereareseveralsections,asdetailedbelow.Aflowchartthatshowsthechaptersequenceandtheinterconnectionofmajortopicscoveredisgivenattheendofthisintroduction.PartIisdividedintothreesections,eachmadeupofthreechapters.ThebasicsofequilibriumthermodynamicsandthefirstandsecondlawsarecoveredinSectionIA.Thesethreechaptersintroducethereadertotheconceptsoftemperature,internalenergy,andentropy.Twosystems,idealgasesandidealnoninteractinglocalizedspins,areusedextensivelyasmodelsindevelopingthesubject.Useofidealequationsofstateforgasesandforparamagneticsystemsallowsillustrativeapplica-tions of the thermodynamic method. Magnetic systems and magneticworkaredealtwithinsomedetail.TheoperationofaCarnotrefrigeratorwithanidealparamagnetasworkingsubstanceispresentedalongwiththetraditionalidealgascase.ThechemicalpotentialisintroducedfromathermodynamicviewpointinChapter3andisdiscussedinsubsequentchaptersintermsofthemicroscopicstatisticalapproach
Chapters 4, 5, and 6 in Section IB provide a complementary scopic statistical approach to the macroscopic approach of Section IA.Considerableinsightintoboththeentropyandtemperatureconceptsisgained, and the general expression for the entropy is given in terms of
Trang 21micro-the number of accessible microstates in micro-the fixed energy, calensembleapproach.Thisrelationshipisofcentralimportanceinthedevelopmentofthesubject.Explicitexpressionsfortheentropyofbothamonatomicidealgasandanidealspinsystemareobtained.Theentropyexpressionsleadtoresultsfortheothermacroscopicpropertiesforboththeidealgasandtheidealspinsystem.Itismadeclearthatforidealgasesinthehigh-temperature, low-density limit, quantum effects may be neglected.Theneedtoallowfortheindistinguishablenatureofidenticalparticlesinnonlocalizedsystemsisemphasized.Theexpressionsfortheentropyandthechemicalpotentialofanidealgasaregivenintermsoftheratioofthequantumvolume,whichisintroducedwithuseoftheHeisenberguncer-taintyprinciple,andtheatomicvolumeorvolumeperparticle.Theseformsfortheentropyandchemicalpotentialareeasilyrememberedandprovide
Thefinalsectioninthefirsthalfofthebook,SectionIC,emphasizesthepowerofthermodynamicsinthedescriptionofprocessesforbothgasesinChapter7andcondensedmatterinChapter8.TheMaxwellrelationsareobtainedandusedinanumberofsituationsthatinvolveadiabaticandisothermalprocesses.Chapter9concludesthissectionwithadiscussionofphasetransitionsandcriticalphenomena
ory,meanvalues,andthreestatisticalensemblesthatareusedinstatis-ticalphysics.Thepartitionfunctionisdefinedasasumoverstates,andtheideallocalizedspinsystemisusedtoillustratethecanonicalensembleapproach.Thegrandcanonicalensembleandthegrandsumarediscussed
Chapter10inSectionIIAgivesabriefintroductiontoprobabilitythe-inChapter11 Itisshownthatforsystemsoflargenumbersofparticles,for
whichfluctuationsinenergyandparticlenumberareextremelysmall,the
differentensemblesareequivalent.SectionIIB tumstatistics.Chapter12 reviewsthequantummechanicaldescription
isconcernedwithquan-ofsystemsofidenticalparticlesanddistinguishesfermionsandbosons.Chapters13and14dealwiththeidealFermigasandtheidealBosegas,
Trang 22respectively.ExpressionsfortheheatcapacityandmagneticsusceptibilityareobtainedfortheFermigas,whereastheBose–EinsteincondensationatlowtemperaturesisdiscussedfortheBosegas.Thesechaptersareillus-tratedwithapplicationstoavarietyofsystems.Forexample,Fermi–Diracstatisticsisusedtotreatwhitedwarfstarsandneutronstars.TheradiationlawsandtheheatcapacityofsolidsarediscussedinChapter15,whichdeals with photons and phonons. The cosmic microwave backgroundradiationisconsideredasanillustrationofthePlanckdistribution.
InSectionIIC,Chapter16 returnstotheidealgastreatedintheclassical
tinguishablenatureofidenticalnonlocalizedparticles.Theinternalenergyofmoleculesisincludedinthepartitionfunctionfortheclassicalgas.Theequipartitionofenergytheoremforclassicalsystemsisdiscussedinsomedetail.NonidealsystemsaredealtwithinChapter17intermsoftheclus-termodelforgasesandthemeanfieldapproximationforspins.TheIsingmodelforinteractingspinsisintroducedandtheone-dimensionalsolutionoftheIsingmodelisgivenforthezeroappliedfieldcase.AnintroductiontoFermiliquidtheoryisfollowedbyadiscussionofthepropertiesofliquidhelium-3atlowtemperatures.Thechapterconcludeswithaphenomeno-logicaltreatmentofBoseliquidsandthepropertiesofliquidhelium-4.SectionIIDdealswithspecialtopicsthatincludethedensitymatrix,chemicalreactions,andanintroductiontoirreversiblethermodynamics.Chapter18introducesthedensitymatrixformulationwithapplicationstospinsystemsandmakesaconnectiontotheclassicalphasespaceapproach.TopicscoveredinChapter19arethelawofmassaction,adsorptiononsur-faces,andcarrierconcentrationsinsemiconductors.Chapter20dealswithirreversibleprocessesinsystemsnotfarfromequilibrium,suchasthermo-osmosisandthermoelectriceffects
limitofthequantumdistributions,whichautomaticallyallowsfortheindis-eredareSectionsIA,IB,IIA,andIIB.Ifstudentshavehadpriorexpo-suretoelementarythermodynamics,muchofSectionIAmaybetreatedasaself-studytopic.Problemsgivenattheendofeachchapterprovideopportunitiesforstudentstotestanddeveloptheirknowledgeofthesub-ject.Dependingonthenatureofthecourseandstudentinterest,materialsfromSectionsIC,IIC,andIIDcanbeadded
Foraone-semestercourse,theimportantsectionsthatshouldbecov-Adiagramthatillustratesthestructureandtheinterrelationshipsofthefirst16chaptersofthebookisgiveninthefollowingfigure
Trang 23Ch 1 Introduction: Basic
Concepts
Ch 2 Energy: The First Law
Ch 3 Entropy: The Second Law
Ch 5 Entropy and Temperature: Microscopic Statistical Interpretation
Ch 4 Microstates for Large Systems
Ch 6 Zero Kelvin and the Third
Ch 9 Phase Transitions and
Critical Phenomena Ch 10 Ensembles and the
Canonical Distribution
Ch 11 The Grand Canonical Distribution
Ch 12 The Quantum Distribution Functions
Ch 13 Ideal Fermi Gas
Ch 14 Ideal Bose Gas
Ch 15 Photons and Phonons— The ‘‘Planck Gas’’
Statistical and Thermal Physics Topics Covered in Chapters 1 to 16
Thermodynamics Statistical Physics
Ch 16 The Classical Ideal Gas
Trang 24Acknowledgments
My thanks go to numerous colleagues both in Johannesburg and inTallahasseeforhelpfuldiscussionsontheconceptsdescribedinthisbook.InteachingthematerialIhavelearntagreatdealfromtheinteractions
tionshaveoftenbeenenlightening
I havehadwithmanystudents.Theircommentsandresponsestoques-Finally,Iwishtothankmyfamilyfortheircontinuingsupportduringthisproject.Inparticular,IoweagreatdealtomywifeRenée,whoinadditiontopreparingmostofthefigures,providedthenecessaryencour-agementthathelpedmetocompletethebook
Trang 28PART I
Classical Thermal Physics: The Microcanonical Ensemble
Trang 30SECTION IA
Introduction to Classical Thermal Physics Concepts: The First and Second Laws of Thermodynamics
Trang 32Introduction:
Basic Concepts
1.1 STATISTICAL AND THERMAL PHYSICS
tionofmacroscopicsystemsmadeupoflargenumbersofparticlesofthe
Thesubjectofstatisticalandthermalphysicsisconcernedwiththedescrip-orderofAvogadro’snumberNA=6.02×1023mol–1.Theparticlesmaybeatomsormoleculesingases,liquids,andsolidsorsystemsofsubatomicpar-ticlessuchaselectronsinmetalsandneutronsinneutronstars.Arichvari-etyofphenomenaareexhibitedbymany-particlesystemsofthissort.Theconceptsandrelationshipsthatareestablishedinthermalphysicsprovidethebasisfordiscussionofthepropertiesofthesesystemsandtheprocessesinwhichtheyareinvolved.Applicationscoverawiderangeofsituations,frombasicscience,inmanyimportantfieldsthatincludecondensedmatterphysics,astrophysics,andphysicalchemistrytopracticaldevicesinenergytechnology
Theoriginsofmodernthermalphysicsmaybetracedtotheanalysisofheatenginesinthenineteenthcentury.Followingthisearlyworkanum-berofresearcherscontributedtothedevelopmentofthesubjectofther-modynamicswithitsfamouslaws.Bytheendofthenineteenthcentury,thermodynamics,classicalmechanics,andelectrodynamicsprovidedthefoundationforallofclassicalphysics.Todaythermodynamicsisawell-developedsubject,withmodernresearchfocusedonspecialtopicssuchasnonequilibriumthermodynamics.Applicationofthemethodsofthermo-dynamicstocomplexsystemsfarfromequilibrium,whichincludelivingorganisms,presentsamajorchallenge
5
Trang 33The microscopic classical statistical description of systems of largenumbersofparticlesbeganitsdevelopmentinthelatenineteenthcen-tury,particularlythroughtheworkofLudwigBoltzmann.Thisapproachwastransformedbythedevelopmentofquantummechanicsinthe1920s,whichthenledtoquantumstatisticsthatisoffundamentalimportanceinagreatdealofmodernresearchonbulkmatter.Statisticaltechniquesareusedtoobtainaveragevaluesforpropertiesexhibitedbymacroscopicsystems.Themicroscopicapproachonthebasisofclassicalorquantummechanics together with statistical results has given rise to the subjectknownasstatisticalmechanicsorstatisticalphysics.Bridgerelationshipsbetween statistical physics and thermodynamics have been establishedandprovideaunifiedsubject.
Underconditionsofhightemperatureandlowdensity,weshallfindthatitdoesnotmatterwhetherclassicalorquantummechanicaldescrip-tionsareusedforasystemofparticles.Athighdensitiesandlowtempera-turesthisisnolongertrue,becauseoftheoverlapoftheparticles’wavefunctionsandquantummechanicsmustbeused,givingrisetoquantumstatistics. Under high-density, low-temperature conditions, the prop-ertiesofasystemdependinacrucialwayonwhethertheparticlesthatmakeupthesystemarefermionsorbosons.Manyfascinatingphenom-enaoccurincondensedmatterasthetemperatureislowered.Examplesareferromagnetism,superconductivity,andsuperfluidity.Theseimpor-tantnewpropertiesappearfairlyabruptlyatphasetransitions.Progressin the microscopic understanding and description of the behavior ofthesesystemsinvolvesquantummechanicsandstatisticalphysicsideas.ApplicationsofquantumstatisticsarenotconfinedtoterrestrialsystemsandincludeastrophysicalphenomenasuchasthemicrowavebackgroundradiationfromtheBigBangandthemass–radiusrelationshipsforwhitedwarfstarsandneutronstars.Animportantconceptinthermalphysicsisthatofentropy,which,asweshallsee,increaseswithtimeassystemsbecomemoredisordered.Theincreaseoftheentropyoftheuniversewiththepassageoftimeprovideswhatistermedtime’sarrow.Aninterestingandunansweredquestionarisesastowhytheentropyoftheuniversewassolowatthebeginningoftime
Thereareanumberofwaysinwhichthesubjectofthermalphysicsmaybeapproached.Inthisbook,theelementsofclassicalthermody-namicsarepresentedinthefirstthreechaptersthatcompriseSectionIA.ThemicroscopicstatisticalapproachisintroducedinthethreechaptersofSectionIB,whichcomplementthethermodynamicsinSection IAand
Trang 34provideadditionalinsightintofundamentalconcepts,specificallyentropyand temperature. Both classical and quantum mechanical descriptionsareintroducedindiscussingthemicrostatesoflargesystems,withthequantumstatedescriptionpreferredinthedevelopmentofthesubjectthatispresentedinthisbook.Thisapproachinvolvestheapplicationofthemicrocanonicalensemblemethodstotwomodelsystems,theidealgassystemandtheidealspinsystemforbothofwhichthequantumstatesare readily specified with use of elementary quantum mechanics. Thelaws of thermodynamics are stated in compact form, and their signifi-canceisheightenedbytheinterweavingofmacroscopicandmicroscopicapproaches. Expressions for the entropy and chemical potential of the
idealgasareexpressedintermsoftheratioofthequantumvolumeVQto
theatomicvolumeVA.VQistakentobethecubeofthethermaldeBroglie
wavelength,whereasVAisthemeanvolumeperparticleinthegas.Inthefinalthreechaptersinthefirsthalfofthebook(SectionIC),thethermo-dynamicapproachisappliedtothedescriptionofthepropertiesofgases,andcondensedmatter
ticalphysicsresultsandthecanonicalandgrandcanonicaldistributionspresentedinSectionIIA.FollowingtheintroductionofquantumstatisticsideasinSectionIIB,theFermi–DiracandBose–Einsteinquantumdistri-butionfunctionsarederived.ThesefunctionsareusedinthediscussionofthepropertiesofidealFermiandBosegases.Photonandphononsys-temsarethentreatedintermsofthePlanckdistribution.InSectionIIC,canonicalensembleresultsareapplied,first,totheidealgasintheclassicallimitofthequantumdistributionsandthentothenonidealgasesandspinsystems.Thefinalsection(SectionIID)ofthebookcontainsmoreadvancedtopicsandincludesanintroductiontothedensitymatrixandnonequilibriumthermodynamics
Inthesecondhalfofthebook,emphasisisplaced,initially,onstatis-Thematerialinthisbookisconcernedprimarilywiththedescriptionofsystemsatorclosetoequilibrium.Thisimpliesthat,apartfromfluc-tuations,whichformacroscopicsystemsaregenerallysmall,theproper-tiesdonotchangewithtimeorchangeonlyslightlywithsmallchangesin external conditions. Processes will often be considered to consistofalargenumberofinfinitesimalchanges,withthesystemofinterestalways close to equilibrium. As mentioned above, two special systemsareusedinthedevelopmentofthesubject:theidealgassystemandthe
idealspinsystem.Idealinthiscontextimpliesthatinteractionsbetween
theparticlesarenegligiblysmallandmaybeignored.Thesetwosystems
Trang 35umeV.Becauseoftheirthermalmotion,theparticlesexertapressure,or forceperunitareaP,onthewallsofthecontainer.Theidealspinsystem
locatedinamagneticfieldB.
In the development of the subject, use is made of concepts such asvolume, pressure, work, and energy, which are familiar from classicalmechanics.Afurtherconceptoffundamentalimportanceisthatoftem-perature,andthisisdiscussedinthenextsection.Usefulrelationsthatinvolvetemperature,suchasequationsofstateandtheequipartitionofenergytheorem,aregiveninlatersectionsinthischapter.SIunitsareusedthroughoutthebookunlessotherwiseindicated
1.2 TEMPERATURE
Theconceptoftemperaturehasevolvedfromman’sexperienceofhotandcoldconditionswithtemperaturescalesdevisedonthebasisofchangesin the physical properties of substances that depend on temperature.Practicalexamplesofthermometersfortemperaturemeasurementincludethefollowing:
• Constant volume gas thermometers, which make use of the sureofafixedquantityofgasmaintainedatconstantvolumeasanindicator
pres-• Liquidinglassthermometers,whichusethevolumeofaliquid,suchasmercuryoralcohol,containedinareservoirattachedtoacapil-larytubewithacalibratedscale
• Electricalresistancethermometers,whichusethevariationoftheresistanceofametal,suchasplatinum,orofadopedsemiconductor,suchasGaAs,toobtaintemperature
• Vaporpressureandparamagnetthermometersforspecialpurposesparticularlyatlowtemperatures
Mostofthethermometerslistedabovearesecondarythermometersthatarecalibratedagainstagreedstandards.Theconstantvolumegastherm-ometerhasamorefundamentalsignificanceasexplainedinSection 1.3.
Trang 36For everyday purposes, various empirical scales have been established.CommonlyusedscalesaretheFahrenheitandCelsiusscales.Forreasonsthatbecomeclearbelow,weconsidertheCelsiusscale,whichchoosestwofixedreferencetemperatures.Thelowerreferencepointisat0°C,whichcorrespondstothetriplepointofwater,thepointatwhichwater,ice,andwatervaporcoexist,andthehigherreferencepointat100°C,whichcor-respondstothesteampoint,wherewaterandsteamcoexistatapressureof1atm.DegreesCelsiusareobtainedbydividingtherangebetweenthetriplepointandthesteampointinto100°.Figure1.1showsaschematicdrawingofatriplepointcell.
Thermodynamicsshowsthatitispossibletoestablishanabsolute peraturescalecalledthekelvin scaleinhonorofLordKelvin,whointro-
tem-duceditandfirstappreciateditssignificance.Theabsolutescaledoesnotdependonthepropertiesofaparticularsubstance.Absolutezeroonthekelvinscale,designated0K,correspondsto–273.16°C.Forconvenience,
1 Kischosentocorrespondto1°C.ThisgivesT(K)=t(°C)+273.16.We
talimportancebyconsideringtheequationofstateforanidealgas
cangaininsightintowhytheabsolutezerooftemperatureisoffundamen-1.3 IDEAL GAS EQUATION OF STATE
An equation of state establishes a relationship among thermodynamic
umeV,andtheabsolutetemperatureT.Experimentscarriedoutonreal
variables.Foranidealgas,thevariableschosenarethepressureP,thevol-gases,suchashelium,underconditionsoflowdensityhaveshownthatthefollowingequationdescribesthebehaviorofmanygases:
Ice Water
Vapor Thermometer
FIGURE 1.1 Schematicdepictionofatriplepointcellinwhichwater,ice,andwatervaporcoexist.Thecellisusedtofix0°ContheCelsiusscale
Trang 37wherenisthenumberofmolesofgasandRisaconstantcalledthegas
constantwithvalue8.314Jmol–1K–1.Asmentionedabove,theconstantvolumegasthermometerinvolvesthemeasurementofthepressureofaconstantvolumeofgasasafunctionoftemperature.Figure1.2givesa
sketchofaconstantvolumegasthermometerwitharepresentativeP susT plotshowninFigure1.3.
ver-Heat bath Gas Pressure gauge
FIGURE 1.2 Sketchofaconstantvolumegasthermometerinwhichthepressureofafixedvolumeofgas,heldatvariousfixedtemperaturebyuseofheatbaths,ismeasuredonapressuregauge
50 0 0 5 10 15 20 25
Trang 38FromEquation1.1,itfollowsthatthetemperatureT=0Kcorresponds toapressureP=0Pa.Zeropressureimpliesthattheparticlesofthegas
havezerokineticenergyat0Kanddonotexchangemomentumwiththewallsofthecontainer.Wecanthereforeviewtheabsolutezerooftempera-tureasthetemperatureatwhichtheenergyofparticlesinthesystemiseffectivelyzero.Thisisoffundamentalsignificance
ifyattemperaturesmuchhigherthan0K.Thisisbecauserealgaseshaveinteractionsbetweenparticles,whichleadtodeparturesfromidealgasbehavior.Extrapolationfromthehigh-temperature,low-densityregion,wheregasesobeytheidealgasequationofstate,showswhatwouldhap-penatmuchlowertemperaturesifthegasweretoremainideal.Theidealgas equation of state, expressed in Equation 1.1, is extremely useful in
Asthetemperatureislowered,gasesnormallyliquefy,andmostsolid-consideringprocessesinwhichgasesareinvolved.P,V,andTarecalled
state variables,andbecausetheyarerelatedbytheequationofstate,the
specificationofanytwoofthevariablesimmediatelyfixesthevalueofthethirdvariable.Examplesofapplicationsoftheidealgaslaw,asitisalsocalled,aregiveninlaterchapters.Theidealgasequationprovidesafairlygooddescriptionofthebehaviorofmanygasesoverarangeofconditions.Underconditionsofhighdensity,however,thedescriptionmaynotbeadequate,andempiricalequationsofstatethatworkbetterundertheseconditionshavebeendeveloped.Twooftheseequationsarebrieflydis-cussedinthenextsection
1.4 EQUATIONS OF STATE FOR REAL GASES
An important empirical equation of state that provides a fairly gooddescriptionofthepropertiesofrealgasesathighdensitiesisthevanderWaalsequation,
surecorrectiontermallowsforinterparticleinteractions,andthevolumecorrection term allows for the finite volume occupied by the particlesthemselves
Trang 391.5 EQUATION OF STATE FOR A PARAMAGNET
AnidealparamagnetconsistsofNparticles,eachofwhichpossesses a
spin and an associated magnetic momentμ proportional to the spin,
with negligible interactions between spins. Real paramagnetic systemsapproximate ideal systems only under certain conditions, such as hightemperature,andinmagneticfieldsthatarenottoolarge.Amoredetaileddiscussionoftheseconditionsisgivenlaterinthisbook
usefulincalculationsrelatedtoprocessesthatinvolvechangesinthestate
variables.NotethatforT→0K,Equation1.4predictsthatMwilldiverge.
Thisunphysicalpredictionshowsthattheequationbreaksdownatlowtemperatures,wherethemagnetizationsaturatesafteritreachesamaxi-
mumvaluewithallspinsalignedparalleltoH.Inmanymagneticsystems,
thespinsinteracttosomeextentandorderbelowatemperaturecalledthe
Trang 401.6 KINETIC THEORY OF GASES AND THE
EQUIPARTITION OF ENERGY THEOREM
InChapter2,wedealwithworkandenergyforthermodynamicsystems,andthiswillleadtothefirstlawofthermodynamics.Itishelpfultohaveexpressionsforthetotalenergyofasystemintermsofthermodynamicvariables. For ideal gases, kinetic theory provides an important resultknownastheequipartitionofenergytheorem,whichwenowconsideralongwithotherkinetictheoryresults.Thekinetictheoryofgases,whichmakesuseofclassicalmechanics,isrelatedtocertaintopicsinstatisticalphysicsbutislessgeneralinscopeandapproach
Although thermodynamics concerns itself with the macroscopicdescriptionofsystemsoflargenumbersofparticles,kinetictheorycon-sidersthemicroscopicnatureoffluidsystems.Inparticular,forourpur-poses,kinetictheoryprovidesaclassicalmicroscopicdescriptionofthepropertiesofidealgasesintermsofthekineticenergyoftheparticlesinthesystem.Particlesinagaseoussystemareinconstantmotionandundergocollisionswitheachotherandwiththewallsofthecontainer.Foragasataparticulardensityandtemperature,thecollisionprocessesmay
collisions.Asweshallseelaterinthissection,
τistypicallyveryshortcom-paredwiththetimescaleonwhichmeasurementsofanypropertiesofthesystemaremade.Therapidexchangeofenergyandmomentumthattheparticlesundergomakesitmeaningfultoconsideraveragepropertiesoftheparticles,suchasthemeanenergy〈 ε 〉 definedbelow.IfthereareN
particlesinthegas,thetotalenergyissimplyE=N〈 ε 〉.