1. Trang chủ
  2. » Kỹ Thuật - Công Nghệ

MECHANICAL ENABLING FOR THE INTEL@ PRNTIUM 4 PROCESSOR IN THE 478-PIN PACKAGE pdf

25 361 0
Tài liệu được quét OCR, nội dung có thể không chính xác
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Mechanical enabling for the Intel® Pentium® 4 processor in the 478-pin package
Trường học Intel Corporation
Chuyên ngành Mechanical Engineering
Thể loại Report
Năm xuất bản 2001
Thành phố Santa Clara
Định dạng
Số trang 25
Dung lượng 524,09 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Table of Content e Mechanical Enabling Reference Design Overview e Critical Mechanical Design Requirements e Design Effectiveness... Reference Design Overview e Mechanical Enabling Ref

Trang 1

Mechanical Enabling

for the Intel® Pentium® 4 Processor in

the 478-Pin Package

October 2001

Order Number: 290728-001

Copyright © 2001, Intel Corporation

Trang 2

Disclaimers

Trang 3

Table of Content

e Mechanical Enabling Reference Design Overview

e Critical Mechanical Design Requirements

e Design Effectiveness

Trang 4

Reference Design Overview

e Mechanical Enabling Reference Design is:

s Intel-developed enabling solution for the Intel® Pentium® 4 processor in the 478-pin package and the Intel® 845 MCH

=» Developed for general industry use

= Targeted at low-cost, high volume manufacturing & integration approach

Trang 5

Mechanism (RM)

Trang 6

Critical Design Requirements

e Power Dissipation

= Traditionally the driving design requirement

e Mechanical Retention

= Strongly impacted by power dissipation requirements

=» Has gained importance with increasing heatsink mass

Trang 7

Critical Design Requirements

Mechanical Requirements

e Withstand environmental load conditions

=» 9Qg board-level mechanical shock

=» 3.13g RMS board-level random vibration

= Driving factors:

v Processor heatsink mass

¥ Prevalence of surface mount components

e Sustain thermal performance

=» Provide adequate pre-load for TIM (thermal interface material)

=» Center pre-load within specified tolerance

Trang 8

Critical Design Requirements

Design Challenges

e During shock and vibration events:

=» Avoid processor package pull-out

=» Protect against processor socket solder joint damage

= Protect against MCH solder joint damage

e Prevent Thermal Interface Material (TIM) thermal performance degradation

e Allow chassis-independent solution

Trang 9

Engineering Strategy

Trang 10

Intel® Pentium® 4 Processor in the 478-Pin

Package Enabling Assembly

Trang 11

Intel® 845 MCH Enabling Assembly

Trang 13

Processor Package Pull-Out - 1

Heatsink Inertial

Trang 14

Design Effectiveness

Processor Package Pull-Out - 2

e How much preload is required?

= Linear spring-mass model used for 15 order assessment

=» Assume zero socket retention force Heatsink inertial load

Fis = (Heatsink Mass)*(Acceleration

Local MB stiffness

Trang 15

MB local stiffness ~ 1300 Ib/in

HS load, Fug ~ 100 Ibf

Trang 16

Solder Joint Considerations - 1

°

a

a

Solder joint

Heatsink inertial load subjected to

bending shear strains

Trang 17

Design Effectiveness

Solder Joint Considerations - 2

Current Reference Solution Strategy

Limit local board curvature in critical areas through two-point strategy:

1 Top-side stiffening of the MB provided by the clip

Trang 18

Design Effectiveness

Solder Joint Considerations - 3

e Local Board Stiffening

=» RM and clip create stiff load path between board and package

= Limits amount of local board flexure during +z shock condition

Trang 19

Solder Joint Considerations - 4

Pre-stresses critical

compression

Trang 20

Design Effectiveness

Intel® Pentium® 4 Processor in the 478-Pin

Package Clip Design

target stiffness: levers used to

e Mechanical advantage levers generate preload:

Clip stiffness = 1100 Ib/in

Trang 21

Intel® 845 MCH Clip Design

& |

Trang 22

Thermal Performance

TIM Thermal Resistance

Trang 23

Design Effectiveness

Summary

e Processor Package Pull-Out

=» Use preload coupled with stiff clip to prevent pull-out

socket Solder Joint Protection

=» Use preload coupled with stiff clip to avoid excessive tensile loads on solder joint

MCH Solder Joint Protection

=» Use preload coupled with stiff clip to avoid excessive tensile loads on solder joint

Thermal Requirements

=» Use preload to achieve TIM performance

Chassis-Independent Solution

=» Allows motherboard design flexibility

=» Supports horizontal building block approach

Trang 24

In Summary

e Five primary challenges addressed:

=» During shock and vibration events:

¥v Avoid processor package pull-out

¥ Protect against socket solder joint damage

v Protect against MCH solder joint damage

=» Prevent TIM thermal performance degradation

= Allow chassis-independent solution

e Preload is critical element in addressing each challenge

e Stiff clip is critical in preventing package pull-out and protecting solder joint

e Intel Reference Design combines both strategies to meet all critical requirements

Ngày đăng: 09/03/2014, 00:20

w