new engie dvi See discussions, stats, and author profiles for this publication at https www researchgate netpublication243766531 Color Image Processing and Applications Book January 2000 DOI 10 10.DOWLOAD AND FOLOWME
Trang 1See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/243766531
Color Image Processing and Applications
2 authors , including:
Some of the authors of this publication are also working on these related projects:
Computer-assisted diagnosis for abdominal trauma patients in emergency situations using 3D ultrasound imagery View project
Discrete derivative approximation of signals and images View project
Konstantinos Plataniotis
University of Toronto
564 PUBLICATIONS 12,671 CITATIONS
SEE PROFILE
All content following this page was uploaded by Konstantinos Plataniotis on 27 February 2014.
The user has requested enhancement of the downloaded file.
Trang 2Color Image Processing and
Applications
Trang 3The perception of color is of paramount importance to humans since they
public
Trang 4compressionofcolorimageseitherfortransmissionacrosstheinternetworkor
Trang 5Acknowledgment
Trang 71 ColorSpaces: : : : : : : : : : : : : : : : : : : : : : : 1
1.1 BasicsofColorVision 1
1.2 TheCIEChromaticity-basedModels 4
1.3 TheCIE-RGBColorModel 9
1.4 GammaCorrection 13
1.5 LinearandNon-linearRGBColorSpaces 16
1.5.1 LinearRGB ColorSpace 16
1.5.2 Non-linearRGBColorSpace 17
1.6 ColorSpacesLinearlyRelatedtotheRGB 20
1.7 TheYIQColorSpace 23
1.8 TheHSIFamilyof ColorModels 25
1.9 PerceptuallyUniformColorSpaces 32
1.9.1 TheCIEL u v ColorSpace 33
1.9.2 TheCIEL a b ColorSpace 35
1.9.3 CylindricalL u v andL a b ColorSpace 37
1.9.4 ApplicationsofL u v andL a b spaces 37
1.10 TheMunsellColorSpace 39
1.11 TheOpponentColorSpace 41
1.12 NewTrends 42
1.13 ColorImages 45
1.14 Summary 45
2 ColorImageFiltering: : : : : : : : : : : : : : : : : : : 51 2.1 Introduction 51
2.2 ColorNoise 52
2.3 ModelingSensorNoise 53
2.4 ModelingTransmissionNoise 55
2.5 MultivariateDataOrderingSchemes 58
2.5.1 MarginalOrdering 59
2.5.2 ConditionalOrdering 62
2.5.3 PartialOrdering 62
2.5.4 ReducedOrdering 63
2.6 APracticalExample 67
Trang 82.8 TheDistanceMeasures 70
2.9 TheSimilarityMeasures 72
2.10 Filters BasedonMarginalOrdering 77
2.11 Filters BasedonReducedOrdering 81
2.12 Filters BasedonVectorOrdering 89
2.13 Directional-basedFilters 92
2.14 ComputationalComplexity 98
2.15 Conclusion 100
3 Adaptive ImageFilters : : : : : : : : : : : : : : : : : : 107 3.1 Introduction 107
3.2 TheAdaptiveFuzzySystem 109
3.2.1 DeterminingtheParameters 112
3.2.2 TheMembershipFunction 113
3.2.3 TheGeneralizedMembershipFunction 115
3.2.4 MembersoftheAdaptiveFuzzyFilter Family 116
3.2.5 ACombinedFuzzyDirectionalandFuzzyMedianFilter122 3.2.6 Comments 125
3.2.7 Applicationto1-DSignals 128
3.3 TheBayesianParametricApproach 131
3.4 TheNon-parametricApproach 137
3.5 AdaptiveMorphologicalFilters 146
3.5.1 Introduction 146
3.5.2 ComputationoftheNOPandtheNCP 152
3.5.3 ComputationalComplexityandFast Algorithms 154
3.6 SimulationStudies 157
3.7 Conclusions 173
4 ColorEdge Detection: : : : : : : : : : : : : : : : : : : 179 4.1 Introduction 179
4.2 OverviewOf ColorEdgeDetectionMethodology 181
4.2.1 TechniquesExtendedFromMonochromeEdgeDetection181 4.2.2 VectorSpace Approaches 183
4.3 VectorOrderStatisticEdgeOperators 189
4.4 DierenceVectorOperators 194
4.5 EvaluationProceduresandResults 197
4.5.1 ProbabilisticEvaluation 198
4.5.2 NoisePerformance 200
4.5.3 SubjectiveEvaluation 201
Trang 95 ColorImageEnhancement and Restoration: : : : : : : : 209
5.1 Introduction 209
5.2 HistogramEqualization 210
5.3 ColorImageRestoration 214
5.4 RestorationAlgorithms 217
5.5 AlgorithmFormulation 220
5.5.1 De nitions 220
5.5.2 DirectAlgorithms 223
5.5.3 RobustAlgorithms 227
5.6 Conclusions 229
6 ColorImageSegmentation: : : : : : : : : : : : : : : : 237 6.1 Introduction 237
6.2 Pixel-basedTechniques 239
6.2.1 HistogramThresholding 239
6.2.2 Clustering 242
6.3 Region-basedTechniques 247
6.3.1 RegionGrowing 248
6.3.2 SplitandMerge 250
6.4 Edge-basedTechniques 252
6.5 Model-basedTechniques 253
6.5.1 TheMaximumA-posterioriMethod 254
6.5.2 TheAdaptiveMAPMethod 255
6.6 Physics-basedTechniques 256
6.7 HybridTechniques 257
6.8 Application 260
6.8.1 PixelClassi cation 260
6.8.2 SeedDetermination 262
6.8.3 RegionGrowing 267
6.8.4 RegionMerging 269
6.8.5 Results 271
6.9 Conclusion 273
7 ColorImageCompression : : : : : : : : : : : : : : : : 279 7.1 Introduction 279
7.2 ImageCompressionComparisonTerminology 282
7.3 ImageRepresentationforCompressionApplications 285
7.4 LosslessWa eform-basedImageCompressionTechniques 286
7.4.1 EntropyCoding 286
7.4.2 LosslessCompressionUsingSpatialRedundancy 288
7.5 LossyWa eform-basedImageCompressionTechniques 290
7.5.1 SpatialDomainMethodologies 290
7.5.2 TransformDomainMethodologies 292
7.6 SecondGenerationImageCompressionTechniques 304
Trang 107.7.1 ModelingtheHumanVisualSystem 307
7.7.2 PerceptuallyMotivatedDCTImageCoding 311
7.7.3 PerceptuallyMotivatedWa elet-basedCoding 313
7.7.4 PerceptuallyMotivatedRegion-basedCoding 317
7.8 ColorVideoCompression 319
7.9 Conclusion 324
8 EmergingApplications: : : : : : : : : : : : : : : : : : 329 8.1 InputAnalysisUsingColorInformation 331
8.2 ShapeandColorAnalysis 337
8.2.1 FuzzyMembershipFunctions 338
8.2.2 AggregationOperators 340
8.3 ExperimentalResults 343
8.4 Conclusions 345
A CompanionImage Processing Software : : : : : : : : : : 349 A.1 ImageFiltering 350
A.2 ImageAnalysis 350
A.3 ImageTransforms 351
A.4 Noise Generation 351
Trang 111.1 Thevisiblelightspectrum 1
1.2 TheCIEXYZcolormatchingfunctions 7
1.3 TheCIERGBcolormatchingfunctions 7
1.4 Thechromaticitydiagram 9
1.5 TheMaxwelltriangle 10
1.6 TheRGBcolormodel 11
1.7 LineartoNon-linearLightTransformation 18
1.8 Non-lineartolinearLightTransformation 19
1.9 TransformationofIntensitiesfromImageCapturetoImageDisplay 19 1.10 TheHSIColorSpace 26
1.11 TheHLSColorSpace 31
1.12 TheHSVColorSpace 31
1.13 TheL u v ColorSpace 34
1.14 TheMunsellcolorsystem 40
1.15 TheOpponentcolorstage ofthehumanvisualsystem 42
1.16 A taxonomyofcolormodels 46
3.1 SimulationI:Filteroutputs(1 st component) 129
3.2 SimulationI:Filteroutputs(2 nd component) 129
3.3 SimulationII:Actualsignalandnoisyinput(1 st component) 130
3.4 SimulationII:Actualsignalandnoisyinput(2 nd component) 131
3.5 SimulationII:Filteroutputs(1 st component) 132
3.6 SimulationII:Filteroutputs(2 nd component) 132
3.7 A wchartoftheNOPresearchalgorithm 155
3.8 Theadaptivemorphological lter 157
3.9 `Peppers'corruptedb 4% impulsivenoise 169
3.10 `Lenna' corrupted with Gaussian noise = 15 mixed with 2% impulsivenoise 169
3.11 VMF of(3.9)using3x3window 170
3.12 BVDF of(3.9)using3x3window 170
3.13 HF of(3.9)using3x3window 170
3.14 AHF of(3.9)using3x3window 170
3.15 FVDF of(3.9)using3x3window 170
3.16 ANNMF of(3.9)using3x3window 170
Trang 123.18 BFMA of(3.9)using3x3window 170
3.19 VMF of(3.10)using 3x3window 171
3.20 BVDF of(3.10)using3x3window 171
3.21 HF of(3.10)using3x3window 171
3.22 AHF of(3.10)using3x3window 171
3.23 FVDF of(3.10)using3x3window 171
3.24 ANNMF of(3.10)using3x3window 171
3.25 CANNMF of(3.10) using3x3window 171
3.26 BFMA of(3.10) using3x3window 171
3.27 `Mandrill' -10%impulsivenoise 173
3.28 NOP-NCP lteringresults 173
3.29 VMF using3x3window 173
3.30 Mutistage Close-opening lteringresults 173
4.1 Edgedetectionb derivativeoperators 180
4.2 Sub-windowCon gurations 195
4.3 Testcolorimage`ellipse' 202
4.4 Testcolorimage wer' 202
4.5 Testcolorimage`Lenna' 202
4.6 Edgemapof`ellipse': Sobeldetector 203
4.7 Edgemapof`ellipse': VRdetector 203
4.8 Edgemapof`ellipse': DVdetector 203
4.9 Edgemapof`ellipse': DVh detector 203
4.10 Edgemapof wer':Sobeldetector 204
4.11 Edgemapof wer':VRdetector 204
4.12 Edgemapof wer':DVdetector 204
4.13 Edgemapof wer':DVadapdetector 204
4.14 Edgemapof`Lenna':Sobeldetector 205
4.15 Edgemapof`Lenna':VRdetector 205
4.16 Edgemapof`Lenna':DVdetector 205
4.17 Edgemapof`Lenna':DVadapdetector 205
5.1 Theoriginalcolorimage`mountain' 215
5.2 Thehistogramequalizedcoloroutput 215
6.1 Partitionedimage 250
6.2 Correspondingquad-tree 250
6.3 TheHSIconewithachromaticregioninyellow 261
6.4 Original image.Achromaticpixels: intensity<10, >90 262
6.5 Saturation<5 262
6.6 Saturation<10 262
6.7 Saturation<15 262
6.8 Original image.Achromaticpixels: saturation<10,intensity>90 263 6.9 Intensity<5 263
Trang 136.11 Intensity<15 263
6.12 Original image.Achromaticpixels: saturation<10,intensity<10 264 6.13 Intensity>85 264
6.14 Intensity>90 264
6.15 Intensity>95 264
6.16 Original image 265
6.17 Pixel classi cation with chromatic pixels in red and achromatic pixelsin theoriginalcolor 265
6.18 Original image 265
6.19 Pixel classi cationwith chromatic pixels in tan and achromatic pixelsin theoriginalcolor 265
6.20 Arti cialimagewithlevel1,2,and3seeds 266
6.21 Theregiongrowingalgorithm 267
6.22 Original 'Claire'image 270
6.23 'Claire'imageshowingseedswithVAR=0:2 270
6.24 Segmented'Claire'image(before merging),T chrom =0:15 270
6.25 Segmented 'Claire' image (after merging), T chrom = 0:15 and T merg =0:2 270
6.26 Original 'Carphone'image 271
6.27 'Carphone'imageshowingseedswithVAR=0:2 271
6.28 Segmented'Carphone'image(beforemerging),T chrom =0:15 271
6.29 Segmented'Carphone'image(aftermerging), T chrom =0:15and T merg =0:2 271
6.30 Original 'Mother-Daughter'image 272
6.31 'Mother-Daughter'imageshowingseeds withVAR=0:2 272
6.32 Segmented'Mother-Daughter'image (before merging), T chrom = 0:15 272
6.33 Segmented 'Mother-Daughter' image (after merging), T chrom = 0:15andT merg =0:2 272
7.1 Thezig-zagscan 297
7.2 DCTbasedcoding 298
7.3 Original colorimage`Peppers' 299
7.4 Imagecodedat acompressionratio5:1 299
7.5 Imagecodedat acompressionratio6:1 299
7.6 Imagecodedat acompressionratio6:3:1 299
7.7 Imagecodedat acompressionratio6:35:1 299
7.8 Imagecodedat acompressionratio6:75:1 299
7.9 Subband codingscheme 301
7.10 Relationshipbetweendierentscalesubspaces 302
7.11 Multiresolutionanalysis decomposition 303
7.12 Thewa elet-basedscheme 304
7.13 Secondgenerationcodingschemes 304
7.14 Thehumanvisualsystem 307
Trang 147.16 MPEG-1:Coding module 322
7.17 MPEG-1:Decoding module 322
8.1 SkinandLipClustersin theRGBcolorspace 333
8.2 SkinandLipClustersin theL a b colorspace 333
8.3 SkinandLiphueDistributionsin theHSVcolorspace 334
8.4 Overallschemetoextractthefacialregionswithin ascene 337
8.5 Templateforhaircolorclassi ... TransformationofIntensitiesfromImageCapturetoImageDisplay 19 1.10 TheHSIColorSpace 26
1.11 TheHLSColorSpace 31
1.12 TheHSVColorSpace 31
1.13 TheL u v ColorSpace 34
1.14...
4.2 Sub-windowCongurations 195
4.3 Testcolorimage`ellipse'' 202
4.4 Testcolorimage wer'' 202
4.5 Testcolorimage`Lenna'' 202
4.6 Edgemapof`ellipse'': Sobeldetector... 322
8.1 SkinandLipClustersin theRGBcolorspace 333
8.2 SkinandLipClustersin theL a b colorspace 333
8.3 SkinandLiphueDistributionsin theHSVcolorspace 334
8.4