1. Trang chủ
  2. » Luận Văn - Báo Cáo

Extended Finite Element Method

34 7 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề How to Determine Displacement and Stress of Cracked Plate by Extended Finite Element Method (XFEM)
Trường học National Central University
Định dạng
Số trang 34
Dung lượng 2,91 MB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

ĐẠI HỌC QUỐC GIA TP HCM TRƯỜNG ĐẠI HỌC BÁCH HOA  Topic How to Determine Displacement and Stress of Cracked Plate by Extended Finite Element Method (XFEM) NATIONAL CENTRAL UNIVERSITY Good afternoon Professor, good afternoon class Today, I present my topic about for short XFEM 1 OUTLINE INTRODUCTION 1 2 BASIS THEORY 3 CALCULATION EXAMPLES 4 CONCLUSIONS 5 REFERENCES 2 This is the outline of my presentation, including 5 parts Introduction, literature review, basis theory, calculation examples and[.]

Trang 1

How to Determine Displacement and Stress of Cracked Plate

by Extended Finite Element Method

(XFEM)

NATIONAL CENTRAL UNIVERSITY

Trang 3

1 INTRODUCTION

Cracked structure

Trang 4

1 INTRODUCTION

How to calculate when cracks appear in structure?

Trang 5

1 INTRODUCTION

 Some models for simulation of a crack problem

discrete crack

quarter point nodes

enriched nodes initial crack

enriched element

smeared crack discrete crack

discrete crack

crack tip slitting line originaluncracked

element

Trang 6

Enriched element

Trang 10

N H

Tip enrichment node

Edge enrichment nodeStandard node

Crack

Trang 11

2 BASIS THEORY

 Enrichment functions in XFEM [1]

+ Heaviside function of edge element:

x With  ( )x level set function [1]

+ Crack tip enrichment functions:

polar coordinates at the tip of the crack

O(x0,y0) A(xA,yA)

B(xB,yB)

B1(xCr2,yCr2)

A1(xCr1,yCr1) vết nứt

cạnh phần tử

a) xác định loại phần tử b) phần tử thân vết nứt c) phần tử đỉnh vết nứt

O(x0,y0) A(xA,yA)

B(xB,yB)

B1(xCr2,yCr2)

A1(xCr1,yCr1) vết nứt

cạnh phần tử a) xác định loại phần tử b) phần tử thân vết nứt c) phần tử đỉnh vết nứt

Trang 12

2 BASIS THEORY

 Enrichment functions in XFEM [1]

+ Crack tip enrichment functions:

polar coordinates at the tip of the crack

O(x0,y0) A(xA,yA)

B(xB,yB)

B1(xCr2,yCr2)

A1(xCr1,yCr1) vết nứt

cạnh phần tử a) xác định loại phần tử b) phần tử thân vết nứt c) phần tử đỉnh vết nứt

Trang 13

2 BASIS THEORY

 Enrichment functions in XFEM [1]

+ Heaviside function of edge element:

x With  ( )x level set function [1]

O(x0,y0) A(xA,yA)

B(xB,yB)

B1(xCr2,yCr2)

A1(xCr1,yCr1) vết nứt

cạnh phần tử

a) xác định loại phần tử b) phần tử thân vết nứt c) phần tử đỉnh vết nứt

Trang 14

2 BASIS THEORY

 Displacement equation in XFEM for element “e”

In which, the global stiffness matrix ( ) in XFEM is defined as follows:

u: standard element, a: Edge enrichment element, b: Tip enrichment element

(1)

(2)

(3)

(4) (5)

Trang 15

2 BASIS THEORY

If the plate has no crack => use finite element method (FEM) to calculate

 Displacement equation in XFEM for element “ e ”

Force vector in XFEM:

Stiffness Matrix in XFEM:

(3)(4)

Trang 16

2 BASIS THEORY

If the plate has small crack => use Extended finite element method (XFEM) to calculate

 Displacement equation in XFEM for element “ e ”

Force vector in XFEM:

Stiffness Matrix in XFEM:

u: standard element, b: Tip enrichment element

Trang 17

2 BASIS THEORY

If the plate has large crack => use Extended finite element method (XFEM) to calculate

 Displacement equation in XFEM for element “ e ”

Force vector in XFEM:

Stiffness Matrix in XFEM:

(9)

(10)

u: standard element, a: Edge enrichment element, b: Tip enrichment element

ij ij ij e

Trang 18

THEORY ELEMENT METHOD ELEMENT METHOD EXTENDED FINITE EXTENDED FINITE

Calculate Displacement

and Stress plate

Analyze the results

+

Using by Matlab program

Comparing the results with previous studies

2 BASIS THEORY

The calculation procedure

Trang 19

3 EXAMPLE

Data: W = 40 mm, H = 80 mm, E=117.103 Mpa, Poisson ν = 0.3,

σ = 1000MPa, a = cracked length, homogeneous material

Trang 20

3 EXAMPLE

σ = 1000

Data: W = 40 mm, H = 80 mm, E=117.103 Mpa,

Poisson ν = 0.3, σ = 1000MPa, a = cracked length

Trang 22

3 EXAMPLE

Data: W = 40 mm, H = 80 mm, E=117.103 Mpa, homogeneous

material, Poisson ν = 0.3, σ = 1000MPa, a = cracked length

σ = 1000

X

Y

Comparing max displacement between

XFEM and FEM

Trang 23

3 EXAMPLE

Data: W = 40 mm, H = 80 mm, E=117.103 Mpa, Poisson ν =

0.3, σ = 1000MPa , a = crack length = 20mm

Y

Trang 24

3 EXAMPLE

Data: W = 40 mm, H = 80 mm, E=117.103 Mpa, Poisson ν =

0.3, σ = 1000MPa , a = crack length = 20mm

Y

Trang 25

3 EXAMPLE

Data: W = 40 mm, H = 80 mm, E=117.103 Mpa, Poisson ν =

0.3, σ = 1000MPa , a = crack length = 20mm

Y

Trang 27

3 EXAMPLE

Data: W = 40 mm, H = 80 mm, E=117.103 Mpa, Poisson ν =

0.3, σ = 1000MPa , homogeneous material

Comparing max displacement between

XFEM and FEM

Y

Trang 31

4 CONCLUSIONS

 The analysis result of cracked plate by XFEM is suitable with the

previous studies

 As the cracks increase, the displacement increase.

 The displacement and stress depend on the position of the cracked

plate

 The greater the crack length, the more the displacement changes

 XFEM is easy to simulate cracks without having to re-mesh the

structure

Trang 32

 Propagation analysis of the craked plate using XFEM.

 Develop the problem with many crack using XFEM

Trang 33

[1] Moes N, et al., “A finite element method for crack growth without remeshing,” International Journal for numerical methods in Engineering, 46,

131-150, 1999.

[2] Soheil Mohammadi, eXtended Finite Eement Method, School of Civil

Engineering University of Tehran Tehran, Iran, 2008.

[3] Sukumar, et al., “Modeling quasi-static crack growth with the extended finite element method,” Part I: Computer implementation International

Journal of Solids and Structures, 40, 7513–7537, 2003.

[4] Sukumar, et al., “Extended finite element method and fast marching method for three – dimensional fatigue crack propagation,” Engineering

Fracture Mechanics, 70, 29 – 48 2003a.

[5] Dolbow, et al., “An extended finite element method for modeling crack growth with frictional contact,” Finite Elements in Analysis and Design, 36 (3)

Trang 34

LOGO THANK YOU SO MUCH!

Ngày đăng: 30/05/2022, 03:19

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN