The introduction of European standards to UK construction is a significant event as, for the first time, all design and construction codes within the EU will be harmonised. The ten design standards, known as the Eurocodes, will affect all design and construction activities as all current British Standards for structural design are due to be withdrawn in 2010. The cement and concrete industry recognised the need to enable UK design professionals to use Eurocode 2, Design of concrete structures, quickly, effectively, efficiently and with confidence. Supported by government, consultants and relevant industry bodies, the Concrete Industry Eurocode 2 Group (CIEG) was formed in 1999 and this Group has provided the guidance for a coordinated and collaborative approach to the introduction of Eurocode 2. As a result, a range of resources are being delivered by the concrete sector (see www.eurocode2.info). The aim of this publication, Worked Examples to Eurocode 2: Volume 1 is to distil from Eurocode 2, other Eurocodes and other sources the material that is commonly used in the design of concrete framed buildings. These worked examples are published in two parts. Volume 2 will include chapters on Foundations, Serviceability, Fire and Retaining walls
Trang 2The introduction of European standards to UK construction is a significant event as, for the first time, all design and construction codes within the EU will be harmonised The ten design standards, known as the Eurocodes, will affect all design and construction activities as all current British Standards for structural design are due to be withdrawn in 2010
The cement and concrete industry recognised the need to enable UK design professionals to use Eurocode 2, Design of concrete structures, quickly, effectively, efficiently and with confidence Supported by government, consultants and relevant industry bodies, the Concrete Industry Eurocode 2 Group (CIEG) was formed in 1999 and this Group has provided the guidance for a coordinated and collaborative approach to the introduction of Eurocode 2
As a result, a range of resources are being delivered by the concrete sector (see www.eurocode2.info) The aim of this publication, Worked Examples to Eurocode 2: Volume 1 is to distil from Eurocode 2, other Eurocodes and other sources the material that is commonly used in the design of concrete framed buildings
These worked examples are published in two parts Volume 2 will include chapters on Foundations, Serviceability, Fire and Retaining walls.
:\dghpe^]`^f^gml
The original ideas for this publication emanates from the research project `Eurocode 2: Transition from UK to European concrete design standards’, which was led by the BCA and part funded by the DTI under their PII scheme and was overseen by a Steering Group and the CIEG The work has been brought to fruition by The Concrete Centre from early initial drafts by various authors listed
on the inside back cover The concrete industry acknowledges and appreciates the support given
by many individuals, companies and organisations in the preparation of this document These are listed on the inside back cover.
We gratefully acknowledge the authors of the initial drafts and the help and advice given by Robin Whittle in checking the text Thanks are also due to Gillian Bond, Kevin Smith, Sally Huish and the design team at Michael Burbridge Ltd for their work on the production.
The copyright of British Standards extracts reproduced in this document is held by the British Standards Institution (BSI) Permission to reproduce extracts from British Standards is granted by BSI under the terms of Licence No: 2009RM010 No other use of this material is permitted This publication is not intended to be a replacement for the standard and may not reflect the most up-to-date status of the standard British Standards can be obtained in PDF or hard copy formats from the BSI online shop: http://shop.bsigroup.com or by contacting BSI Customer Services for hard copies only:
Tel:+44 (0)20 8996 9001, Email: cservices@bsigroup.com.
ZoZbeZ[e^_khfma^<hg\k^m^;hhdlahiZmppp'\hg\k^m^[hhdlahi'\hfM^e3$ !)"0))-&/)0000
<<BI&)-*
In[ebla^]=^\^f[^k+))2 BL;G201&*&2)-/1*1&1-&0 Ikb\^@khniI
¡FI:&Ma^<hg\k^m^<^gmk^
All advice or information from MPA - The Concrete Centre is intended only for use in the UK by those who will evaluate the significance and limitations of its contents and take responsibility for its use and application No liability (including that for negligence) for any loss resulting from such advice or information is accepted by MPA - The Concrete Centre or its subcontractors, suppliers or advisors Readers should note that the publications from MPA - The Concrete Centre are subject to revision from time
to time and should therefore ensure that they are in possession of the latest version.
Printed by Michael Burbridge Ltd, Maidenhead, UK.
Trang 4Symbols and abbreviations used in this publication
Trang 11Aim
Ma^Zbfh_mablin[eb\ZmbhgblmhbeenlmkZm^makhn`aphkd^]^qZfie^lahp;L>G*22+¾*¾* T*V
!>nkh\h]^+"fZr[^nl^]bgikZ\mb\^mh]^lb`gbg&lbmn\hg\k^m^[nbe]bg`lmkn\mnk^l'Bmblbgm^g]^]
maZm ma^l^ phkd^] ^qZfie^l pbee ^qieZbg ahp \Ze\neZmbhgl mh >nkh\h]^ + fZr [^ i^k_hkf^]'
>nkh\h]^+lmkb\mer\hglblmlh__hnkiZkml!IZkml*¾*%*¾+%+Zg]," T*&-V [nm_hkma^inkihl^lh_
k^jnbk^ l^o^kZe h_ ma^ hma^k k^_^k^g\^l mh aZg]% bg iZkmb\neZk% <hg\bl^ >nkh\h]^ +T.V % pab\a
lnffZkbl^l ma^ kne^l Zg] ikbg\bie^l maZm pbee [^ \hffhger nl^] bg ma^ ]^lb`g h_ k^bg_hk\^]
NA NA NA NA NA
NA NA NA NA
–2 –3 –6
PD6687
1–2 –3 –2
WORKED EXAMPLES
TO EUROCODE 2 VOL 1
CONCRETE INDUSTRY PUBLICATIONS
BS EN 1990 BASIS OF DESIGN
CONCISE EUROCODE 2
HOW TO DESIGN CONCRETE STRUCTURES
www.
Eurocode2 info
RC SPREAD SHEETS
PRECAST DESIGN MANUAL
MANUALS
DETAILERS HANDBOOK
DESIGN
BS EN 13670 EXECUTION OF CONCRETE STRUCTURES
Trang 12@^g^kZeer% ma^ \Ze\neZmbhgl Zk^ \khll&k^_^k^g\^] mh ma^ k^e^oZgm \eZnl^l bg Zee _hnk iZkml h_
>nkh\h]^ + T*¾-V Zg]% pa^k^ ZiikhikbZm^% mh hma^k ]h\nf^gml' L^^ ?b`nk^ *'+ _hk Z `nb]^ mh ik^l^gmZmbhg'K^_^k^g\^lmh;L1**) T0V k^_^kmhIZkm*nge^llhma^kpbl^lmZm^]'
@^g^kZeer%ma^Âlbfie^Ã^qZfie^l]^i^g]hg^jnZmbhglZg]]^lb`gZb]l]^kbo^]_khf>nkh\h]^+' Ma^]^kbo^]^jnZmbhglZk^`bo^gbg :ii^g]bq:Zg]ma^]^lb`gZb]l_khfL^\mbhg*.h_<hg\bl^
>nkh\h]^+T.V Zk^k^i^Zm^]bg :ii^g]bq; '
Ma^^qZfie^lZk^bgm^g]^]mh[^ZiikhikbZm^_hkma^bkinkihl^%pab\ablmhbeenlmkZm^ma^nl^h_
>nkh\h]^+_hkbg&lbmn\hg\k^m^[nbe]bg`lmkn\mnk^l'Ma^k^Zk^lbfie^^qZfie^lmhbeenlmkZm^ahp mrib\ZeaZg]\Ze\neZmbhglfb`am[^]hg^nlbg`ZoZbeZ[e^\aZkmlZg]mZ[e^l]^kbo^]_khfma^<h]^' Ma^l^Zk^_heehp^][rfhk^]^mZbe^]^qZfie^lbeenlmkZmbg`ma^]^mZbe^]phkdbg`lh_ma^<h]^l' Bghk]^kmh^qieZbgma^nl^h_>nkh\h]^+%l^o^kZeh_ma^\Ze\neZmbhglZk^ik^l^gm^]bg]^mZbe_Zk bg^q\^llh_maZmg^\^llZkrbg]^lb`g\Ze\neZmbhglhg\^nl^klZk^_ZfbebZkpbmama^<h]^'MhZg
^qm^gm%ma^]^lb`glZk^\hgmkbo^]mhlahpoZeb]f^mah]lh_]^lb`gbg`^e^f^gml%mh`bo^bglb`am Zg]mha^eibgoZeb]Zmbg`\hfinm^kf^mah]l'Ma^rZk^ghmg^\^llZkberma^fhlmZiikhikbZm^%ma^ fhlm^\hghfb\hkma^hgerf^mah]lh_]^lb`gbg`ma^f^f[^klbeenlmkZm^]'
How to: Floors [8] Ahpmh]^lb`g\hg\k^m^lmkn\mnk^lnlbg`
>nkh\h]^+T1V3?ehhkl How to:
`bo^gbg]^mZbebg`fZgnZel T1%2V pbee[^nl^]'Ahp^o^k%ma^^qZfie^lZk^bgm^g]^]mha^eipa^g
\nkmZbef^gm%Zg\ahkZ`^Zg]eZie^g`malg^^]mh[^]^m^kfbg^]'
Trang 13Eurocode: Basis of structural design
Bg ma^ >nkh\h]^ lrlm^f ;L >G *22)% >nkh\h]^3 ;Zlbl h_ lmkn\mnkZe ]^lb`gT*)V ho^kZk\a^l Zee ma^
Actions on structures
Design and detailing
Geotechnical and seismic design
Trang 14Zg] bl nl^] Zl ma^ [Zlbl h_ hma^k lmZg]Zk]l' IZkm +% ;kb]`^lT,V% Zg] IZkm ,% Ebjnb]k^mZbgbg`Zg]
BS EN 1992
EUROCODE 2 Part 3:
Liquid Retaining Structures
BS EN 1995
EUROCODE 5
Design of Composite Structures
BS EN 13670 Execution of Structures
BS 8500 Specifying Concrete
BS EN 206 Concrete
BS EN 1992
EUROCODE 2 Part 2:
BS EN 10080 Reinforcing Steels
BS 4449 Reinforcing Steels
Trang 15pab\a Zk^ in[ebla^] bg Z GZmbhgZe:gg^q !G:" _hk ^Z\a iZkm h_ ^Z\a >nkh\h]^'Ma^ GZmbhgZe
:gg^q fZr Zelh bg\en]^ k^_^k^g\^ mh ghg&\hgmkZ]b\mhkr \hfie^f^gmZkr bg_hkfZmbhg !G<<B"%
Trang 16N
FZm^kbZelZg]ikh]n\mlpbee[^nl^]Zlli^\b_b^]'
N
Ma^lmkn\mnk^pbee[^Z]^jnZm^erfZbgmZbg^]Zg]pbee[^nl^]bgZ\\hk]Zg\^pbmama^]^lb`g[kb^_'
N
Ma^k^jnbk^f^gml_hk^q^\nmbhgZg]phkdfZglabi`bo^gbg>G*,/0)Zk^\hfieb^]pbma'
NThe worked examples Nge^llghm^]hma^kpbl^%ma^\Ze\neZmbhglbgmablin[eb\ZmbhgZllnf^3
EC0: Table 2.1 N :]^lb`geb_^h_.)r^Zkl'
Table 3.1 N Ma^nl^h_<,)(,0\hg\k^m^'
BS 4449 N Ma^nl^h_@kZ]^:%;hk<k^bg_hk\^f^gm%]^lb`gZm^]ÂAÃbgZ\\hk]Zg\^pbma;L1///T*2V'
Table 4.1,
BS 8500: Table A.1 N >qihlnk^\eZllQ<*'
Building Regs [20,21] N *ahnk_bk^k^lblmZg\^'
@^g^kZeer^Z\a\Ze\neZmbhgblkhng]^]Zg]bmblma^khng]^]oZen^maZmblnl^]bgZgr_nkma^k\Ze\neZmbhg'
Material properties
FZm^kbZeikhi^kmb^lZk^li^\bË^]bgm^kflh_ma^bk\aZkZ\m^kblmb\oZen^l'MablnlnZeer\hkk^lihg]l mhma^ehp^k._kZ\mbe^h_ZgZllnf^]lmZmblmb\Ze]blmkb[nmbhgh_ma^ikhi^kmr\hglb]^k^]' Ma^oZen^lh_g<Zg]gL%iZkmbZe_Z\mhkl_hkfZm^kbZel%Zk^bg]b\Zm^]bgMZ[e^*'*'
Trang 18:gnii^koZen^pbmaZgbgm^g]^]ikh[Z[bebmrh_ghm[^bg`^q\^^]^]hkehp^koZen^pbmaZg
N bgm^g]^]ikh[Z[bebmrh_[^bg`Z\ab^o^]¾ghkfZeernl^]_hkoZkbZ[e^Z\mbhglpbmadghpg lmZmblmb\Ze]blmkb[nmbhgl%ln\aZlpbg]hklghp'
:ghfbgZeoZen^¾nl^]_hklhf^oZkbZ[e^Zg]Z\\b]^gmZeZ\mbhgl'
N
Variable actions: imposed loads
General Bfihl^]ehZ]lhg[nbe]bg`lZk^]bob]^]bgmh\Zm^`hkb^l'Mahl^fhlm_k^jn^gmernl^]bg\hg\k^m^ ]^lb`gZk^lahpgbgMZ[e^+'*'
+'-+'-'+
Trang 22Number of storeys :k^]n\mbhg_Z\mhk_hkgnf[^kh_lmhk^rl%ag%fZr[^nl^]Zg]lahne][^]^m^kfbg^]nlbg`3
Variable actions: snow loadsEC1-1-3:
5.2(3)
Bgi^klblm^gmhkmkZglb^gmlbmnZmbhgl%lghpehZ]hgZkhh_%l%bl]^Ëg^]Zl[^bg`3 l6mb<^<mld
?hkma^fZchkbmrh_ma^Lhnma>Zlm%ma^Fb]eZg]l%Ghkma^kgBk^eZg]Zg]ma^ghkmah_
>g`eZg]ZiZkm_khfab`a`khng]%ld6)'.)dG(f + '
?hkma^P^lm<hngmkr%P^lmPZe^lZg]Bk^eZg]ma^Ë`nk^ble^ll'?hkfhlmh_L\hmeZg] Zg]iZkmlh_ma^^Zlm\hZlmh_>g`eZg]%ma^Ë`nk^blfhk^'L^^?b`nk^+'*'
LghpehZ]bl\eZllbË^]ZlZoZkbZ[e^Ëq^]Z\mbhg'>q\^imbhgZe\bk\nflmZg\^lfZr[^mk^Zm^]Zl Z\\b]^gmZeZ\mbhglbgpab\a\Zl^k^_^k^g\^lahne][^fZ]^mh;L>G*22*¾*¾,'
Trang 234
4 4
5 5
Variable actions: wind loads
Mabl L^\mbhg ik^l^gml Z o^kr lbfie^ bgm^kik^mZmbhg h_ >nkh\h]^ * T**% **ZV Zg] bl bgm^g]^] mh
ikhob]^ Z [Zlb\ ng]^klmZg]bg` pbma k^li^\m mh k^\mZg`neZk&ieZg [nbe]bg`l pbma ÌZm khh_l' Bg
Trang 24Determine basic wind velocity, vb
Calculate basic wind pressure, qb
Trang 25(m) 20
10 9 7 6 5 4 3 2≤0.1 1 10
Distance upwind to shoreline (km)
10 Use 1.0 in this area
0.9
0.8
0.7
100 90 80 70 60 50 40 30
(m) 20
10 9 7 6 5 4 3
EC1-1-4: 4.2(1)
Note 2 & NA 2.4: Fig NA.1
EC1-1-4: 4.5(1) Note 1 & NA 2.17: Fig NA.7
EC1-1-4: 4.5(1) Note 1 & NA 2.17: Fig NA.8
Calculate characteristic wind load, wk
Trang 26
\hglb]^knlbg`ma^oZen^lbg;L/,223+mhfZbgmZbgma^\nkk^gme^o^elh_lZ_^mr Zg]^\hghfr'L^^MZ[e^+'*+'
G^mik^llnk^\h^ b\b^gm%\i^%*) %_hkpZeelh_k^\mZg`neZkieZg[nbe]bg`l#
a(] G^mik^llnk^\h^ b\b^gm%\i^%*)
)'+fbgT[4+aVh_pbg]pZk]^]`^
¾)'1 Zone C ?hkpZeeliZkZee^emhma^pbg]]bk^\mbhg%Zk^Zl_khf
Trang 27Table 8 & Fig 18
Calculate the overall wind force, Fw
:\mbhgl]n^mh\hglmkn\mbhg%mkZ_Ë\%Ëk^%ma^kfZeZ\mbhgl%nl^Zllbehlhk_khf\kZg^lZk^hnmlb]^
ma^l\hi^h_mablin[eb\ZmbhgZg]k^_^k^g\^lahne][^fZ]^mhli^\bZeblmebm^kZmnk^'
EC1-1-6, EC1-2, EC1-1-2, EC1-1-5, EC1-3 & EC1-4
+'/'.
+'0
Trang 28Permanent actions
Ma^ ]^glbmb^l Zg] Zk^Z ehZ]l h_ \hffhger nl^] fZm^kbZel% la^^m fZm^kbZel Zg] _hkfl h_
\hglmkn\mbhgZk^`bo^gbgMZ[e^l+'*,mh+'*.' :\mbhglZkblbg`_khfl^mme^f^gm%]^_hkfZmbhgZg]\k^^iZk^hnmlb]^ma^l\hi^h_mabl]h\nf^gm [nm `^g^kZeer Zk^ mh [^ \hglb]^k^] Zl i^kfZg^gm Z\mbhgl' Pa^k^ \kbmb\Ze% k^_^k mh li^\bZeblm ebm^kZmnk^'
Trang 30+'.\EhZ]l_hkmrib\Ze_hkflh_\hglmkn\mbhg K^lb]^gmbZe_ehhk !dG(f + "
Trang 31Design values of actions
Trang 32Design values at ULS
EC0: 6.4.3.2(3) ?hkma^NELh_lmk^g`ma!LMK"%ma^]^lb`g^kfZr\ahhl^[^mp^^gnlbg`>qik^llbhg!/'*)"hkma^
phklm\Zl^h_>qik^llbhg!/'*)Z"hk>qik^llbhg!/'*)["'Single variable action
:mNEL%ma^]^lb`goZen^h_Z\mbhglbl
^bma^k
>qi'!/'*)" *',.@d$*'.Jd%* hkma^phklm\Zl^h_3
>qi'!/'*)Z" *',.@d$c)%**'.Jd%*
Zg]
>qi'!/'*)[" *'+.@d$*'.Jd%* pa^k^
Bfihl^]ehZ]lbg[nbe]bg`l
>qik^llbhg!/'*)"blZepZrl^jnZemhhkfhk^\hgl^koZmbo^maZgma^e^ll_ZohnkZ[e^h_>qik^llbhgl
!/'*)Z"Zg]!/'*)["'>qik^llbhg!/'*)["pbeeghkfZeerZiierpa^gma^i^kfZg^gmZ\mbhglZk^ghm
`k^Zm^kmaZg-'.mbf^lma^oZkbZ[e^Z\mbhgl!^q\^im_hklmhkZ`^ehZ]l%\Zm^`hkr>bgMZ[e^+'*0% pa^k^>qik^llbhg!/'*)Z"ZepZrlZiieb^l"'
Ma^k^_hk^%^q\^imbgma^\Zl^h_\hg\k^m^lmkn\mnk^llniihkmbg`lmhkZ`^ehZ]lpa^k^c)6*')% hk_hkfbq^]nl^%>qik^llbhg!/'*)["pbeenlnZeerZiier'Manl%_hkf^f[^kllniihkmbg`o^kmb\Ze
Z\mbhglZmNEL%*'+.@d$*'.Jdpbee[^ZiikhikbZm^_hkfhlmlbmnZmbhglZg]Ziieb\Z[e^mhfhlm
\hg\k^m^lmkn\mnk^l!l^^?b`nk^+'."'
<hfiZk^]pbmama^nl^h_>qik^llbhg!/'*)"%ma^nl^h_^bma^k>qik^llbhg!/'*)Z"hk!/'*)["e^Z]l mh Z fhk^ \hglblm^gm k^ebZ[bebmr bg]^q Z\khll eb`amp^b`am Zg] a^Zorp^b`am fZm^kbZel'
+'2'+
EC0: A1.2.2
& NA
Trang 33Accompanying variable actions
:`Zbg ma^ ]^lb`g^k fZr \ahhl^ [^mp^^g nlbg` >qik^llbhg !/'*)" hk ma^ e^ll _ZohnkZ[e^ h_
Pbg]ehZ]' ,'
?b`nk^+'/
Trang 34c)%b_Z\mhkmhma^Z\\hfiZgrbg`oZkbZ[e^Z\mbhg'Ma^ikh[Z[bebmrmaZmma^l^\hf[bg^]Z\mbhglpbee [^^q\^^]^]bl]^^f^]mh[^lbfbeZkmhma^ikh[Z[bebmrh_Zlbg`e^Z\mbhg[^bg`^q\^^]^]'
B_ma^mphbg]^i^g]^gmoZkbZ[e^Z\mbhglJd%*Zg]Jd%+Zk^Zllh\bZm^]pbma]b ^k^gmliZglZg]ma^ nl^h_>qik^llbhg!/'*)["blZiikhikbZm^%ma^gbghg^l^mh_ZgZerl^lZiier
*'+.@d$*'.Jd%*mhma^Jd%*liZgl
Zg]*'+.@d$c)'b*'.Jd%*mhma^Jd%+liZgl' BgZllh\bZm^]ZgZerl^lZiier
*'+.@d$c)%b*'.Jd%*mhma^Jd%*liZgl
Zg]*'+.@d$*'+.Jd%+mhma^Jd%+liZgl' L^^>qZfie^+'**'+!mphoZkbZ[e^Z\mbhgl"'
Combination Permanent actions Gk Variable actions Qk
Unfavourablea Favourablea Leadingb Othersb
Trang 35:m NEL pa^k^ ma^ oZkbZmbhg bl ghm lfZee% g@d%lni lahne] [^ nl^] pbma @dc%lni Zg] g@d%bg_ pbma
@dc%bg_'LbfbeZker%pa^k^ma^oZkbZmbhgblghmlfZee%ZmLEL@dc%lnilahne][^nl^]pa^k^Z\mbhglZk^
Bg ma^ ZgZerlbl h_ ma^ lmkn\mnk^ Zm ma^ ebfbm lmZm^ [^bg` \hglb]^k^]% ma^ fZqbfnf ^ ^\m h_
Z\mbhgl lahne] [^ h[mZbg^] nlbg` Z k^Zeblmb\ ZkkZg`^f^gm h_ ehZ]l'@^g^kZeer oZkbZ[e^ Z\mbhgl
Trang 36EhZ]ZkkZg`^f^gml_hk[^ZflZg]leZ[lZ\\hk]bg`mhNDG:mh>nkh\h]^
Trang 372.12.1 Continuous beam in a domestic structure
Determine the appropriate load combination and ultimate load
for a continuous beam of four 6 m spans in a domestic structure
supporting a 175 mm slab at 6 m centres
Self-weight, 175 mm thick slabs : 0.17 x 25 x 6.0 = 26.3
E/o self-weight downstand 800 × 225 : 0.80 x 0.225 x 25 = 4.5
Dividing wall 2.40 × 4.42 (200 mm dense blockwork with
plaster both sides)
Assuming use of Exp (6.10), n = 1.35 × 51 + 1.5 × 9.0 = = 82.4
Assuming use of worst case of Exp (6.10a) or Exp (6.10b)
Exp (6.10a): n = 1.35 × 51 + 0.7 × 1.5 × 9.0 = = 78.3
Exp (6.10b): n = 1.25 × 51 + 1.5 × 9.0 = = 77.3
In this case Exp (6.10a) would be critical‡
=ultimate load = 78.3
‡ This could also be determined from Figure 2.5 or by determining that gk > 4.5qk
Ikhc^\m]^mZbel <Ze\neZm^][r chg Ch[gh' CCIP – 041
<a^\d^][r web La^^mgh' 1
<eb^gm TCC =Zm^ Oct 09
Continuous beam in a domestic structure
+'*+ Examples of loading
Trang 382.12.2 Continuous beam in mixed use structure
Determine the worst case arrangements of actions for ULS design of a
continuous beam supporting a 175 mm slab @ 6 m centres Note that
the variable actions are from two sources as defi ned in Figure 2.9.:
Load combination Exp (6.10a) or Exp (6.10b) will be used, as either
will produce a smaller total load than Exp (6.10) It is necessary to
decide which expression governs
By inspection Exp (6.10b) governs in both cases‡
b) Arrangement of ultimate loads
As the variable actions arise from different sources, one is a leading
variable action and the other is an accompanying variable action The
unit loads to be used in the various arrangements are:
‡ This could also be determined from Figure 2.5 or by determining that gk > 4.5qk
EC1-1-1:
6.3.1.1 & NA, EC0:
Trang 39as leading action, gQQk = 1.5 × 24 = 36.0
as accompanying action, c0gQQk = 0.7
× 1.5 × 24
= 25.2
ii) For maximum bending moment in span AB
The arrangement and magnitude of actions of loads are shown
in Figure 2.10 The variable load in span AB assumes the value as
leading action and that in span CD takes the value as an
cQgQ qk2 = 25.2 kN/m
Permanent action
gGgk = 63.8 kN/m
Figure 2.10 For maximum bending moment in span AB p
iii) For maximum bending moment in span CD
The load arrangement is similar to that in Figure 2.10, but now
the variable load in span AB takes its value as an accompanying
gQqk2 = 36.0 kN/m
Permanent action
gG,infgk = 63.8 kN/m
Figure 2.11 For maximum bending moment in span CD p
Trang 40iv) For maximum bending moment at support B
The arrangement of loads is shown in Figure 2.12 As both spans AB
and BC receive load from the same source, no reduction is possible
(other than that for large area
(other than that for large area‡)
EC1-1-1: 6.3.1.1 (10)
gGg
g gk= 63.8 kN/m
Figure 2.12 For maximum bending moment at support B pp
v) For maximum bending moment at support D
The relevant arrangement of loads is shown in Figure 2.13 Comments
made in d) also apply here
Leading variable action
gQg
g qk2 = 36 kN/m
Permanent action
gGg
g gk = 63.8 kN/m
Figure 2.13 For maximum bending moment at support D pp
vi) F or critical curtailment and hogging in span CD
The relevant arrangement of loads is shown in Figure 2.14
Leading variable action
gQ qk2 = 36.0 kN/m
Accompanying variable actionp
c0gQ qk1= 15.8 kN/m
Pe rmanent actionn n
gG,in
g fgk = 51 kN/m m m
Figure 2.14 For curtailment and hogging in span CD p
Eurocode 2 requires that all spans should be loaded with either g gG,sup or g gG,inff (as
per Table 2.16) As illustrated in Figure 2.14, using g gG,inff= 1.0 might be critical for
curtailment and hogging in spans.
curtailment and hogging in spans
curtailment and hogging in spans.
& NA