equivalent strut w i d t h be reduced by 0.707 for p i n n e d frames. The results of this formulation are also provided (Table 6).
TABLE 5--Ultimate Capacity D i s p l a c e m e n t
C o m p r e s s i o n Tension
Test
L o a d (kN) D i s p l a c e m e n t Load (kN) D i s p l a c e m e n t
(ms) (ms)
1 121.7 22.7 165.4 22.8
2 166.1 23.2 183.1 22.3
3 156.8 12.6 168.7 ii.i
5 194.6 9.8 168.6 12.4
FIG. 7--Test 2 Hysteresis (Displacement at Top of Left Column)
TABLE 6--Initial Stiffnes~
Test Observed Stafford-Smith and Jamal et al. [15]
Stiffness Carter [14] E q u i v a l e n t Strut Equivalent Strut
1 25 kN/mm 30 k N / m m 23 k N / m m
2 29 kN/mm 54 k N / m m 40 k N / m m
3 16 kN/mm" 73 k N / m m 56 k N / m m
5 45 kN/mm 89 k N / m m 66 k N / m m
" Inadvertent preload of specimen before data sampling.
Copyright by ASTM Int'l (all rights reserved); Sun Dec 27 14:41:40 EST 2015 Downloaded/printed by
University of Washington (University of Washington) pursuant to License Agreement. No further reproductions authorized.
98 MASONRY: DESIGN AND CONSTRUCTION, PROBLEMS AND REPAIR
S t e e l w i t h a m i n i m u m s p e c i f i e d y i e l d s t r e n g t h o f 2 4 8 M P a w a s u s e d f o r t h e s p e c i m e n frames. A c t u a l m i l l t e s t r e s u l t s i n d i c a t e d s t r e n g t h s r a n g i n g f r o m 15 t o 35 p e r c e n t h i g h e r t h a n t h e s p e c i f i e d m i n i m u m . F r a m e d b e a m c o n n e c t i o n s c o n s i s t i n g of c l i p a n g l e s w e r e u s e d as t h e b e a m - c o l u m n c o n n e c t i o n . R a c k i n g t e s t s of t h e b a r e f r a m e of s p e c i m e n 2 r e s u l t e d in a n o b s e r v e d l o a d of 15 k N for a 25 m m d i s p l a c e m e n t m e a s u r e d n e a r t h e t o p o f t h e column.
H o l l o w c l a y m a s o n r y u n i t s w e r e u s e d in t h e i n f i l l a n d t y p e N m o r t a r w a s u s e d for c o n s t r u c t i o n . A v e r a g e m o r t a r c o m p r e s s i v e s t r e n g t h s a r e g i v e n (Table 4). P e a k l o a d s in t e n s i o n a n d c o m p r e s s i o n a n d t h e i r c o r r e s p o n d i n g d i s p l a c e m e n t s a r e a l s o p r e s e n t e d (Table 5). T h e s e d i s p l a c e m e n t s w e r e m e a s u r e d o n t h e c o l u m n n e a r t h e t o p of t h e infill.
U l t i m a t e l o a d s (larger of t h e t w o peaks) a r e u n d e r l i n e d . T A B L E 4 - - A v e r a q e M o r t a r C o m p r e s s i v e S t r e n q t h s
T e s t S t r e n g t h @ 30 D a y s S t r e n g t h @ I n f i l l T e s t D a t e
1 12.5 M P a 12.4 M P a (75 days)
2 13.2 M P a 13.2 M P a (30 days)
3 10.2 M P a 10.5 M P a (66 days)
5 14.3 M P a 16.3 M P a (59 days)
E a c h of t h e t h r e e 200 m m w a l l p a n e l s r e s p o n d e d in a s i m i l a r m a n n e r . T h e b e h a v i o r w a s c h a r a c t e r i z e d b y m o r t a r c r a c k i n g a n d s e p a r a t i o n at t h e b a s e a n d t o p of t h e p a n e l f o l l o w e d b y c o m p r e s s i o n c r a c k i n g in t h e m o r t a r n e a r t h e u p p e r corners. Next, d i a g o n a l c r a c k i n g t h r o u g h o u t t h e m o r t a r j o i n t s of t h e p a n e l s w a s o b s e r v e d a n d f i n a l l y c r a c k i n g of t h e c l a y t i l e as t h e f a c e s h e l l s of t h e u p p e r r o w u n i t s s p l i t a w a y f r o m t h e i r webs. T h e 330 m m s p e c i m e n e x h i b i t e d a s i m i l a r f a i l u r e p a t t e r n . A s i g n i f i c a n t s e p a r a t i o n of t h e w y t h e s of t h e u p p e r c o u r s e s w a s o b s e r v e d as t h e t i l e s of e a c h w y t h e f a i l e d i n d e p e n d e n t l y in t h e
l a t t e r p o r t i o n s of t h e l o a d history. T h i s f o l l o w s l o g i c a l l y as t h e r e w a s no a p p r e c i a b l e c o l l a r joint o r o t h e r s p e c i a l b i n d i n g c o n d i t i o n t o p r e v e n t t h e w y t h e s f r o m r e s p o n d i n g s e p a r a t e l y . F i g u r e s 7 a n d 8 s h o w a h y s t e r e t i c c u r v e of t h e r e s p o n s e a n d t h e t y p i c a l f a i l u r e m o d e of t h e p a n e l s .
T h e l o a d - d e f l e c t i o n b e h a v i o r of t h e i n f i l l e d f r a m e s a r e c h a r a c t e r i z e d b y f a i r l y t i g h t h y s t e r e t i c l o o p s of c o m p r e s s i o n a n d t e n s i o n . F o r s p e c i m e n 2, t h e u l t i m a t e c a p a c i t y of t h e i n f i l l e d f r a m e w a s a p p r o x i m a t e l y t e n t i m e s t h e c a p a c i t y of t h e b a r e f r a m e t e s t e d at a
s i m i l a r d i s p l a c e m e n t . E v e n t h o u g h i n e l a s t i c d e f o r m a t i o n s w e r e o b s e r v e d at l o w l e v e l s of load, t h e i n f i l l s y s t e m b e h a v e d s o m e w h a t l i n e a r l y u n t i l n e a r u l t i m a t e c a p a c i t y . T h e l i m i t e d d e g r a d i n g s t r e n g t h a n d s t i f f n e s s is m o s t a p p a r e n t in t h e l o a d - d e f l e c t i o n c u r v e s of t h e i n f i l l at o r n e a r u l t i m a t e c a p a c i t y . E a c h i n f i l l e x h i b i t e d s i g n i f i c a n t s t r e n g t h (40-50%
of u l t i m a t e ) a f t e r s e v e r a l u p p e r c o u r s e t i l e s w e r e d e s t r o y e d a n d a b s e n t f r o m t h e panel. H o w e v e r , t h e i n f i l l s t r e n g t h w a s s i g n i f i c a n t l y r e d u c e d d u r i n g t h e n e x t i n c r e a s i n g d i s p l a c e m e n t cycles. F i n a l l y , t h e r e s u l t s i n d i c a t e d l i t t l e i n f l u e n c e of v a r y i n g f r a m e s t i f f n e s s o n u l t i m a t e c a p a c i t y of t h e c o m b i n e d system.
I n i t i a l s t i f f n e s s of t h e i n f i l l e d f r a m e s is p r e s e n t e d (Table 6).
T h e i n i t i a l s t i f f n e s s of e a c h s p e c i m e n s o f t e n e d n o t a b l y a f t e r a s m a l l c o m p r e s s i o n force. T h e r e p o r t e d s t i f f n e s s is t h e s e c a n t s t i f f n e s s of t h e f i r s t c o m p r e s s i o n c y c l e of loading, a p p r o x i m a t e l y 1 m m d i s p l a c e m e n t . A c o m p a r i s o n is g i v e n of t h i s o b s e r v e d s t i f f n e s s t o t h o s e c a l c u l a t e d u s i n g t h e e q u i v a l e n t s t r u t m e t h o d p r o p o s e d b y S t a f f o r d - S m i t h a n d C a r t e r
[14]. J a m a l et al. [15] h a v e s h o w n g o o d c o r r e l a t i o n o f t h e r e s u l t s of t h i s e q u i v a l e n t s t r u t m e t h o d w i t h b o t h e x p e r i m e n t a l r e s u l t s [9] a n d
Copyright by ASTM Int'l (all rights reserved); Sun Dec 27 14:41:40 EST 2015 Downloaded/printed by
University of Washington (University of Washington) pursuant to License Agreement. No further reproductions authorized.
FLANAGAN ET AL. ON HOLLOW CLAY TILE INFILLED FRAMES 99
FIG. 8 - - U l t i m a t e F a i l u r e M o d e of R a c k i n g T e s t s O u t - o f - P l a n e D r i f t
In a d d i t i o n t o i n e r t i a l loading, a w a l l m u s t w i t h s t a n d t h e t o p - b o t t o m r e l a t i v e d i s p l a c e m e n t s o f i n t e r s t o r y d r i f t r e s u l t i n g f r o m t h e t r a n s v e r s e c o m p o n e n t o f t h e e a r t h q u a k e . L i t t l e r e s e a r c h h a s b e e n p e r f o r m e d o n t h i s c o n d i t i o n . O f 83 r e f e r e n c e s in a 1979 l i t e r a t u r e r e v i e w of l a t e r a l l o a d i n g o n m a s o n r y i n f i l l p a n e l s [16], n o n e d e a l t w i t h t o p - b o t t o m r e l a t i v e d i s p l a c e m e n t s . H o w e v e r , B e n e d e t t i a n d B e n z o n i [17]
h a v e i n d i c a t e d t h a t i n t e r s t o r y d r i f t m a y b e a m o r e s e v e r e o u t - o f - p l a n e l o a d i n g o n t y p i c a l m a s o n r y w a l l s t h a n i n e r t i a l loading.
A s t h e s t e e l f r a m i n g a n d o r t h o g o n a l s h e a r w a l l s d e f o r m a n i n f i l l o u t - o f - p l a n e , t h e r e l a t i v e d i s p l a c e m e n t c a p a c i t y of t h e i n f i l l m a y b e e x c e e d e d . D u e t o a r c h i n g action, it is u n l i k e l y t h a t t h e c r a c k e d i n f i l l w i l l fall o u t of t h e e n c l o s i n g frame. A n o t h e r f a i l u r e s c e n a r i o is t h e loss of i n - p l a n e s h e a r c a p a c i t y of t h e i n f i l l d u e t o o u t - o f - p l a n e d i s p l a c e m e n t s b u t b e f o r e r e a c h i n g t h e o u t - o f - p l a n e l i m i t state.
T o i n v e s t i g a t e t h e e f f e c t of i n t e r s t o r y drift, t w o l a r g e - s c a l e i n f i l l e d f r a m e s p e c i m e n s , i d e n t i c a l t o i n - p l a n e t e s t s p e c i m e n 2, w e r e c o n s t r u c t e d . T h e steel f r a m e s e n c l o s i n g t h e i n f i l l p a n e l s w e r e o r i e n t e d w i t h t h e i r w e a k a x i s in t h e p l a n e of t h e wall. E a c h i n f i l l w a s b o n d e d t o t h e c o l u m n w e b a n d t o t h e b e a m l o w e r f l a n g e o f t h e s p e c i m e n f r a m e b y s n u g l y p a c k i n g m o r t a r b e t w e e n t h e s t e e l a n d m a s o n r y . T h e p a n e l s w e r e c o n s t r u c t e d w i t h no o f f s e t b e t w e e n t h e w a l l a n d t h e f r a m e c e n t e r l i n e . N o m o r t a r w a s p l a c e d b e t w e e n t h e c l a y t i l e a n d t h e c o l u m n flanges.
O n e s p e c i m e n (number ii) w a s c y c l i c l y l o a d e d o u t - o f - p l a n e w i t h a h y d r a u l i c r a m l o c a t e d n e a r t h e t o p of t h e i n f i l l panel, see F i g u r e 9.
F o r t h i s c a n t i l e v e r m o d e of d e f o r m a t i o n , a p e a k l o a d o f 57 k N w a s a p p l i e d t o t h e s p e c i m e n w i t h a c o r r e s p o n d i n g d i s p l a c e m e n t of 37 m m m e a s u r e d at t h e b e a m c e n t e r l i n e . T h e s p e c i m e n e x h i b i t e d a p r o n o u n c e d h o r i z o n t a l c r a c k a l o n g t h e b a s e a n d h a i r l i n e c r a c k s a l o n g s o m e of t h e l o w e r c o u r s e b e d joints. T h e v e r t i c a l i n t e r f a c e a l o n g t h e p a n e l a n d f r a m e b o u n d a r y r e m a i n e d i n t a c t as t h e w a l l m o v e d w i t h t h e c o l u m n s . O b s e r v e d o u t - o f - p l a n e d i s p l a c e m e n t s of t h e f r a m e a n d i n f i l l (edge a n d m i d p a n e l ) w e r e n e a r l y i d e n t i c a l for t h e s a m e height.
Copyright by ASTM Int'l (all rights reserved); Sun Dec 27 14:41:40 EST 2015 Downloaded/printed by
University of Washington (University of Washington) pursuant to License Agreement. No further reproductions authorized.
100 MASONRY: DESIGN AND CONSTRUCTION, PROBLEMS AND REPAIR
T h e o t h e r s p e c i m e n ( n u m b e r 13) w a s c y c l i c l y l o a d e d o u t - o f - p l a n e t o p r o d u c e a b e a m t y p e c u r v a t u r e , see F i g u r e I0. T h e s p e c i m e n w a s
s u p p o r t e d at t h e t o p a n d a h y d r a u l i c r a m w a s p l a c e d at m i d h e i g h t . A p e a k l o a d of 2 2 0 k N w a s a p p l i e d t o t h e s p e c i m e n a n d a p e a k m i d h e i g h t d i s p l a c e m e n t o f 2.4 m m w a s m e a s u r e d . T h e s p e c i m e n e x h i b i t e d h o r i z o n t a l c r a c k i n g in t h e b e d j o i n t s n e a r m i d h e i g h t a n d v e r t i c a l h a i r l i n e c r a c k s in t h e h e a d j o i n t s of t h e u p p e r h a l f of t h e panel. A h o r i z o n t a l c r a c k a l o n g m o s t of t h e p a n e l a n d b e a m i n t e r f a c e a l s o d e v e l o p e d . A g a i n , s i m i l a r o u t - o f - p l a n e m o v e m e n t of t h e f r a m e a n d i n f i l l w e r e o b s e r v e d w i t h s l i g h t l y h i g h e r d i s p l a c e m e n t s of t h e f r a m e t h a n t h e i n f i l l at m i d p a n e l .
FIG. 9 - - C a n t i l e v e r M o d e o f D e f o r m a t i o n
FIG. 1 0 - - B e a m M o d e of D e f o r m a t i o n
C o p y r i g h t b y A S T M I n t ' l ( a l l r i g h t s r e s e r v e d ) ; S u n D e c 2 7 1 4 : 4 1 : 4 0 E S T 2 0 1 5 D o w n l o a d e d / p r i n t e d b y
U n i v e r s i t y o f W a s h i n g t o n ( U n i v e r s i t y o f W a s h i n g t o n ) p u r s u a n t t o L i c e n s e A g r e e m e n t . N o f u r t h e r r e p r o d u c t i o n s a u t h o r i z e d .
FLANAGAN ET AL, ON HOLLOW CLAY TJLE INFILLED FRAMES 101 In-Plane C a p a c i t y Followinq O u t - o f - P l a n e Drift
To m e a s u r e the damage of drift loading o n specimens ii a n d 13, a low amplitude v i b r a t i o n (impact hammer) test was p e r f o r m e d on b o t h specimens b e f o r e and after the o u t - o f - p l a n e loading. The u s e of this t e c h n i q u e w a s e m p l o y e d since it is d i f f i c u l t to assess t h e damage to a m a s o n r y structure at low to m o d e r a t e load levels. The p e r c e n t a g e
d e c r e a s e in the first o u t - o f - p l a n e and the first in-plane frequencies of the panels d u e to the drift loadings are shown (Table 7).
TABLE 7--Percentaqe Decrease in F r e q u e n c y from Drift L o a d i n q
Test O u t - o f - P l a n e In-plane
Frequency F r e q u e n c y
11 - Cantilever 16.8 28.7
13 - B e a m 16.2 16.6
Specimens ii and 13 were then loaded cyclicly in-plane to failure as specimen 2 had b e e n tested. O b s e r v e d failure m o d e s w e r e similar t o those of t h e racking tests. Minimal d e g r a d a t i o n of in-plane strength and stiffness from the o u t - o f - p l a n e loading was o b s e r v e d (Table 8).
TABLE 8--Ultimate Load and Initial Stiffness
Test Ultimate Load (kN) Stiffness
C o m p r e s s i o n T e n s i o n (kN/mm)
2 - Control 166.1 183.1 29
ll - Cantilever 152.2 149.3 27
13 - Beam 186.0 165.7 31
S U M M A R Y A N D C O N C L U S I O N S
T e s t i n g has been p e r f o r m e d of H C T units, mortar, assemblages, and large-scale b u i l d i n g components to evaluate the c a p a c i t y of typical Y-12 structures subjected to earthquakes. A r c h i n g action causes the panels of t h e infilled frame c o n s t r u c t i o n to have significant o u t - o f - p l a n e strength, thus the risk of panel failure is small. Wall damage due to o u t - o f - p l a n e inter-story drift effects had little influence on the in- p l a n e stiffness and strength. Thus, traditional m e t h o d s of t r e a t i n g orthogonal b e h a v i o r of the infilled frames separately are adequate.
D e p e n d i n g on the c h a r a c t e r i s t i c frequencies of the g r o u n d motion, the p r e s e n c e of n o n s t r u c t u r a l u n r e i n f o r c e d m a s o n r y infills m a y
s i g n i f i c a n t l y improve the seismic b e h a v i o r of structures. The H C T infills increase the stiffness, and therefore, the natural f r e q u e n c i e s of t h e structures. The infills also increase t h e lateral s t r e n g t h of the otherwise u n b r a c e d frames. The e x p e r i m e n t a l results showed an order of m a g n i t u d e increase in lateral strength.
R E F E R E N C E S
[!] Klingner, R.E., Beiner, R.J., and Amrhein, J.E., "Performance of M a s o n r y Structures in the M e x i c a n Earthquake of September 19, 1985," Proceedinqs of t h e Fourth N o r t h A m e r i c a n M a s o n r y Conference, 1987.
Copyright by ASTM Int'l (all rights reserved); Sun Dec 27 14:41:40 EST 2015 Downloaded/printed by
University of Washington (University of Washington) pursuant to License Agreement. No further reproductions authorized.
102 [_2]
[3]
[_4]
t_s]
[_6]
[!)
[_8]
[_9]
[i0]
Jill
[12]
[13)
[14]
[12]
[16]
[LT.T ]
MASONRY: DESIGN AND CONSTRUCTION, PROBLEMS AND REPAIR
Bennett, R.M., and Flanagan, R.D., "Structural B e h a v i o r of Clay Tile Walls: Testing and E v a l u a t i o n Program," Report Y/EN-4325, M a r t i n M a r i e t t a E n e r g y Systems, Inc., O a k Ridge, TN, 1992.
Hathcock, B.D., and Skillman, E., "Tests of H o l l o w B u i l d i n g Tiles," Technologic Papers of the Bureau of Standards No. 120, 1918.
Engineering, D e s i g n & G e o s c i e n c e s Group, Inc., "Martin M a r i e t t a P r i s m Testing," Report Y/EN-4619, M a r t i n M a r i e t t a E n e r g y Systems, Inc., O a k Ridge, TN, 1989.
Johnson, F.B. and Matthys, J.H., "Structural Strength of H o l l o w Clay Tile Assemblages," Journal of the Structural Division, A m e r i c a n Society of Civil Engineers, 99(ST2), 1973.
Plummet, H.C., Brick and Tile En~ineerinu, B r i c k Institute of America, Reston, VA, 1962.
Thurlimann, B. and Guggisberg, R., "Failure Criterion for L a t e r a l l y L o a d e d M a s o n r y Walls: E x p e r i m e n t a l Investigations,"
Proceedinqs of the Eiqhth International B r i c k and B l o c k M a s o n r y Conference, Dublin, Ireland, 1988.
Chua, L.S., "Out-of-Plane Behavior of U n r e i n f o r c e d H o l l o w Clay Tile M a s o n r y Infilled Wall Panels," M a s t e r of Science Thesis, U n i v e r s i t y of Tennessee, Knoxville, TN, 1991.
Seah, C.K., "Out-of-Plane Behavior of M a s o n r y Infilled Panels,"
M a s t e r of Science Thesis, U n i v e r s i t y of N e w Brunswick, Canada, 1988.
Dawe, J.L., and Seah, C.K., "Behaviour of M a s o n r y Infilled Steel Frames," Canadian Journal of Civil Engineerinq, 16, 865-876, 1989.
Dhanasekar, M., Page, A.W., and Kleeman, P.W., "The Behavior of Brick M a s o n r y under Biaxial Stress with P a r t i c u l a r R e f e r e n c e to Infilled Frames," P roceedinqs of Seventh International B r i c k M a s o n r y Conference, 814-824, 1985.
Riddington, J.R., "The Influence of Initial Gaps on Infilled Frame Behavior," Proceedinqs of the Institution of Civil Enqineers, Part 2, Vol 77, London, 295-310, 1984.
Stafford-Smith, B., "Model Tests of Vertical and Horizontal Loading of Infilled Frames," Journal of the A m e r i c a n C o n c r e t e Institute, 65(8), 618-624, 1968.
Stafford-Smith, B., and Carter C., "A M e t h o d for the A n a l y s i s of Infilled Frames," Proceedinqs of the Institution of Civi~
Enqineers, 44, 31-48, 1969.
Jamal, B.D., Bennett, R.M., and Flanagan, R.D., "Numerical
Analysis for In-Plane Behavior of Infilled Frames," P r o c e e d i n q ~ of the Sixth Canadian M a s o n r y Symposium, Saskatoon, Saskatchewan, Canada, 1992.
Lawrence, S.J., "Lateral Loading of M a s o n r y Infill Panels: A L i t e r a t u r e Review," Technical R e c o r d 454, E x p e r i m e n t a l Building Station, Sydney, Australia, 1979.
Benedetti, D. and Benzoni, G.M., "A Numerical M o d e l for Seismic Analysis of Masonry Buildings: Experimental Correlations,"
E a r t h q u a k e E n q i n e e r i n q and Structural Dynamics, 12(6), 1984.
Copyright by ASTM Int'l (all rights reserved); Sun Dec 27 14:41:40 EST 2015 Downloaded/printed by
University of Washington (University of Washington) pursuant to License Agreement. No further reproductions authorized.
Installation and Materials
Copyright by ASTM Int'l (all rights reserved); Sun Dec 27 14:41:40 EST 2015 Downloaded/printed by
University of Washington (University of Washington) pursuant to License Agreement. No further reproductions authorized.
John M. M e l a n d e r I and John T. Conway 2
C O M P R E S S I V E S T R E N G T H S A N D B O N D S T R E N G T H S O F P O R T L A N D C E M E N T - L I M E M O R T A R S
R E F E R E N C E : Melander, J. M. and Conway, J. T., " C o m p r e s s i v e S t r e n g t h s a n d B o n d S t r e n g t h s o f P o r t l a n d C e m e n t - L i m e
M o r t a r s , " Masonrv: DesiGn ~ Construction. Problems a n d Repair. A S T M STP 1180, John M. M e l a n d e r a n d Lynn R. Lauersdorf, Eds., A m e r i c a n S o c i e t y for T e s t i n g and Materials, Philadelphia, 1993.
A B S T R A C T : A S T M S t a n d a r d S p e c i f i c a t i o n for M o r t a r for Unit M a s o n r y (ASTM C 270) requires m o r t a r to be specified either by p r o p o r t i o n s p e c i f i c a t i o n s or p r o p e r t y specifications. For p o r t l a n d c e m e n t - l i m e
(PCL) mortars, it has b e e n suggested that a significant difference exists b e t w e e n the properties of mortars m i x e d a c c o r d i n g to the p r o p o r t i o n s p e c i f i c a t i o n s a n d the requirements of the p r o p e r t y specifications.
This p a p e r presents data confirming that c o m p r e s s i v e strengths of P C L m o r t a r s a c c o r d i n g to current proportion limits do vary s i g n i f i c a n t l y from p r e s e n t p r o p e r t y s p e c i f i c a t i o n requirements. A l t e r n a t i v e
p r o p o r t i o n s that would b r i n g the p e r f o r m a n c e of c e m e n t - l i m e m o r t a r s more in line with the p r o p e r t y specification requirements can be f o r m u l a t e d b a s e d on the data.
The p a p e r also investigates the r e l a t i o n s h i p of p o r t l a n d cement content to flexural b o n d strength development of cement-lime m o r t a r s as o b t a i n e d from tests conforming to UBC Standard 24-30. A m a t h e m a t i c a l model of the r e l a t i o n s h i p is p r o p o s e d and c o m p a r e d to additional e x p e r i m e n t a l data.
KEYWORDS: mortar, p o r t l a n d cement, lime, h y d r a t e d lime, c o m p r e s s i v e strength, flexural b o n d strength
In the U n i t e d States a n d Canada, m o r t a r is s p e c i f i e d b y one of two alternate means - either by the p r o p o r t i o n s p e c i f i c a t i o n s or the
p r o p e r t y specifications. Under the p r o p o r t i o n s p e c i f i c a t i o n s of A S T M
iMasonry Specialist, E n g i n e e r e d Structures & Codes, P o r t l a n d Cement Association, Skokie, IL 60077.
2Manager Q u a l i t y Assurance, Research & Development, H o l n a m Inc.,
Dundee, MI 48131
105
Copyright 9 1993 by ASTM International www.astm.org Copyright by ASTM Int'l (all rights reserved); Sun Dec 27 14:41:40 EST 2015 Downloaded/printed by
University of Washington (University of Washington) pursuant to License Agreement. No further reproductions authorized.