6.1 GIỚI THIỆU CHUNG
Chỉ tiêu COD được dùng để xác định hàm lượng chất hữu cơ có trong nước thải sinh hoạt và nước thải công nghiệp. COD là lượng oxy cần thiết để oxy hóa chất hữu cơ thành CO2 và H2O dưới tác dụng của các chất oxy hóa mạnh. Phương trình phản ứng oxy hóa có thể biểu diễn đơn giản như sau:
CnHaObNc + (n + a/4 - b/2 - 3/4c) O2 ặ nCO2 + (a/2 - 3/2c)H2O + cNH3 (6 - 1) Trong thực tế hầu như tất cả các chất hữu cơ đều bị oxy hóa dưới tác dụng của các chất oxy hóa mạnh trong môi trường acid. Amino (số oxy hóa -3) sẽ chuyển thành NH3-N (phương trình 1). Tuy nhiên, nitơ hữu cơ có số oxy hóa cao hơn sẽ chuyển thành nitrate.
Khi phân tích COD, các chất hữu cơ sẽ chuyển thành CO2 và H2O, ví dụ cả glucose và lignin đều bị oxy hóa hoàn toàn. Do đó, giá trị COD lớn hơn BOD và có thể COD rất lớn hơn nhiều so với BOD khi mẫu chứa đa phần những chất khó phân hủy sinh học, ví dụ nước thải giấy có COD >> BOD do hàm lượng lignin cao.
Một trong những hạn chế chủ yếu của phân tích COD là không thể xác định phần chất hữu cơ có khả năng phân hủy sinh học và không có khả năng phân hủy sinh học. Thêm vào đó phân tích COD không cho biết tốc độ phân hủy sinh học của các chất hữu cơ có trong nước thải dưới điều kiện tự nhiên.
Ưu điểm chính của phân tích chỉ tiêu COD là cho biết kết quả trong một khoảng thời gian ngắn hơn nhiều (3 giờ) so với BOD (5 ngày). Do đó trong nhiều trường hợp, COD được dùng để đánh giá mức độ ô nhiễm chất hữu cơ thay cho BOD. Thường BOD = f x COD, trong đó f là hệ số thực nghiệm.
6.2 CÁC PHƯƠNG PHÁP PHÂN TÍCH COD ĐÃ DÙNG
Nhiều chất oxy hóa hóa học đã được dùng để xác định nhu cầu oxy hóa hóa học của nước bị ô nhiễm. Nhiều năm trước đây, dung dịch KMnO4 được dùng trong phân tích COD. Mức độ oxy hóa do permanganate thay đổi theo những loại hợp chất khác nhau và mức độ oxy hóa thay đổi đáng kể theo nồng độ các tác chất sử dụng.
GREEN EYE ENVIRONMENT
TAÀM NHÌN XANH www.gree-vn.com
ThS: Huỳnh Ngọc Phương Mai 6-2
Giá trị COD xác định bằng phương pháp này luôn luôn nhỏ hơn nhiều so với BOD5. Điều đó chứng tỏ rằng permanganate không thể oxy hóa hoàn toàn tất cả các chất hữu cơ có trong nước phân tích.
Ceric sulfate, iodate kali, và dichromate kali là những chất oxy hóa đã được dùng trong phân tích COD. Trong đó, dichromate kali là chất oxy hóa thích hợp nhất vì dichromate kali có khả năng oxy hóa hoàn toàn hầu hết các chất hữu cơ thành CO2 và nước. Vì tất cả các chất oxy hóa dđầu dùng với lượng dư nên cần phải xác định lượng còn thừa. Sau khi phản ứng kết thúc để tính toán lượng chất oxy hóa thật sự đã dùng để oxy hhóa chất hữu cơ. K2Cr2O7 là chất rất dễ xác định bất cứ lượng dư còn lại nào (dù nhỏ) sau phản ứng. Do đó, K2Cr2O7 chiếm ưu thế hơn nhiều chất oxy hóa khác.
K2Cr2O7 có thể oxy hóa hoàn toàn chất hữu cơ trong môi trường acid mạnh và ở một nhiệt độ xác định. Các chất hữu cơ dễ bay hơi có sẵn trong mẫu hoặc tạo thành trong quá trình phân hủy dễ dàng bị thất thoát nên quá trình ngưng tụ hoàn lưu rất cần thiết.
Một số chất hữu cơ, đặc biệt là các acid béo phân tử lượng thấp, không bị oxy hóa nếu không có chất xúc tác. Ag+ là tác nhân xúc tác rất hiệu quả được dùng. Các hydrocacbon thơm và pyridine không bị oxy hóa trong điều kiện thí nghiệm.
6.3 PHAÂN TÍCH COD BAÈNG K2Cr2O7
K2Cr2O7 là hợp chất tương đối rẻ tiền và có độ tinh khiết cao, sau khi sấy ở nhiệt độ lá 1030C, có thể dùng để pha dung dịch nồng độ 1N chính xác bằng cách cân và pha loãng trong một thể tích thích hợp. K2Cr2O7 là chất oxy hóa mạnh trong môi trường acid mạnh. Phương trình phản ứng tổng quát có thể biểu diễn như sau:
CnHaObNc + dCr2O72- + (8d + c)H+ ặ nCOΔ 2 + (a + 8d - 3c)/2 H2O + cNH4+ + 2dCr3+ (6 - 2)
Trong đó
d = 2n/3 + a/6 - b/3 - c/2
Phương pháp phân tích mẫu có COD cao
Trong bất kỳ phương pháp xác định COD nào, chất oxy hóa phải còn dư sau phản ứng để đảm bảo các chất hữu cơ bị oxy hóa hoàn toàn.
Do đó phải có một lượng thích hợp chất oxy hóa còn thừa sau phản ứng đối với tất cả các mẫu, từ đó mới xác định được lượng thực sự đã tham gia phản ứng.
GREEN EYE ENVIRONMENT
TAÀM NHÌN XANH www.gree-vn.com
ThS: Huỳnh Ngọc Phương Mai 6-3
Hầu như tất cả các dung dịch của các chất khử đều bị oxy hóa dần dần bởi oxy không kbí hòa tan vào dung dịch trừ khi mẫu được bảo quản không tiếp xúc với không khí. Ion Fe2+ là tác nhân khử hiệu quả của dichromate. Dung dịch chứa Fe2+ được pha từ Ferrous Ammonium Sulfate (FAS) khá tinh khiết và bền vững. Tuy nhiên trong dung dịch, Fe2+ bị oxy hóa dần dần bởi O2 do đó cần phải chuẩn bị lại mỗi khi sử dụng. Phản ứng giữa FAS và K2Cr2O7 được biễu dieón nhử sau:
6Fe2+ + Cr2O72- + 14H+ ặ 6Fe3+ + 2Cr3+ + 7H2O Maãu traéng
Cả phân tích COD và BOD được dùng để xác định lượng oxy cần để oxy hóa các chất hữu cơ có trong mẫu. Phép phân tích phải bảo đảm kết quả giá trị COD của mẫu không bị ảnh hưởng của bất kỳ nguồn chất hữu cơ nào khác gây ra. Vì vậy mẫu trắng cần được xác định trong các thí nghiệm COD và BOD.
Chổ thũ:
Điện thế oxy hóa khử thay đổi rất nhiều tại điểm dừng của tất cả các phản ứng oxy hóa khử.
Những biến đổi này có thể nhận biết dễ dàng bằng điện thế kế. Ngoài ra cũng có thể sử dụng chỉ thị oxy hóa khử để xác định điểm dừng của phản ứng. Ferroin là một chỉ thị hữu hiệu dùng để nhận biết phản ứng đã kết thúc khi tất cả Fe2+ đã bị oxy hóa hoàn toàn. Khi đó màu xanh của Cr3+ sinh ra do quá trình khử Cr2O72- chuyển thành màu nâu đỏ.
Tính toán
Phương pháp xác định mẫu COD thấp
Phương pháp trên đúng với mẫu có COD > 50mg/L. Đối với những mẫu có COD < 50 mg/L cần phải dùng dung dịch K2Cr2O7 loãng hơn để có thể xác định chính xác hơn lượng K2Cr2O7
cho vào và còn thừa sau phản ứng. Điều quan trọng phải chú ý là tỉ lệ thể tích H2SO4 đậm mL maãu phaân tích
3
Vmẫu trắng ở nhiệt độ phòng
(Vmẫu trắng ở 150 - Vmẫu đo) x x 0,1 x 8000
COD =
COD = (A - B) x M x 8000 mL maãu phaân tích
GREEN EYE ENVIRONMENT
TAÀM NHÌN XANH www.gree-vn.com
ThS: Huỳnh Ngọc Phương Mai 6-4
đặc: tổng thể tích (mẫu + dd K2Cr2O7) = 1:1. Nếu tỉ lệ này nhỏ hơn, năng lượng oxy hóa của dung dịch sẽ giảm đáng kể, trái lại lượng dichomate tiêu tốn cho mẫu trắng sẽ thừa.
Phương pháp làm giảm lượng chất thải độc hại Giảm thể tích mẫu + tác nhân hóa học sử dụng
Trở ngại của các chất vô cơ
Một số ion vô cơ có thể bị ôxy hóa dưới điều kiện thí nghiệm COD và gây sai số thừa rất lớn.
Cl- là một trong những ion gây sai số lớn nhất cho thí nghiệm COD:
6Cl- + Cr2O72- + 14 H+ ặ 3Cl2 + 2Cr3+ + 7H2O Khắc phục bằng cách dùng HgSO4
Hg2+ + 2Cl- ⇔ HgCl2 (β2 = 1,7 x1013)
Nitrit bị oxy hóa thành nitrate cũng gây ra sai số COD. Khắc phục bằng cách thêm sulphamic acid vào dung dịch dichnmate.
GREEN EYE ENVIRONMENT
TAÀM NHÌN XANH GREE www.gree-vn.com
ThS: Huỳnh Ngọc Phương Mai 7-1
CHệễNG 7
SAÉT & MANGAN
7.1 GIỚI THIỆU CHUNG
Cả sắt và mangan đều gây ảnh hưởng đáng kể đến việc cấp nước, đặc biệt đối với nguồn nước ngầm. Một số nguồn nước ngầm không chứa sắt và mangan nhưng một số khác lại luôn chứa lượng đáng kể. Điều này chỉ có thể giải thích được trên cơ sở hóa vô cơ.
Fe tồn tại trong đất và khoáng chất chủ yếu dưới dạng oxyt sắt (III) không tan và pyrit sắt (FeS2). Ở một số nơi, sắt tồn tại dưới dạng FeCOÛ3 ít tan. Vì nước ngầm thường chứa một lượng đáng kể CO2, FeCO3 có thể bị hòa tan theo phương trình phản ứng sau:
FeCO3 + CO2 + H2O ặ Fe2+ + HCO3- (1)
Phản ứng này không xảy ra ngay cả khi hàm lượng CO2 và FeCO3 cao nếu có mặt oxy hòa tan. Tuy nhiên, trong điều kiện kỵ khí, Fe3+ bị khử thành Fe2+ một cách dễ dàng.
Mangan tồn tại trong đất chủ yếu dưới dạng MnO2, rất ít tan trong nước có chứa CO2. Dưới điều kiện kỵ khí, MnO2 bị khử thành Mn2+.
Sắt và Mangan tồn tại trong nguồn nước do sự thay đổi điều kiện môi trường dưới tác dụng của các phản ứng sinh học xảy ra trong các trường hợp sau:
1. Nước ngầm chứa một lượng đáng kể sắt hoặc mangan hoặc cả sắt & mangan sẽ không chứa oxy hòa tan và có hàm lượng CO2 cao. Sắt và mangan tồn tại dưới dạng Fe2+ và Mn2+. Hàm lượng CO2 cao chứng tỏ quá trình oxy hóa các chất hữu cơ dưới tác dụng của vi sinh vật đã xảy ra và nồng độ oxy hòa tan bằng không chứng tỏ điều kiện kỵ khí đã hình thành.
2. Giếng nước tốt có hàm lượng sắt và mangan thấp. Nếu sau đó chất lượng nước không tốt, chứng tỏ chất thải hữu cơ thải ra mặt đất ở khu vực gần giếng nước đã tạo ra môi trường kỵ khí trong lớp đất.
3. Trên cở sở nhiệt động học, Mn (IV) và Fe (III) là trạng thái oxy hóa bền nhất của Fe và Mn trong các nguồn nước chứa oxy. Do đó, chúng có thể bị khử thành Mn (II) và Fe (II) hòa tan chỉ trong môi trường kỵ khí.
4. Những nghiên cứu gần đây cho thấy rằng một số vi sinh vật có khả năng sử dụng Fe (III) và Mn (IV) làm chất nhận điện tử cho quá trình trao đổi chất dưới điều kiện kỵ khí dẫn
GREEN EYE ENVIRONMENT
TAÀM NHÌN XANH GREE www.gree-vn.com
ThS: Huỳnh Ngọc Phương Mai 7-2
đến sự hình thành các dạng khử Fe (II) và Mn (II). Như vậy, vi sinh vật không chỉ tạo ra môi trường kỵ khí cần thiết cho quá trình khử mà còn có khả năng khử trực tiếp Fe và Mn.
Quá trình oxy hóa pyrit sắt (FeS2) không tan cũng là nguyên nhân tạo ra môi trường kỵ khí và sự hình thành sulfat sắt hòa tan:
2 FeS2 + 7O2 + 2H2O ặ 2 Fe2+ + 4SO42- + 4H+ (2) 7.2 Ý NGHĨA MÔI TRƯỜNG CỦA FE VÀ MN
Nước chứa sắt và mangan không ảnh hưởng đến sức khỏe của con người. Những nguồn nước này khi tiếp xúc với oxy không khí trở nên đục và tạo cảm quan không tốt đối với người sử dụng do sự oxy hóa sắt và mangan thành Fe (III) và Mn (IV) tồn tại dưới dạng kết tủa keo.
Tốc độ oxy hóa chậm và các dạng khử có thể tồn tại trong nước đã sục khí trong một khoảng thời gian nhất định. Điều này đặc biệt đúng khi pH < 6 đối với quá trình oxy hóa sắt và pH < 9 đối với quá trình oxy hóa mangan. Thêm vào đó, sắt và mangan có thể tạo thành phức bền với các hợp chất humic trong nước. Tốc độ oxy hóa gia tăng dưới tác dụng của một số chất xúc tác vô cơ hoặc do hoạt động của các vi sinh vật. Sắt và magnan có mặt trong nước sẽ làm vàng ố quần áo, ảnh hưởng đến hệ thống cấp nước do sự phát triển của vi khuẩn oxy hóa sắt. Sắt cũng gây mùi tanh cho nguồn nước dù nồng độ rất nhỏ. Do đó tiêu chuẩn đối với nước cấp là <
0,3 mg Fe/L và < 0.05 mg Mn/L (U.S. Environmental Protection Agency).
7.3 PHƯƠNG PHÁP XÁC ĐỊNH
Có nhiều phương pháp xác định sắt đã được áp dụng. Phương pháp kết tủa được sử dụng khi lượng sắt có trong mẫu khá cao, ví dụ trong trường hợp nước thải công nghiệp. Tuy nhiên, trong nước cấp hàm lượng sắt nhỏ nên phương pháp so màu thích hợp hơn. Ưu điểm chính của phương pháp so màu là rất đặc trưng cho ion cần xác định và ít phải xử lý sơ bộ màu. Ngoài ra, cũng có thể xác định sắt bằng phương pháp hấp phụ quang phổ nguyên tử.
Phương pháp Phenanthroline
Phương pháp Phenanthroline là phương pháp tiêu chuẩn thích hợp để xác định lượng sắt có trong nước trừ khi mẫu có chứa phosphat và kim loại nặng. Phương pháp này dựa trên đặc tính của 1, 10-phenanthroline có khả năng kết hợp với Fe2+ tạo thành phức có màu đỏ cam. Màu tạo thành được đo bằng quang phổ kế.
Thường màu phân tích tiếp xúc với không khí nên một phần Fe (II) bị oxy hóa thàng Fe (III) và kết tủa dưới dạng Fe(OH)3. Trong thí nghiệm này nhất thiết toàn bộ sắt có trong mẫu phải ở dạng hòa tan. Do đó, lượng HCl đậm đặc cho vào mẫu nhằm hòa tan Fe(OH)3:
GREEN EYE ENVIRONMENT
TAÀM NHÌN XANH GREE www.gree-vn.com
ThS: Huỳnh Ngọc Phương Mai 7-3
Fe(OH)3 + 3H+ ặ Fe3+ + 3H2O (3)
Vì 1, 10-phenanthroline chỉ tạo phức với Fe (II), tất cả sắt ở dạng Fe (III) phải được khử thành Fe (II). Hydroxylamine được dùng làm tác nhân khử, phương trình phản ứng xảy ra như sau:
4 Fe (III) + 2 NH2OH ặ 4 Fe (II) + N2O + H2O + 4H+ (4)
3 phân tử 1, 10 - phenanthroline sẽ kế hợp với 1 phân tử Fe2+ để tạo phức theo phương trình phản ứng sau:
Để loại trừ ảnh hưởng của phosphat và kim loại nặng, acid hóa mẫu bằng HCl và trích Fe vào diisopropyl-ether trước khi cho chỉ thị phenanthroline.
Phương pháp xác định Mangan
Trong thực tế kỹ thuật môi trường, mangan chủ yếu liên quan đến nguồn cấp nước. Nồng độ mangan ít khi vượt quá vài mg/L, do đó phương pháp so màu là phương pháp thích hợp nhất.
Phương pháp so màu theo “standard Methods” phụ thuộc vào sự oxy hóa Mangan ở trạng thái oxy hóa thấp thành Mn7+, khi đó sẽ hình thành màu rất rõ của ion permanganate. Màu tạo ra tỷ lệ thuận với nồng độ của mangan trong một khoảng dao động cho phép thích hợp với định luật Beer và đo bằng quang phổ kế. Clorua sẽ ảnh hưởng đến kết quả thí nghiệm do tính khử của Cl- trong môi trường acid. Ngoài ra, cũng có thể xác định Mn bằng phương pháp quang phổ hấp phụ nguyên tử.
Phương pháp Persulfate
Phương pháp Persulfate là phương pháp thích hợp dùng trong phân tích chỉ tiêu Mn vì không cần phải xử lý mẫu trước để khác phục ảnh hưởng của Cl-. Ammonium sulfate thường dùng làm tác nhân oxy hóa. Vì ammonium persulfate bị giảm chất lượng trong quá trình trữ nên cần phải làm lại chuẩn đối với mỗi loạt mẫu đo.
Ảnh hưởng của Cl- có thể khắc phục bằng cách thêm Hg2+ để tạo phức HgCl2. Vì hằng số bền của HgCl2 β = 1.7 x 1013, nồng độ của Cl- giảm đến mức độ thấp nên không thể khử ion permanganate.
Sự oxy hóa mangan ở trạng thái oxy hóa thấp hơn thành permanganate dưới tác dụng của persulfate đòi hỏi có mặt chất xúc tác Ag+. Phản ứng xảy ra theo phương trình sau:
2Mn2+ + 5S2O82- + 8H2O ặ 2MnO4- + 10SO42- + 16H+ (6)
GREEN EYE ENVIRONMENT
TAÀM NHÌN XANH GREE www.gree-vn.com
ThS: Huỳnh Ngọc Phương Mai 7-4
Màu do ion permanganate tạo ra bền trong vài giờ với điều kiện nước cất có chấ lượng tốt và mẫu được bảo quản không bị nhiễm bụi từ không khí.
7.4 ỨNG DỤNG CỦA SỐ LIỆU Fe VÀ Mn
Khi khảo sát nguồn nước mới, đặc biệt là nước ngầm, việc xác định sắt và mangan có ý nghĩa quan trọng. Tỷ lệ sắt và mangan là thông số xác định phương pháp xử lý cũng như lượng chất hữu cơ có trong nước. Hiệu quả của từng đơn vị xử lý được đánh giá dựa trên kết quả phân tích Fe và Mn. Chỉ tiêu này cũng giúp giải quyết các vấn đề về hệ thống phân phối khi vi khuẩn oxy hóa sắt tồn tại trong đường ống.
Quá trình ăn mòn đường ống bằng sắt và thép là nguyên nhân tạo ra “nước đỏ” trong hệ thống phân phối. Do đó, phân tích chỉ tiêu sắt giúp đánh giá mức độ ăn mòn và tìm phương pháp khắc phục.
GREEN EYE ENVIRONMENT
TAÀM NHÌN XANH www.gree-vn.com
CHệễNG 8