Khí động học và chế độ làm việc của ô tô Hybrid

MỤC LỤC

Khí động lực học/ hệ số kéo thấp

Để có được những bề mặt nhẵn, các kỹ sư chế tạo xe hybrid thường phải viện đến những đặc điểm thiết kế không theo quy ước nhằm tối đa hóa khả năng khí động. Tất cả các nhà sản xuất đều cố gắng giảm hệ số kéo ở bất cứ nơi đâu có thể bởi vì một chiếc xe với hệ số kéo thấp cần ít công suất (và nhiên liệu) hơn để vận hành.

CÁC CHẾ ĐỘ LÀM VIỆC

    Khi xe đang chạy ở chế độ tải thấp, bộ truyền hành tinh sẽ chia công suất động cơ ra hai phần. Một phần truyền đến các bánh xe chủ động, phần còn lại kéo MG1 để phát điện đến bộ biến đổi cấp cho MG2 hoạt động bổ sung công suất đến các bánh xe chủ động. Khi xe được chuyển từ chế độ tải thấp sang chế độ tăng tốc mạnh, hệ thống này sẽ bổ sung điện của ắc quy HV vào lực truyền động của MG2.

    Khi xe chạy ở tốc độ cao ổn định động cơ và MG2 hoạt động, MG1 hoạt động ở chế độ phanh (MG1 không quay). Khi tốc độ ôtô cao (>100mph) thì MG2 sẽ hoạt động để bổ sung công suất cho động cơ đốt trong, lúc này HV Battery sẽ cung cấp điện cho hoạt động của MG2, MG1 cũng nhận một phần năng lượng điện từ HV Battery và quay ngược chiều với MG2 tạo một tỷ số truyền tăng cho phép ôtô chạy với tốc độ cao. Nhận xét: Phạm vi tiểu luận này chỉ nghiên cứu trạng thái làm việc của ôtô khi phối hợp hai dòng công suất (công suất sinh ra từ động cơ đốt trong và động cơ điện MG2).

    XÁC ĐỊNH CÁC THÔNG SỐ ĐỘNG LỰC HỌC CHUYỂN ĐỘNG CỦA ễTễ HYBRID KHI PHỐI HỢP HAI DềNG CễNG SUẤT

    • Đặc tính kéo tại bánh xe chủ động
      • Phương pháp xác định các thông số động lực học cơ bản 1. Xác định các lực cản chuyển động

        Khi ôtô phối hợp hai dòng công suất động cơ đốt trong và động cơ điện – MG2, lúc này để xác định công suất chung sau khi phối hợp, mô hình tính toán được chọn là mô hình đấu nối hai động cơ khác công suất. - Trục E là trục nhận công suất từ động cơ đốt trong sau khi qua bộ truyền hành tinh, có các thông số trên trục lần lượt là moment xoắn, công suất, vận tốc góc: Me, Ne, ωe [Nm], [N], [rad/s]. Trục E (được nối với phần tử (c) của bộ truyền hành tinh) là trục phát công suất từ động cơ đốt trong qua bộ truyền hành tinh, tỷ số truyền của bộ truyền hành tinh được điều khiển vô cấp bằng tốc độ của MG1.

        Để xác định được các thông số phát ra trên trục E thì ta cần phải xác định được tỷ số truyền của bộ truyền hành tinh. Thật vậy, MG1 ngoài việc phát điện để nạp vào ắc quy còn đóng vai trò là bộ phận điều khiển tỷ số truyền của bộ truyền hành tinh, do đó ứng với từng chế độ vận hành của ôtô mà người ta sẽ điều khiển cho MG1 quay với các số vòng quay và chiều. Mặc dù, các vận tốc này được xác định bởi một dãy vận tốc hữu hạn, nhưng ứng với từng chế độ hoạt động cụ thể mà chúng sẽ có các giá trị cụ thể và xác định.

        Ta sẽ xác định được các thông số của phần tử (c), tức đã xác định được các thông số trên trục E (Me, Ne, ωe). Đường đặc tính của trục E sẽ có cùng dạng với đặc tính động cơ đốt trong, vì ứng với từng chế độ hoạt động cụ thể của ôtô thì tỷ số truyền bộ truyền hành tinh là các hằng số khác nhau. Dạng đặc tính trục E:. Đặc tính của trục E có cùng dạng với đặc tính ngoài của động cơ xăng, sau khi nhân với tỳ số truyền là hằng số. c) Các thông số sau khi phối hợp hai nguồn công suất (Mt, Nt, ωt). Như đã biết, để đạt được công suất (và moment) sau khi phối hợp là tối ưu (về công suất, về moment, về tiêu hao nhiên liệu, ô nhiễm do khí xả,…), cần phải chọn trước số vòng quay động cơ xăng ωe’ và số vòng quay động cơ điện ωm để vùng công suất (và moment) sau khi phối hợp đạt được lớn nhất. Thật vậy, trên ôtô hybrid người ta đã thực nghiệm trước để động cơ xăng và động cơ điện luôn luôn hoạt động trong dãy công suất phù hợp nhất ứng với dãy tốc độ ωe và ωm nào đó nhằm tiết kiệm nhiên liệu và điện năng tối đa.

        Với moment tổng Mt đã biết (xác định trong phần trên) và các thông số khác đã biết ta hoàn toàn xác định được lực kéo tiếp tuyến Fk tại bánh xe chủ động. Lực cản leo dốc đặt tại trọng tâm ôtô, cùng chiều chuyển động nếu ôtô xuống dốc và ngược chiều chuyển động nếu ôtô lên dốc.  Cộng hai đồ thị lực cản lăn Of và đồ thị lực cản gióOω, ta có đồ thị lực cản tổng cộng của mặt đường Oψ =Of +Oω.

        Gọi A là giao điểm của đường đồ thị lực kéo Fkvà đường độ thị lực cản tổng hợp Oψ.Tại A, lực kéo tiếp tuyến tại bánh xe chủ động bằng lực cản tổng cộng của mặt đường nên ôtô không thể tăng tốc được nữa. Khi tốc độ giảm thì moment tổng Mt do hai nguồn công suất sinh ra tăng nên lực kéo tiếp tuyến tại bánh xe chủ động cũng tăng. Tuy nhiên, ôtô chuyển động còn chịu giới hạn bởi khả năng bám của mặt đường nên lực kéo tiếp tuyến cực đại chỉ có thể nhỏ hơn bằng lực bám.

        Vì khi tốc độ giảm thì moment do nguồn năng lượng phối hợp tăng nên lực kéo tiếp tuyến tại bánh xe chủ động cũng tăng. Tuy nhiên, ôtô chuyển động còn chịu giới hạn bám của mặt đường nên lực kéo tiếp tuyến cực đại chỉ có thể nhỏ hơn bằng lực bám.

        Hình 4.4. Mô hình phối hợp công suất từ hai động cơ
        Hình 4.4. Mô hình phối hợp công suất từ hai động cơ