1. Trang chủ
  2. » Luận Văn - Báo Cáo

dai so 9 de thi thu vao 10 y yen lan 1 nam 1920

3 8 0
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 3
Dung lượng 120,29 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Hướng dẫn chung: 1 Hướng dẫn chấm chỉ trình bày một cách giải với các ý cơ bản học sinh phải trình bày, nếu học sinh giải theo cách khác mà đúng và đủ các bước thì cho điểm tương đương..[r]

Trang 1

HƯỚNG DẪN CHẤM MÔN TOÁN 9

I Hướng dẫn chung:

1) Hướng dẫn chấm chỉ trình bày một cách giải với các ý cơ bản học sinh phải trình bày, nếu học

sinh giải theo cách khác mà đúng và đủ các bước thì cho điểm tương đương

2) Bài hình (tự luận) bắt buộc phải vẽ đúng hình thì mới chấm điểm, nếu hình vẽ sai ở phần nào thì

không cho điểm phần lời giải liên quan đến hình của phần đó.

3) Điểm toàn bài là tổng điểm của các ý, các câu, tính đến 0,25 điểm và không làm tròn.

II Đáp án và thang điểm:

Phần I - Trắc nghiệm (2,0 điểm) Mỗi câu đúng cho 0,25 điểm.

Phần II – Tự luận (8,0 điểm)

1.

(1,5đ)

1)

(1,0đ)

Với x > 0, x 1 ta có

x x x

A

=    

0,25

       

4

x

x

0,25

   

4

x x

x

=

1

2)

(0,5đ)

Với x > 0, x 1, ta có:

2

1

Với x > 0, x 1 ta có:

2

x

2.

(0,5đ)

Ta có ∆’ = 32 8 1 0 

2)

(1,0đ)

Ta có ∆’ = (m +1)2 – (6m – 4) = m2 + 2m + 1 - 6m + 4 = (m - 2)2 + 1 > 0 với mọi m

 phương trình luôn có hai nghiệm phân biệt x1, x2 với mọi m

0,25

Ta có x là một nghiệm của phương trình 2 2  

2 2 1 2 6 4 0

2 2 2 2 2 6 4 0 2 4 2 2 2 2 2 6 4

0,25

Trang 2

Theo hệ thức Vi-et ta có x1+ x2 = 2m + 2

Do đó 2m 2x1x22 4x2 4  2m 2 x1x2 6m 4 4  2m 2 2  m2 6m  4 4 2m2 3m 2 0 (*)

0,25

Giải phương trình (*) tìm được m1 = 2, m2 =

1 2

3.

(1,0đ)

Ta có:

 2 2

x y

x xy

 

2

x y

x xy

 

2



 

0,25

- Với x 1 y 2

- Với x 1 y2

Vậy hệ phương trình đã cho có hai nghiệm (x; y) = (1; -2); (x; y) = (-1; 2)

0,25

4.

(3,0đ)

Hình vẽ:

E

K

H

N

M O

B A

1)

(1,0đ)

Xét tứ giác AHCK có AHK =ACK = 900 (cmt)

 Hai đỉnh kề nhau C và H cùng nhìn cạnh AK dưới một góc vuông

 tứ giác AHCK là tứ giác nội tiếp

0,5

2)

(1,0đ) Xét  AMN vuông tại A:

có E là trung điểm của MN  AE=EM = EN =

1 MN 2

  AEN cân tại E  EAN ENA

0,25

Trang 3

Từ đó suy ra  EAN DAH  hay NAE NAH mà AH, AE là hai tia thuộc

3)

(1,0đ)

Chứng minh được: AC2 = AB.AM  AM.AB = 4R2

Chứng minh được bất đẳng thức a b 2 ab với a0;b Dấu bằng xảy0

Áp dụng bất đẳng thức trên ta có:

2

2

AN AD  AN ADRR

8

AB AD AM AN R

0,25

Dấu ''='' xảy ra

Vậy AB + AD + AM + AN > 8R

0,25

5.

(1,0đ)

1) Với x 0 ta có: x  0 B x 2 x  Dấu "=" xảy ra 1 1  x0

2)

ĐK: x 0

2 3x+1 1 (1)

x

x x

 



TH1: 2 x 3x+1 0  2 x  3x+1 4x 3x 1   x1(TM) TH2: 2 x  3x+1 1 0  (*)

+ Ta thấy x=0 là một nghiệm của phương trình (*)

+ Với x>0 ta có: 2 x 0; 3x+1 1;   2 x 3x+1 1 0  nên phương trình (*) vô nghiệm

Vậy phương trinh (1) có tập nghiệm S 0;1

Ngày đăng: 20/12/2021, 19:12

TỪ KHÓA LIÊN QUAN

🧩 Sản phẩm bạn có thể quan tâm

w