Từ kết quả nghiên cứu đáy các bãi rác cho thấy hầu hết các bãi rác chưa được xây dựng đúng tiêu chuẩn. Hệ số thấm của nền đất dưới các bãi rác khoảng 106 đến 104 cms chưa đạt yêu cầu kỹ thuật. Hầu hết các bãi rác đều gây ô nhiễm môi trường nước xung quanh và vượt ngưỡng yêu cầu so với quy chuẩn nước thải của bãi chôn lấp chất thải Mô hình lan truyền bằng thực nghiệm và Geoslope đều cho thấy tầm quan trọng của lớp đáy bãi rác, với độ chặt lớn, hệ số thấm nhỏ có khả năng kìm hãm và ngăn chặn được các chất ô nhiễm. Tuy nhiên nước thấm qua đất dung trọng 1,55 (gcm3); 1,6 (gcm3); 1,65 (gcm3) có nồng độ COD, chì và cadimi vẫn vượt ngưỡng cho phép. Nước thấm qua đất có dung trọng 1,7 (gcm3), đạt 98% độ chặt tiêu chuẩn có nồng độ COD đạt tiêu chuẩn so với quy chuẩn nước thải của bãi chôn lấp chất thải, tuy nhiên vẫn vượt ngưỡng so với tiêu chuẩn nước mặt và nước tưới tiêu, gấp 410 lần. Nồng độ chì, đồng và kẽm đạt tiêu chuẩn cho nước sinh hoạt và tưới tiêu. Nồng độ cadimi vượt ngưỡng so với tiêu chuẩn cho nước sinh hoạt. Kết quả mô phỏng sự lan truyền chất ô nhiễm theo chiều sâu dưới đáy bãi rác bằng Geoslope cho thấy với nền đất được đầm chặt đạt hệ số nén K98, hệ số thấm đạt khoảng k = 109 cms: thì chất ô nhiễm không bị phát tán hoặc phát tán với độ sâu rất nhỏ dưới 10m
Trang 1Practical methods assessment of risk related
to transportation of dangerous
goods by pipelines
Mieczysław Borysiewicz
Institute of Atomic Energy ,
Otwock-Świerk
Trang 2The risk connected with
transportation
¾ Main hazardous related to transportation
of liquid (oil or refining products) in case
of leakage is derived from flammable and toxin substances Flammable is of great
importance for safety whereas toxic is
dangerous for environmental
¾ It’s necessary to take into account many elements while consideration of hazardous sources
Trang 3The most important are:
Physical-chemical substance properties, connected with flammable and toxic – it’s necessary to
consider components of product in detail
Size leakage depends on:
diameter of pipeline, product density, pressure in pipeline, topography and duration time of leakage,
material properties and mechanisms of damages, which are factors forming leakage,
Trang 4Table 1A
100 -
12 39
49
%
100 0,773
0,089 0,285
0,359 TOTAL
60,9 0,445
0,054 0,173
0,218
Outside impact
1,8 0,013
0,002 0,005
0,006
Natural hazard
11,5 0,085
0,01 0,033
0,042
Corrosion
6,4 0,047
0,006 0,018
0,023
Operating errors
19,4 0,143
0,017 0,056
0,07
Mechanism
damage
Whole Crack
Hole Leak
Percent Appear damages / 1000 km-year
Trang 5Frequency of failures pipelines for derivatives of liquid oil substances
100 -
12 39
49
%
100 0,42
0,051 0,164
0,206 TOTAL
31,3 0,132
0,016 0,051
0,064
Outside impact
3,1 0,013
0,002 0,005
0,006
Natural hazard
20,2 0,085
0,01 0,033
0,042
Corrosion
11,2 0,047
0,006 0,018
0,023
Operating errors
34,2 0,143
0,017 0,056
0,07
Mechanism
damage
Whole Crack
Hole Leak
Percent Appear damages / 1000 km-year
Reason failure
B Frequency failures petroleum pipelines of thickness from 5 to 10 mm
Table 1B
Trang 6Frequency of failures pipelines for derivatives of liquid oil substances
100 -
12 39
49
%
100
0, 303 0,037
0,118 0,148
TOTAL
4,9 0,015
0,002 0,006
0,007
Outside impact
3,3 0,013
0,002 0,005
0,006
Natural hazard
29,5 0,085
0,01 0,033
0,042
Corrosion
16,4 0,047
0,006 0,018
0,023
Operating errors
45,9 0,143
0,017 0,056
0,07
Mechanism
damage
Whole Crack
Hole Leak
Percent Appear damages / 1000 km-year
Reason failure
C Frequency failures petroleum pipelines of thickness from 10 to 15
mm
Table 1C
Trang 7Frequency of failures pipelines for derivatives of liquid oil substances
0,289 0,354
0,387 0,42
TOTAL
0,0013 0,066
0,099 0,132
Outside impact
0,013 0,013
0,013 0,013
Natural hazard
0,085 0,085
0,085 0,085
Corrosion
0,047 0,047
0,047 0,047
Operating errors
0,143 0,143
0,143 0,143
Mechanism damage
3m 2m
1,5m 0,9m
Deep of pipeline Reason failure
Frequency failures petroleum pipelines in depend on deep pipeline
Table 2
Trang 8Estimate velocity discharge
For velocity discharge from pipeline transportation liquid have impact
coefficients such as:
Trang 10Scenarios of failures
The scenarios can be split into two groups:
¾ scenarios leading to fires and explosions
¾ scenarios leading to pollution of environment (ground water, wet ground, soil)
One can get probabilities of individual
scenarios by defining data determining
probabilities of particular environmental
conditions and applying quantitative
principles of analysis of events tree
Trang 11Fires and explosions
In case fires and explosions it is necessary
to consider three possibilities:
¾ pool fire – liquid fire, which formed leakage area,
¾ flash fire (fire of vapour plume), fire of gas
or mixed vapour with air without
overpressure,
¾ vapour cloud explosion: cased by ignition with overpressure
Trang 12Fires and explosion
¾ Probability of pipeline (with oil) explosion is not big even in case of great leakage In the DoT
(Department of Transport USA) data until now only one such event has been registered But it
is estimated that in fire can appear in 4% and 6% of leakages
¾ Maximum distance of vapour cloud fire can be estimated as 1.4% volume of plume in air
Trang 13Examples calculation for fires
Table 1 Pool fire of petrol – late ignition
30 96
25 63
19 73
53 53
Medium clay
10mm
65 45
46 30
Medium clay
168mm
110 126
70 78
85 100
100 100
Medium clay
219mm
126 78
100 164
Medium clay
324mm
126 126
78 78
100 100
205 205
Medium clay
406mm
Zone radius for 10kw/m2 (m)
Length of flame (m)
Pool area (m)
Velocity discharge (kg/s)
Soil type Hole
diameter
Trang 14Tabel 2 Pool fire of petrol – Early ignition
19 17
11 5,3
10mm
40 31
26 30
168mm
67 47
48 100
219mm
83 56
62 164
324mm
91,2 60
68,9 205
406mm
Zone radius for 10kw/m2 (m)
Length of flame (m)
Pool area (m)
Velocity discharge (kg/s)
Hole diameter
Examples calculation for fires
Trang 15Table 3 Probability of ignition sources
Leakage – big hole Crack
Trang 16Probabilities for failure scenarios
diagrams below
generating by these trees are also
Trang 17¾ Events tree for pipeline rupture and medium hole (rural).
Probabilities for failure scenarios
Trang 18¾ Events tree for leakages (rural).
Probabilities for failure scenarios
Trang 19¾ Events tree for pipeline rupture and medium hole (urban area).
Probabilities for failure scenarios
Trang 20¾ Events tree for leakages (urban area).
Probabilities for failure scenarios
Trang 21Hazard of environment
Releases of hydrocarbon fuel from pipelines can cause different
consequences for:
• biological life in water and soil
• surface water
• soil and geology
• using rural terrain etc
Trang 22Modeling pollutants in porous media
interpretation, including assumption about
homogeneous flow in ground water in given
direction and homogenous parameters
• Example of that model is a simple model of
hydrocarbon pools, HSSM [Charbeneau Randall J., Weaver James W., Lien Bob K., Kerr Robert S., US EPA, The hydrocarbon Spill Screening Model (HSSM), 1995], available in Institute of
Atomic Energy in Swierk
Trang 23Modeling pollutants in porous media
are discharged nearly ground surface and transported down
through aeration zone up to level of ground water.
spread in horizontal direction Components of hydrocarbon lens are dissolved in ground water flowing under the lens These
components arise stain, which can pollute wells and other
sensitive receptors which are located in flow direction.
on quantity of light liquids in non-aqueous phase liquid,
coefficients of phases distribution, velocity flow of ground water etc The results of this model should be taken as rough
approximation, as many other approximations have been used in the model.
Trang 24Modeling pollutants in porous media
• Another considered physical problem is
pollutions of porous media in case of discharge
of organic substances – the so-called
non-aqueous liquid phase (NAPL) in under surface heterogeneous granulated soils
• The organic liquids can be lighter than water
(LNAPL i.e., based on hydrocarbon petrol) or heavier than water (DNAPL i.e., based on
chloral hydrocarbon)
Trang 25Modeling pollutants in porous media
Three basic mechanisms of spreading pollutants of
organic liquids on upper layer ground are:
caused by gravity and capillary forces.
precipitating of source in aeration zone In case of organic liquids heavier than water, their components are picked out by wet
ground.
where increase of density of gas causes motion down Division between pollutants phases: aqueous and gas additionally
increases potential of components which causes particles
migration
Trang 26• The spreading pollutions NAPL in under surface groundcaused by surface realase
Trang 27Modeling pollutants in porous media
into consideration all three mechanisms of
transport pollutants that can be used to calculate pollutions of soil and ground water as a result of release of oil derivates is a model applied in
computer program NAPL Simulator [GuarnacciaJoseph, Pinder George, Fishman Mikhail, Kerr Robert S., US EPA, EPA/600/R-97/102, NAPL-Simulator, 1997], applied in Institute of Atomic Energy in Swierk too]