MaterialsRRAM devices are usually composed of a storage layersandwichedbytwoelectrodes.Accordingly,thematerialsinvolved in RRAMs can be classified into storage media and electrodematerial
Trang 1Recent progress in resistive random access memories: Materials,
F Pan * , S Gao, C Chen, C Song, F Zeng
Contents
1 Introduction 2
2 Materials 3
2.1 Storagemedia 3
2.1.1 Inorganicstoragemedia 4
2.1.2 Organicstoragemedia 5
2.2 Electrodematerials 5
3 Switchingmechanisms 6
3.1 Ionmigration 6
3.1.1 Cationmigration 6
3.1.2 Anionmigration 13
3.2 Chargetrapping/de-trapping 17
3.2.1 Interfacialchargetraps 17
3.2.2 Chargetrapsprovidedbyamiddlenanoparticlelayer 17
3.2.3 Randomlydistributedchargetraps 18
3.3 Thermochemicalreaction 20
3.3.1 Thermochemicalreactioninsemiconductingmetaloxides 20
3.3.2 Thermochemicalreactioninorganics 20
3.4 Exclusivemechanismsininorganics 21
3.4.1 Insulator-to-metaltransitioninMottinsulators 21
3.4.2 Thesp2/sp3conversioninamorphouscarbon 22
Keywords:
Memristor
Thisreviewarticleattemptstoprovideacomprehensivereviewoftherecentprogressintheso-called resistiverandom accessmemories(RRAMs).First,abriefintroductionispresentedto describethe construction and development of RRAMs, their potential for broad applications in the fields of nonvolatilememory,unconventionalcomputingandlogicdevices,andthefocusofresearchconcerning RRAMs over the past decade Second, both inorganic and organic materials used in RRAMs are summarized,andtheirrespectiveadvantagesandshortcomingsarediscussed.Third,theimportant switchingmechanismsarediscussedindepthandareclassifiedintoionmigration,charge trapping/de-trapping,thermochemicalreaction,exclusivemechanismsininorganics,andexclusivemechanismsin organics.Fourth,attentionisgiventotheapplicationofRRAMsfordatastorage,includingtheircurrent performance,methods forperformanceenhancement,sneak-pathissueandpossiblesolutions,and demonstrations of 2-D and 3-D crossbar arrays Fifth, prospective applications of RRAMs in unconventional computing, as well as logic devices and multi-functionalization of RRAMs, are comprehensivelysummarizedandthoroughlydiscussed.Thepresentreviewarticleendswithashort discussionconcerningthechallengesandfutureprospectsoftheRRAMs
ß2014ElsevierB.V.Allrightsreserved
ContentslistsavailableatScienceDirect
j o urn a l hom e pa ge : ww w e l s e v i e r c om/ l o ca t e / ms e r
http://dx.doi.org/10.1016/j.mser.2014.06.002
cuu duong than cong com
Trang 23.5 Exclusivemechanismsinorganics 22
3.5.1 Chargetransfer 22
3.5.2 Conformationalchange 23
4 RRAMsfordatastorage 24
4.1 Currentperformance 24
4.2 Methodsforperformanceenhancement 25
4.2.1 Doping 25
4.2.2 Electrodeengineering 27
4.2.3 Interfaceengineering 29
4.2.4 Optimizationofdevicestructureandmeasurementcircuit 31
4.2.5 Multilevelstorageandconductancequantization 33
4.3 Sneak-pathissueandpossiblesolutions 37
4.3.1 Diode 38
4.3.2 Bidirectionalselector 39
4.3.3 Self-rectification 41
4.3.4 Complementaryresistiveswitch 41
4.4 Demonstrationsof2-Dand3-Dcrossbararrays 43
5 Prospectiveapplicationsandmulti-functionalizationofRRAMs 44
5.1 RRAMsforunconventionalcomputing 44
5.2 RRAMsforlogicapplication 47
5.2.1 ReconfigurableswitchesinFPGAs 47
5.2.2 Logicgates 48
5.2.3 Materialimplicationlogic 48
5.3 Multi-functionalizationofRRAMs 50
5.3.1 InvolvementofspinsinRRAMs 50
5.3.2 InteractionsbetweenphotonsandelectronsinRRAMs 51
5.3.3 Acombinationofresistiveswitchingandsuperconductingbehavior 51
6 Challengesandprospects 52
Acknowledgements 54
References 54
1 Introduction
Silicon-based Flash memories, consisting of a
metal-oxide-semiconductorfield-effect-transistorwithanadditionalfloating
gateineachmemorycell,representthestate-of-the-art
nonvola-tilememoryandrepresentthelion’sshareofthecurrentsecondary
memorymarketduetotheirhighdensityandlowcost.However,
Flashmemoriessufferfromseveralobviousdisadvantagessuchas
low operation speed (write/erase time: 1ms/0.1ms), poor
endurance (106 write/erase cycles) and high write voltage
(>10V)[1].Moreover,Flashmemorieswillreachtheir
miniaturi-zationlimitinthenearfuture,notfortechnicalreasons,butfor
physicallimitationssuchaslargeleakagecurrents.Toovercome
theshortcomingsofFlashmemories,fouremergingrandomaccess
memories (RAMs) have been proposed: ferroelectric RAMs
(FRAMs),magneticRAMs(MRAMs),phase-changeRAMs(PRAMs)
andresistiveRAMs(RRAMs).Amongthesememories,FRAMsand
MRAMsalsofacetheminiaturizationissuebecauseoftheirlarge
memorycellsize[1].For PRAMs,thelarge power consumption
duringthereversiblephasetransitionbetweentheamorphousand
crystallinephases would be the mostserious obstacle to their
commercialization [1] Fortunately, RRAMs have been
demon-strated to exhibit excellent miniaturization potential down to
<10nm [2] and to offer sub-ns operation speed [3,4], <0.1pJ
energyconsumption[5,6]andhigh-endurance(>1012switching
cycles)[7].Therefore,RRAMsarealsoapotentialalternativetothe
currentmainmemory,i.e.,dynamicRAMs(DRAMs)
Ingeneral,aRRAMcelliscomposedofaconductor/insulator(or
semiconductor)/conductorsandwichstructure,asshowninFig.1a
Thissimplestructureenablesittobeeasilyintegratedinpassive
crossbararrayswithasmallsizeof4F2(Fistheminimumfeature
size),andthesizecanbefurtherreducedto4F2/nwithinvertically
stackedthree-dimensional(3-D)architectures(nisthestacking
layernumber of the crossbar array) [8] The intrinsic physical
phenomenon behind RRAMs is resistive switching (RS), which
means that the device can be freely programmed into a high resistancestate(HRS,orOFFstate)oralowresistancestate(LRS,or
ON state) under external electrical stimuli In most cases, the current flows uniformly through the device in theHRS and is restricted toa localregion with highconductance known as a conductingfilament(CF)intheLRS[9].Theswitchingeventfrom theHRStotheLRSandthecorrespondingvoltagearedenotedas setprocessandVset,respectively.Incontrast,theswitchingevent fromtheLRStotheHRSandthecorrespondingvoltagearedenoted
asresetprocessandVreset,respectively.Thereareusuallytwotypes
ofswitchingmodes:unipolarandbipolarswitching.Theformer requires the same electrical polarity during the set and reset processes,whereasthelatterrequiresoppositeelectrical polari-ties,asshown bytheschematiccurrent–voltage(I–V)curvesin
Fig.1 andc,respectively
Ithasbeenalmostahalfcenturysincetheinitialexperimental observationsofRS.In1962,Hickmott[10]observedlargenegative differentialresistanceinfivethinanodicoxidefilmsincludingSiOx,
Al2O3,Ta2O5,ZrO2andTiO2.Subsequently,morematerialswere demonstratedtoshowRS,andtheswitchingmechanismsstarted
tobe explored as well[11–13].Strong research interest in RS, however,onlylastedapproximatelyadecadeowingtothefactthat theobservedRSatthatmomentwasnot sufficientlyrobustfor memory application,andalsodue totheprosperityofSi-based integratedcircuittechnology.Sincethelate1990s,interestinRS begantorevivebecauseofthesearchforanalternativetoSi-based memories.ThefirstpracticalapplicationofRRAMswasreportedby Zhuanget al [14] Theseresearchers fabricateda 64-bit RRAM arrayusingPr0.7Ca0.3MnO3viaa 0.5-mmcomplementary metal-oxide-semiconductor (CMOS)process The deviceshowed good performance with low operation voltage (<5V), fast speed (10ns) and a large memory window (>103) Meanwhile, organics-based RRAMs were introduced by Yang’s group [15], greatlyenrichingtherangeofusablematerials.In2004,Baeketal
[16] successfully demonstrated the world’s premier binary
2
cuu duong than cong com
Trang 3transition-metal-oxide-based RRAMs with operation below 3V
and 2mA, 106 set/reset operations and 1012 reading cycles,
triggeringasurgeofstudiesinthisresearchtopic.Recently,RRAMs
have been identified as the physical realization of the fourth
fundamentalpassivecircuitelementnamedmemristor[17],and
have also been suggested for new application fields including
unconventionalcomputing[18]andlogicdevices[19].Moreover,
combinations of RRAMs and ferromagnetic, optical, and even
superconductingpropertieshaverecentlybeenreported aswell
attentionfromacademiaandfromapplication-orientedsocieties,
demonstratedbytheincreasingnumberofpublicationsperyear,
asshowninFig.2
ThecommercializationofRRAMsreliesheavilyonathorough
understandingoftheunderlyingswitchingmechanisms.Inmost
cases,however,itisnotablydifficulttolocatethetinyswitching
regionexactlyduetoitsrandomnature,nottomentionclarifying
the complicated switching process Thanks to advances in the
fabrication and the characterization of nanoscale materials(includingtheuseoffocusedionbeam(FIB)systemsandinsitutransmissionelectronmicroscopes(TEM)),significantprogresshasbeenmadeoverthepastdecadeinunderstandingtheswitchingmechanismsbehindRRAMs.Forexample,thedetailednucleationandgrowthprocessesofconductingfilamentshavebeendirectlyrecordedbyinsituTEMinsomematerials[23–26].Guidedbythein-depthunderstandingofswitchingmechanisms,manyeffectivemethods have been developed to optimizethe performance ofRRAMs, includingdoping[27,28],electrodeengineering[29,30],interfaceengineering[31,32],etc
Although passive crossbar arrays are the most attractivearchitectures for future practical use of RRAMs due to theirultra-high integration density,they facea troublesome obstaclecalledthesneak-pathissue,whichcansignificantlyreducetheread-outsensemargin,increasethepowerconsumption,andlimitthearraysize[33].Howtosolvethesneak-pathissuehasbeenanotherfocusofresearchoverthepastdecade.AsimplesolutionistodirectlyconnectanonlinearcircuitelementsuchasatransistororadiodetoeachRRAMcell.BecausetheconventionalSi-basedtransistorsanddiodesareundesirable,primarilybecauseoftheircomplicatedandhigh-temperaturefabricationprocedures,variousoxide-andevenorganics-baseddiodes[34,35]andbidirectionalselectors[36]havebeen designed and characterized Meanwhile, as alternativesolutions,RRAMs withself-rectification[37]andcomplementaryresistiveswitches[33]areattractingincreasingattentionbecausetheydonotneedadditionalnonlinearcircuitelements
To improve the storage density of passive crossbar arraysfurther,multilevelstorageoperationinasinglememorycellhasbeencomprehensivelyexploredoverthepastdecade.ThecommonmethodsformultilevelstorageoperationaresettingvariousIcomp
valuesduringthesetprocess[38]andsettingvariousstopvoltagesduring the reset process [39] Recently, a new method calledconductance quantization has been suggested and intensivelystudied[22,40–42].ConductancequantizationoriginatesfromthequantumsizeeffectsoftheCFsandmeansthattheconductanceof
aRRAMcellinLRSisanintegralmultipleofasingleatomicpointcontact.Conductancequantizationwasinitiallyobservedincationmigration-based RRAMs [40] and has been extended to anionmigration-based RRAMs [22,41], thereby acting as a notablypromisingmethodforachievingultra-highdensitystorage
Itshouldbenotedthatseveral reviewsofRRAMshavebeensuccessivelyreportedinthepastseveralyears[9,43–46].GiventheveryrapiddevelopmentofRRAMs,areviewarticlethatcoversthemostrecentadvancesinthisresearchfieldisurgentlyneeded.Inthiswork,weprovideacomprehensivereviewofrecentprogress
inRRAMsbasedonbothinorganicandorganicmaterials.Afterabrief introduction of RRAMs, materials,switching mechanisms,RRAMsfordatastorage,andprospectiveapplicationsandmulti-functionalizationofRRAMsarediscussedindetailinSections2,3,
4and5,respectively.Finally,thechallengesandfutureprospectsofRRAMsarepresented.Inthiswork,itshouldbenotedthatsomereferences may have been overlooked owing to the rapiddevelopmentofRRAMs
2 MaterialsRRAM devices are usually composed of a storage layersandwichedbytwoelectrodes.Accordingly,thematerialsinvolved
in RRAMs can be classified into storage media and electrodematerials,whichwillbediscussedseparatelybelow
2.1 Storagemedia
AgreatmanymaterialshavebeenexploredasstoragemediaforRRAMsoverthepastdecades.Inthiswork,thestoragemediaare
cuu duong than cong com
Trang 4categorizedintoinorganicandorganic storagemedia.Generally
speaking,inorganicstoragemediahavearemarkableadvantage
overorganiconesinswitchingstability,whileorganiconesstand
outintermsofhigh-mechanicalflexibility,simplefabrication,and
lowcost.Theswitchingcharacteristicsandfabricationmethodsof
commonmaterialsbelongingtoeachcategoryarelistedindetail
anddiscussedindepthbelow.Itshouldbementionedherethat
therearealsoseveral otherclassificationmethods.Forexample,
basedondimensionality,storagemediacanbegroupedinto
zero-dimensional(0-D)nanoparticlessuchasNiOnanoparticles[47],
one-dimensional(1-D)nanowiressuchasZnOnanowires[48]and
two-dimensional(2-D)thinfilmssuchasAlNfilms[49].On the
otherhand,basedontheswitchingpolarity,storagemediacanbe
sortedintostoragemediashowingunipolarswitchingsuchasNiO
[47]andstorage mediashowingbipolarswitchingsuchasa-Si
[50]
2.1.1 Inorganicstoragemedia
InorganicstoragemediaforRRAMscanbelooselygroupedinto
binaryoxides(e.g.,SiOx[4],TiOx[17],NiOx[47],TaOx[3]andHfOx
[6]), ternary and more complex oxides (e.g., SrTiO3 [51],
La0.7Sr0.3MnO3 [52] and BiFeO3 [53]), chalcogenides (e.g., Ag2S
[54]and GexSey[55]), nitrides(e.g.,AlN[49]and SiN[56])and
others(includinga-C[57],a-Si[50],etc.).AdetailedsummaryofthecommoninorganicstorageaccompaniedbythecorrespondingswitchingcharacteristicsisprovidedinTable1.Onecanseethatbinaryoxidesarethemostabundantandshowthebestswitchingcharacteristicsincludingultra-highON/OFFratioof>109inGeOxand TaOx, sub-ns operation speed in SiOx, HfOx and TaOx, andextreme endurance of >1012 cycles in TaOx In addition, theirsimplecompositionenablesthemtobeeasilyfabricatedandtheirthermal stability is also satisfactory Hence, binary oxides,especially AlOx, SiOx, TiOx, CoOx, NiOx, CuOx, ZnOx, ZrOx, HfOx,TaOx and WOx, have been thefocus of both the academicandindustrial communities over the past decade Among theseextensively studiedbinary oxides,CuOxand WOxare themostcompatiblewiththeconventionalCMOSprocessbecausetheycan
befabricatedbyasimpleadditionaloxidationstepoftheCuorWvia/plug [80,134] To understand the carrier type-dependentswitchingkinetics,muchattentionhasbeenpaidbytheacademiccommunitytoNiOxandTiOx,whicharetypicalp-typeandn-typesemiconductors,respectively[135,136].Recently,researchinter-estinHfOxandTaOxhasbeenextremelyhighsincetheybothresult
insub-nsoperationspeedandextremeenduranceof>1010cyclesandconsequentlymaybethemostpromisingstoragemediaforRRAMsinthenearfuture
Trang 5The inorganic storage media can be fabricated by various
methods, mainly including magnetron sputtering [137,138],
pulsed laser deposition (PLD) [116], atomic layer deposition
(ALD) [139], thermal oxidation [80,134], plasma oxidation
[140,141]andthesol–gel method[91].Magnetronsputteringis
a high-rate, high-efficiency film deposition technology and is
becomingincreasinglypopularbecauseofitshigh-yieldand
low-cost production of uniform films over large areas Magnetron
sputteringcanbeutilizedtodepositmostoftheinorganicstorage
media,includingbinaryand ternaryoxides(e.g.,TiOx[66],NiOx
[136],ZnOx[138],TaOx[137]andLa0.7Sr0.3MnO3 [142]),
chalco-genides(e.g.,GeSxandGexSey[143]),nitrides(e.g.,AlN[49]andSiN
[56]), a-Si [18], etc PLD is an optimal deposition method for
complexmaterialsowingtoitsstoichiometrictransferofmaterials
fromthetarget Accordingly,PLDisoftenusedtogrowstorage
mediasuch as ternaryperovskite oxides and multi-component
materials (e.g., SrTiO3 [114], BaTiO3 [116] and Pr0.7Ca0.3MnO3
[119]) However, PLD is not widely used in thesemiconductor
industrydue toitshigh-costand thesmalluniform area ofthe
depositedfilm.OxidefilmspreparedbyALDhavebeenextensively
studiedas gate oxides in the metal-oxide-semiconductor
field-effect-transistorstructure and as dielectricmediain theDRAM
stack capacitors [144] Recently, ALD is attracting increasing
attentionforthedepositionofstoragemediaforRRAMsduetoits
superiorabilitytopreciselycontrolthethicknessanduniformityof
thefilms[66,145,146].Althoughthedepositionofa fewoxides
such as TiO2 and Al2O3 by ALD is mature, the reproducible
depositionofotheroxidesbyALDisstillindevelopment [144]
Thermal oxidation and plasma oxidation are often utilized to
prepare binary oxides, such as CuOx and WOx, which can be
obtainedbyasimpleadditionaloxidationoftheCMOScompatible
Cu/W plugs [80,134] The sol–gel methodis a chemical liquid
deposition methodwhichrequires considerablyless equipment
andispotentiallylessexpensive[147].Itisusuallyusedtodeposit
oxidestoragemediasuchasTiO2[148]andZnO[149].However,
thesol–gelprocessisoftentime-consumingwhenpreciseaging
anddryingarerequired.Moreover,theproblemsofshrinkageand
stresscrackingthatoccurduringthedryingofthefilmsprepared
bythesol–gelmethoddorequirecarefulattention.Basedonthe
abovediscussion,itcanbeobservedthatmagnetronsputteringisthemostextensivelyused filmdeposition forinorganicstoragemedia, while ALD may bethemost promising onein thenearfuture
2.1.2 OrganicstoragemediaExcept for graphene oxide and its derivatives [150–153],organicstoragemediaforRRAMscanbesimplysortedintosmallmolecules,suchas2-amino-4,5-imidazoledicarbonitrile(AIDCN)
157],andpolymers,suchaspoly(3-hexylthiophene)(P3HT)[158–160],poly(methylmethacrylate)(PMMA)[161]andpoly(N-vinyl-carbazole)(PVK)[162,163].Itshouldbenotedherethat,inthiswork,thecompositestoragemediaareclassifiedbasedontheirmatrixes.Smallmoleculeshavelowmolecularweightandcanbedirectlydepositedunderhighvacuumwithoutdecompositionbythermalevaporation,andthiscaneasilyleadtouniformfilmwithalargearea[15,156].Incontrast,polymersconsistofmuchlargermoleculeswithlongchainsofrepeatingmonomerunitsandwilldecomposeduringthermalevaporation.Hencesolutionprocesses,forexample,spin-coating,areoftenadoptedtofabricatepolymerstoragemedia[164,165]
AdetailedsummaryofthecommonorganicstoragemediaandcorrespondingRScharacteristicsisprovidedinTable2.Thetablereveals that satisfactory switching characteristics have alreadybeendemonstrated,suchasultra-highON/OFFratioof>5109inPVK, fast operation speed of <5ns in graphene oxide-relatedmaterialsandhighenduranceperformanceof>7.2107inRoseBengal Although it must be admitted that most switchingcharacteristicsoforganicstoragemediaarestillnotcomparable
to thoseof inorganicstorage media, organic storage mediaareattractingmoreandmoreattentionduetotheireaseoffabrication,low costand, especially,high-mechanicalflexibilitythat enablethemtobeextremelypromisingforfutureflexibleelectronics.2.2 Electrodematerials
Electrodesinconventionalelectronicdevicesactprimarilyastransport pathsfor carriers, whereas in RRAMs theycan often
cuu duong than cong com
Trang 6example, stable bipolar RS behavior was observed in a Cu/
P3HT:PCBM/indium-tin-oxide(ITO)structure,butitdisappeared
aftertheCuelectrodewasreplacedwithaPtelectrode[21].To
date, a great number of materials have been explored as
electrodesforRRAMs,includingpuremetalssuchasCu,Ag,Pt
andAu[196],carbonmaterialssuchasgraphene[47]andcarbon
nanotubes[197],conductiveoxidessuchasITO[21]andnitrides
suchasTiN[140],p-andn-typeSi[198],andsoon.Inthispaper,
twomethodsareusedtoclassifytheelectrodematerialsforthe
RRAMs
On the one hand, the common electrode materials can be
grouped into five categories based on composition, including
elementarysubstance electrodes,alloy electrodes,silicon-based
electrodes,nitride-basedelectrodesandoxide-basedelectrodes
Theelementarysubstanceelectrodesarethemostabundantand
arewidelyused,includinggraphene[47],carbonnanotubes[197],
Al[15],Ti[199],Cr[200],Co[201],Ni[202],Cu[21],Zr[201],Nb
[22],Ru[139],Pd[203],Ag[42],Hf[201],Ta[41],W[137],Ir[204],
Pt[49],Au[205],andsoon.AlloyelectrodesmainlyincludeCu–Ti
intentionallydesigned to stabilize RS behavior For instance, a
Cu/TiO2/Ptcellexhibitedonly400endurancecycleswithasmall
initialON/OFFratioof50,whileaCu0.36Ti0.64/TiO2/Ptcellshowed
improvedenduranceperformanceofover1000cycleswithalarge
initialON/OFFratioof200[206].Forsilicon-basedelectrodes,
p-Siandn-Siaretheonlytwotypes[198].TiNandTaNarethemost
common nitride-based electrodes [140,141] The oxide-based
electrodesarerelativelyabundant,includingITO[130],F-doped
SnO2(FTO)[208],Al-dopedZnO(AZO)[209],Ga-dopedZnO(GZO)
[210],SrRuO3[211],Nb-SrTiO3[212],LaNiO3[213],YBa2Cu3O7x
[214],andsoon.Inparticular,ITO,FTO,AZOandGZOhavebeen
intensivelystudied as electrodes for future transparent RRAMs
[130,208–210]
Conversely,thecommonelectrodematerialscanbesortedinto
fourtypesbasedontheircontributiontotheRSbehavior.First,the
electrodesactprimarilyasatransportpathforcarriersandhave
almost no effect on theRS behavior Such electrode materials
mainlyincludeinertmetalssuchasPd[203],Ir[204]andPt[49]
Second,theelectrodesarehelpfulfortheformationofCFs,andthis
isusuallyobservedinanionmigration-basedRRAMs[199,201].In
theseRRAMs,theCFsareformedviamigrationandaccumulation
of anion vacancies whose concentrations can be significantly
affectedbytheelectrodes.Asaresult,aproperchoiceofelectrode
materialforagivenstoragemediumcanleadtothegenerationof
an appropriate concentration of anion vacancies, thus being
helpful for the formation of CFs and the stability of the RS
behavior.For example,Chenetal.[201]recentlyfoundthat the
Ta2O5-basedRRAMswithrelativelychemicallyactiveelectrodes
(AlandTi)showsmallervariationsinswitchingparametersthan
those with chemicallyinert electrodes (Ni and Co)or highly
chemicallyactiveelectrodes(HfandZr).Third,theelectrodesare
responsiblefortheformationofCFs,whichisexactlythecasein
cationmigration-basedRRAMs[21,215].IntheseRRAMs,theCFs
areformedviaelectrochemicaldissolutionanddepositionofthe
electrochemicallyactivemetalelectrodesincludingmainlyCu
andAg.Forinstance,thedissolutionoftheAgelectrodeandthe
subsequentgrowthofAgfilamentshavebeenunambiguously
confirmedinaplanarAg/PEDOT:PSS/Ptstructure[215].Finally,
theelectrodematerialsaredeliberatelychosenforsomespecial
purposes,suchas theITO fortransparentelectrodeinanITO/
AlN/ITOstructure[127],theITO/Ag/ITOmultilayeredstructure
fortransparentaswellasflexibleelectrodeinanITO/ZnO/ITO/
Ag/ITOstructure[216],andthen-Sielectrodeforthe
construc-tionofRRAMswithself-rectificationinaCu/SiOx/n-Sistructure
[198]
3 SwitchingmechanismsThe exact switching mechanism in a sandwich structuredependsnotonlyonthechoiceofelectrodeandstoragematerialsbutalsoontheadoptedoperationmode.Consequently,therearemanypossibleswitchingmechanismsmainlyduetothediversity
of electrode and storage materials In this work, the commonswitchingmechanismsareclassifiedintofivetypesincludingionmigration,chargetrapping/de-trapping,thermochemicalreaction,exclusivemechanismsininorganicsandexclusivemechanismsinorganics, each of which will be discussed separately in thefollowingsections
3.1 Ionmigration
In an ion migration-based RRAM cell, a forming process isusuallyrequiredtotriggerstableRSbehavior,duringwhichCFsform and short-circuit the memory cell Subsequently, localruptureandre-formationoftheCFs occurduringtheresetandsetprocesses,respectively,leadingtothealternationbetweentheHRSandtheLRS.Basedonthepolaritiesofthecharges,therearetwo types of ions— cations and anions — in nature,and theymigrate in opposite directions under an external electric field.Accordingly, ion migration is sorted into cation and anionmigration, andthedetailed formationand ruptureprocesses oftheCFsbasedoneachofthesearediscussedseparatelyasfollows.3.1.1 Cationmigration
In a cation migration-based RRAM cell, there usually is anelectrochemicallyactiveelectrode(AE),suchasAgorCu,andanelectrochemicallyinertcounterelectrode(CE),suchasPt,AuorW
[217].TheCFsareformedviaelectrochemicaldissolutionandthenredepositionoftheactivemetalatoms.Therefore,suchRRAMsareoftencalledelectrochemicalmetallization(ECM)memories,andare also referred to as conductive bridging RAMs (CBRAMs),programmablemetallizationcells(PMCs)orgapless-typeatomicswitchesinsomeliteratures[218–220].WhenAE,usingAgasanexample,ispositivelybiasedduringtheformingandsetprocesses,thefollowingstepsareinvolved:(i)anodicdissolutionoftheAgelectrodeinaccordancewithAg!Ag++e;(ii)migrationofAg+
ions along fast diffusion channels (e.g., grain boundaries inpolycrystallinefilmsandsurfacesofnanowires[48])towardthe
CEdrivenbyexternalelectricfield;(iii)reductionofAg+ionsinaccordance with Ag++e!Ag, and (iv) growth of the Agfilaments.OncetheAgfilamentsshort-circuittheAEandCE,theECM cell will have been switched from the HRS to the LRS.Subsequently,under negativevoltage,theexisting AgfilamentswillbeelectrochemicallydissolvedwiththehelpofJouleheating
attheirthinnestparts,therebyresettingtheECMcellbacktotheHRS
TheinitialexplorationofECMcellsdatesbackto1976.HiroseandHirose[221]reportedbipolarRSbehaviorintheAg/Ag–As2S3/
Mo sandwichstructure To clarify theswitching mechanism, aplanarAg/Ag–As2S3/Austructurewasfabricatedatthesametime,andthegrowthofAgfilamentsfromtheCE(Auelectrode)totheAE(Agelectrode)wasconfirmedunambiguouslybytheuseofopticalmicroscopy.Todate,avarietyofmaterialshavebeenexploredforECM memories On the one hand, in addition to conventionalchalcogenideelectrolytessuchasAg2S[54]andGexSey[55],agreatnumber of other storage media have been explored, includingoxidessuchasSiO2[204]andZnO[83],halidessuchasAgI[133],amorphoussilicon[50]andcarbon[57],smallorganicmoleculessuchasfluorene[222],polymerssuchasP3HT[159],andsoon.Ontheotherhand,avarietyofmetalshavebeenreportedtoserveaselectrochemicallyactiveelectrodes,includingAg[42],Cu[21],Ni
Trang 7to the following two reasons First, their standard electrode
potentials,E0(Ag+/Ag)=0.7993VandE0(Cu2+/Cu)=0.339V,are
nottoolargewhencomparedtoAuwithE0(Au+/Au)=1.69V,thus
enabling them to be easily electrochemically dissolved [226]
Second,theirstandardGibbsfreeenergyofformationofoxides,
DfG8(Ag2O)=11.21kJ/mol and DfG8(CuO)=129.7kJ/mol, are
muchsmallerthan those forNi (DfG8(NiO)=211.7kJ/mol),Al
(DfG8(1 / 3Al2O3)=527.4kJ/mol),and so on [227] Consequently,
thegenerated Ag+ and Cu2+ only showweak interactions with
anionsinthestoragemediaandcanmigrateeasilythroughthem
Although there is no doubt about the existence of metal
filamentsincationmigration-basedRRAMs,thedirectobservation
ofthesemetalfilamentsand,especially,theirdynamicgrowthand
rupture processes has aroused great interest in academia and
application-oriented societies In the beginning, only ex situ
observationsof metal filamentsin planarmicroscale ECM cells
werereported.In recent years,however,thankstoadvancesin
fabricationandcharacterizationofnanomaterials,bothexsituand
insituobservationsofmetalfilamentsinverticalnanoscaleECM
cellshavebeenextensivelyexplored.Adetailedsummaryofthe
directobservationsofmetalfilaments,inanascendingorderofthe
yearofpublication,ispresentedinTable3.Itcanbeobservedthat
the focus of the research has been moved from conventional
chalcogenideelectrolytestooxidesandorganics.Forthegrowth
modes of metal filaments, three different modes have been
reported,and eachof themisdiscussed separatelyinfollowing
paragraphs
3.1.1.1 Metal filaments grow from the CE to the AE The direct
observationofsuchagrowthmodeofAgfilamentsinaplanarAg/
Ag–As2S3/Austructurewasreportedduringtheinitialexploration
ofECMcellsin1976[221].Thesamegrowthmodehadalsobeen
confirmedunambiguouslyinmanyotherECMcellsbeforetheyear
2012,includinginAg/Ag–Ge–Se/Ni(orAl,W)[228,229],Cu/Ta2O5/
Pt [99], Ag (Cu)/H2O/Pt (Cu) [230,237], Ag/Ag2S/W [231,237],
Cu/Cu–GeTe/Pt–Ir [23]and Pt–Ir/Cu–GeS/Pt–Ir [236]ECM cells.Notethat,exceptforTa2O5,allofthereportedstoragemediaareeitherconventionalsolidelectrolytesorH2O,whichpossesshighcationmobility.Inthissituation,thecationsoriginatingfromtheanodicdissolutionoftheAEcaneasilymigratethroughthestoragemediaandthenbereducedintoatomsatthesurfaceoftheCE,thusleadingtothegrowthofmetalfilamentsfromtheCEtotheAE
Fig.3presentsinsituscanningTEM(STEM)resultsthatshowthedynamicgrowthandruptureprocessesof CufilamentsinaverticalCu/Cu–GeTe/Pt–Irstructure[23].Theexperimentalset-up
isschematicallydepictedinFig.3a.Anexternalvoltageisapplied
tothePt–Irtip(CE)withtheCuelectrode(AE)beinggroundedallthetime.StartingfromtheinitialHRS,anegativevoltageofupto
0.8Vwith0.1Vstepswasapplied,andthenapositivevoltage
of+0.4Vwasapplied(Fig.3b).Cross-sectionalZ-contrast(Z:theatomicnumber)STEMimagesobtainedaftervoltageapplications
of0,0.4,0.8,and0.4VareshowninFig.3c–f,respectively.ToprovideaclearerpictureoftheCufilaments,therawSTEMimages
inFig.3c–fwereconvertedintoblack-and-whiteimagesinFig.3g–
j,respectively.BycarefullyexaminingFig.3g–i,onecanconcludeunambiguouslythatmultipleCufilamentsgrowfromtheCEtothe
AEduringthesetprocesswiththeirthinnestpartsneartheAE.Afterthevoltageapplicationof0.4V,theECMcellwasresetintotheHRS(Fig.3b)duetotheruptureoftheexistingCufilamentsattheirthinnestparts(Fig.3j).BecausethegrowthmodefromtheCE
totheAEisconsistentwellwiththeclassicallawsofistry,andnoothergrowthmodehadbeenreportedbefore2012,suchagrowthmodewasonceconsideredtobeapplicabletoallECMcells
electrochem-3.1.1.2 Metal filaments grow from the AE to the CE The widelyacceptedgrowthmodefromtheCEtotheAEhasbeenchallengedsince 2012 First, Peng et al [241]systematically analyzed theasymmetryoftheI–VcurvesintheHRSofCu/ZnO/PtandCu/ZnO/AZOECMcells,andinferredthattheCufilamentismostlikelytohaveaconicalshapewithitswiderandnarrowerdiametersnear
cuu duong than cong com
Trang 8growthofCufilamentwassuggestedtostartattheAEandstopat
theCEduetothefactthatthediffusioncoefficientofCuionsinZnO
is smaller than that in conventional solid electrolytes such as
consulfidesandselenides.Soonafterthat,insituTEMexperiments
wereconductedinAg(orCu,Ni)/ZrO2/Pt[24,202],Ag/a-Si/W[25]
andAu/ZnO/Au[205]ECMcells.Themetalfilamentsinallofthese
experimentswereunambiguouslyobservedtogrowfromtheAEto
theCE.Inaddition,thesamegrowthmodehasalsobeenproved
indirectlyinCu/P3HT:PCBM/ITO(orCu)[21,239]andAg–Pd/PZT/
Ag–Pd[242]structures
Here,aninsituTEMstudyofaAg/a-Si/WECMcell[25]isused
asanexampletodescribethegrowthmodeofmetalfilaments
fromtheAEtotheCE.Theexperimentalset-upisshowninFig.4a
Aconformala-SifilmwasfirstdepositedonaWprobevia
plasma-enhanced chemical vapor deposition Then the W probe was
mountedonthemoveableendofasingle-tiltTEMholder.Toform
theAg/a-Si/WECMcell,theWprobewasmovedtoachievecontact
withahigh-purityAgwirefixedtotheotherendoftheTEMholder
The ECM cell underwent a forming process under a constant
externalvoltageof12VappliedtotheAgelectrodewithrespectto
theWelectrode,andthecorrespondingI–tcurveisdisplayedin
Fig.4b.OnecanclearlyseethattheECMcelltransformedfromthe
HRStotheLRSat490s.Fig.4c–garerepresentativeTEMimages
oftheECMcellatdifferentswitchingstagesthataredenotedby
datapointsc–ginFig.4b.Basedonthesefigures,itisevidentthat
AgfilamentsgrowfromtheAE(Ag)totheCE(W),andtheyfeature
aconicalshapewiththebroadestbaseneartheAE.Theseimagesalsorevealthatthebase,growingfromtheAE(Fig.4d),servesasareservoiroftheAgionsforsubsequentgrowthoftheAgfilaments,anddiscreteAgparticlesarecreatedsubsequentlyasthefilamentsextendtowardtheCE(Fig.4e–g).Inaddition,insituTEMstudyofthe reset process of the Ag/a-Si/W ECM cell revealed that theexisting Ag filaments rupture initially at their thinnest partslocatedneartheCE andthefilamentmaterialisredepositedontheAE
BecausetheresetprocessisinducedbyJouleheating-assistedelectrochemicaldissolutionoftheexistingmetalfilaments,there
isnodoubtthatallofthemetalfilaments,irrespectiveoftheirgrowthmodes,ruptureinitiallyattheirthinnestpartsduetothelargestJoule heating occurringat those locations.The growthmodefromtheAE totheCEis notexpectedfromtheexistingECMtheorydeveloped forelectrolyte-basedmemory cellsandcannotbe explainedby theclassicallaws ofelectrochemistry.However,theseinsituTEMexperimentalresultsareinperfectaccordancewithPeng’sinferenceandserveasstrongevidenceforthesuggestionthatthegrowthmodeofthemetalfilaments
is closely related tomobility of cationsin thestorage media.Suchagrowthmodecanbeexplainedwellfromtheviewpoint
ofkinetics.Givenalowmobilityina-Siandinmostoxides,the
8
cuu duong than cong com
Trang 9cationsthatoriginatefrom anodicdissolution oftheAEcan
onlymigrateanextremelyshortdistancebeforebeingreduced
by the oncoming electrons The precipitated atoms in the
vicinityoftheAEsharealmostthesameelectrostaticpotential
as the AE and therefore act as an extension of the AE
Subsequently, the extended AE will be dissolved again and
reducednearby,thusresultinginthegrowthofmetalfilaments
fromtheAEtotheCE
3.1.1.3 Metalfilamentsnucleateinitiallynearthemiddleregionofthememorycellandthenextendtowardbothelectrodes GiventhatbothgrowthmodesofmetalfilamentsfromtheCEtotheAEandfromtheAEtotheCEexist,onemayaskwhethermetalfilamentscannucleateinitiallynearthemiddleregionofthedeviceand thenextend toward both electrodes.From an experimental point ofview,suchagrowthmodewouldactasaperfectcomplementtothe growth kinetics of metal filaments Interestingly, direct
cuu duong than cong com
Trang 10evidencefortheexistenceofsucha growthmode wasrecently
reportedbyourgroupinaplanarAg/PEDOT:PSS/PtECMcell[215],
asdemonstratedinFig.5.Aconstantvoltageof1Vwasappliedto
theAgelectrodewithrespecttothePtelectrodeinfourpristine
cellswithaperiodof2,4,10,and 130s.ThecorrespondingI–t
curvesforeachperiodaredisplayedinFig.5a–d.Itcanbeobserved
thatthedevicewithalongerdurationofvoltagestressmaintainsa
lowerresistanceduetotheformationofstrongerAgfilaments.In
particular,asuddenjumpinthecurrentappearsat127sinFig.3d,
indicating that thedevice hasbeenset into theLRS Fig 5e–h
present SEM images that were obtained after the I–t tests in
Fig.5a–d,respectively.OnecanseefromFig.5ethatAgclusters
form initially near the middle region of the PEDOT:PSS With
longervoltagestresstime,moreAgclustersemergeandsmallAg
clusters start to aggregate (Fig 5f and g) Consequently, the
chainsofAgclusters(Agfilaments)becomestrongerandextend
towardbothelectrodesatthesametime.Finally,thesetprocess
occursoncetheAgfilamentsarestrongenoughtoshort-circuit
theECM cell,as shown inFig.5 andh Thisspecialgrowth
modeofAg filamentsonceagainchallengestheexistingECM
theorythatwasdevelopedforelectrolyte-basedmemorycells
andfurthersupportsthesuggestion thatthegrowthmode of
metal filaments is closely related to cation mobility in the
storagemedia
Toprovideauniversalmodelforallgrowthmodesofthemetal
filaments, we have conducted an in-depth analysis of the
relationshipsbetweenthewaittime(tw)andtheelectricfieldin
Ag/a-Si/Pt [25], Ag/PEDOT:PSS/Pt [215] and Ag/SiO2/Pt [25]
structures.Notethattwisdefinedasthedurationbeforeasharp
resistance-switchingeventwhenafreshdeviceisunderaconstant
voltage.Inotherwords, twreferstothetimeneededtoforma
completemetalfilamentinafreshdeviceunderaconstantvoltage
Hence,foragiventw,alargerelectricfieldcorrespondstoalower
mobilityofAg+ionsinthestoragemedium.Itisfoundthat,when
tw10s,thecorrespondingelectricfieldvaluesinAg/a-Si/Pt,Ag/
PEDOT:PSS/Pt and Ag/SiO2/Pt structures are 1.1, 0.011 and
0.22MV/cm,respectively,thusrevealingthatthemobilityofAg+
ionsinSiO2islowerthanthatinPEDOT:PSSbuthigherthanthatin
a-Si However, if the growth mode of metal filaments is only
determinedbycationmobilityinthestoragemedia,themobilityof
Ag+ ions in SiO2 should be higher than that in both a-Si and
PEDOT:PSS based on the fact that the Ag filaments initially
nucleateneartheAgelectrode,nearthemiddleregionofthedevice
andnearthePtelectrodeinAg/a-Si/Pt,Ag/PEDOT:PSS/PtandAg/
SiO2/Ptstructures,respectively.Thisobviouscontradiction
indi-catesthatthecationmobilityisnotthesolefactorthataffectsthe
growthmodeofmetalfilaments
Althoughithasbeenacknowledgedthatthegrowthkineticsof
CFsismainlyaffectedby(i)thetransportofcationsthroughthe
storagemediaand(ii)thereductionofcationsandthesubsequent
nucleationofmetalfilaments,theeffectoftheformerfactoronthe
growthmodeofmetalfilamentsisstillnotcompletelyclearand
thatofthelatterfactoris oftenoverlooked.Here,weconducta
detailed2-DsimulationbasedonthekineticMonteCarlo(KMC)
method[243,244]toshedlightontheeffectsofthesefactorsonthe
growthmodeofmetalfilaments.Notethatthefeasibilityofusing
theKMCmethodtosimulatethegrowthofmetalfilamentshas
beendemonstratedin[237].Thedeviceconfigurationadoptedis
showninFig.6a.TheAEandtheCEareconsideredtobeAgandPt,
respectively The storage medium is represented by a square
matrixoforder20,andaninterfaciallayerrepresentedbyamatrix
with20 rowsand1 columnis locatedbetween theAEand the
storagemedium.Eachelementofthematrixesshouldberegarded
asasiteatwhichaAg+ionoraAgatomcanlocate.Thedistance
betweenthecentersoftwoadjacentsitesisassumedtobe0.4nm
Hence,underanexternalelectricfieldof1MV/cm(0.1V/nm),the
voltagedropbetweenthecentersoftwoadjacentsitesalongthefieldiscalculatedtobe0.04V
Fig.6aalsoshowsthephysicalandchemicalprocessesthatareinvolvedinthesimulation,includingthegeneration(process1),migration(processes2–5)andreduction(process6)ofAg+ionsandtheoxidationofAgatoms(process7).ThetransitionrateofeachprocesscanbeexpressedbyGi=n0exp(Ea,i/(kT)),wheren0
isafrequencyfactorthatisassumedtobeconstantforalloftheprocesses, Ea,i is the activation energy for process i,
k=1.381023J/K is the Boltzmann constant, and T=300K isthe absolute temperature Based on the basic theory of KMCmethod, the exact value of n0 here will not affect the finalconfigurationofAg+ionsandAgatoms.Therefore,then0inthissimulationistakentobe1toacceleratethesimulationspeed,thusleadingtoGi=exp(Ea,i/(kT)).Forsimplicity,theshapeoftheAgelectrode is assumed to be unchanged through the entiresimulation process, and the ionization of the Ag electrode toproduceAg+ionsisreplacedbythegenerationofAg+ionswith
Ea,1=0.35eVatthenullsitesintheinterfaciallayer.EachAg+ion,
10
cuu duong than cong com
Trang 11sitesaroundit.Duetothepresenceoftheexternalelectricfield,
Ea,3=Ea,4=Ea,l=Ea,20.02eV=Ea,5+0.02eV,whereEa,lrefersto
theactivationenergyforAg+ionmigrationperpendiculartothe
electricfield.Redoxreactions,includingthereductionofAg+ions
and oxidation of Ag atoms, are assumed to be able to occur
anywhereinthestoragemedium.Thisassumptionisreasonable
basedonpreviousstudies[24,25,205,215].Theactionenergyforthe
reductionofaAg+ion(Ea,6)ortheoxidationofaAgatom(Ea,7)is
closelyrelatedtothenumber(n)ofAgatomssurroundingit.Here,
basedon [237], weconsider thatEa,6(n=0)=Ea,7(n=0)0.2eV,
Ea,6(n)=Ea,6(n+1)+0.05eV and Ea,7(n)=Ea,7(n+1)0.05eV In
addition,it should bementioned herethat:(i)the migrationof
Agatomsisignoredbecause,underanexternalelectricfield,the
migrationofatomsismuchslowerthanthatofions;(ii)theinjection
ofelectronstomaintainelectricneutralityandtheirmigrationare
alsoignoredforsimplicity
Initially, each site of the matrixes is null.The simulation is
performedbasedontheflowchartpresentedinFig.6b.Basedon
theflowchart,weshouldfirstdeterminethevalueofEa,i.Infact,we
onlyneedtodetermineEa,landEa,6(n=0)becauseEa,1isassumed
tobe0.35eVduringtheentiresimulationprocessandallofthe
otherscancalculatedusingtheformulasinthepreviousparagraph
Then,weneedtocalculatethesum(Gsum)ofthetransitionratesofallprocessesthatmayoccurinthenextstep.Ifallofthesitesaremarked oneby one by a number j(j=1,2,3, ), Gsum can beexpressed by Gsum¼SjSiGij, where Gij is the meaningfultransitionrateofprocessiatsitej.NotethatGijiscloselyrelated
tothecurrentstateofsitej.Forexample,ifaAg+ionislocatedatsitej,itmaymigrateorbereducedinthenextstep.Inthiscase,onlyGijwithi=2,3,4,5,and6maybemeaningful,whereasGij
withi=1 and7is meaninglessandshouldbeassignedtobe0.Third,weneedtorandomlychooseaprocesstooccurduringthenext step according to Sl10 Gk<RNGsumSl0Gk, where Gk
equalstoGijwhenk=7(j1)+i,lisanaturalnumber,andRNisarandom number between 0 and 1 generated by thecomputer.Fourth,weupdatetheconfigurationofAg+ionsandAgatomsandcalculatethetotalnumber(N)ofAgatoms.OnceNincreasesto10,thesimulationwillendandoutputtheconfigurationsofAg+ionsandAgatomswhenN=1,4,7and10.TheAgatomshereshouldbeequatedwiththenucleiofAgfilaments.Thereasonwhywedonotsimulate the growth of complete Ag filaments is because theassumptionofauniformelectricfieldisapplicableonlywhenNismuchsmallerthanthetotalnumberofallofthesites,i.e.,420.Giventhateachgrowthmodeofmetalfilamentsischaracterized
by a uniqueinitialnucleationlocation,theeffects oftheabove
cuu duong than cong com
Trang 12be unambiguously revealed by their effects on the initial
nucleationlocationofmetalfilaments
Notethatthetransportofcationsthroughthestoragemediais
relatedtoEa,l,whereasthereductionofcationsandthesubsequent
nucleationofmetalfilamentsarerelatedtoEa,6(n=0).Wefirstly
conductedsimulationswithvariousEa,lvaluesbutwithaconstant
Ea,6(n=0)of0.40eV.ForeachEa,l,thesimulationwasrepeated
manytimesandshowedgoodrepeatability.Fig.7a–cshowstypical
evolutionprocessesoftheconfigurationsofAg+ionsandAgatoms
withEa,lof0.25,0.30and0.35eV,respectively.Notethatasmaller
Ea,lcorrespondstoahighermobilityofAg+ions.In thecaseof
Ea,l=0.25eV, the generated Ag+ ions rapidly pass through the
storagemediumduetohighmobilityandthenaggregateatthe
storagemedium/PtinterfacewheretheyarereducedintoAgatoms
(Fig.7a).Thiscorrespondstothegrowthmodeofmetalfilaments
fromtheCEtotheAE.However,whenEa,lisincreasedto0.30eV,
thereisnoobviousaggregationofthegeneratedAg+ionsduetothe
appropriatemobility,leadingtoarandomdistributionoftheinitial
Agatoms inthewholestoragemedium(Fig.7b).Thissituation
correspondsqualitativelytothegrowthmodeofmetalfilaments
withaninitialnucleationlocationnearthemiddleregionofthe
device.Finally,whenEa,listakentobe0.35eV,thegeneratedAg+
ionsaggregateinthevicinityof theAg electrodeowingtolow
mobility, and consequently, they are initially reduced into Ag
atomshere(Fig.7c).Thiscorrespondstothegrowthmodeofmetal
filaments from the AE to the CE Furthermore, the statistical
distributionofAgatomsasafunctionofpositionundervariousEa,l
valuesisshowninFig.8a.Thisclearlyrevealsthatunderaconstant
Ea,6(n=0),thegrowthmodeofAgfilamentsfromtheCEtotheAEgraduallychangesintothatfromtheAEtotheCEasthemobilityof
Ag+ionsdecreases
Subsequently, we conducted simulations with various
Ea,6(n=0)valuesbutconstantEa,lof0.30eV.Notethatasmaller
Ea,6(n=0)correspondsqualitativelytoalowernucleationenergy
ofAgfilaments.TheresultingstatisticaldistributionofAgatomsas
afunctionofpositionundervariousEa,6(n=0)valuesisshownin
Fig.8b.Fromthisfigure,itcanbeconcludedthatunderaconstant
Ea,l, the growth mode of Ag filaments from the CE to the AEgraduallychangesintothatfromtheAEtotheCEasthenucleationenergyofAgfilamentsdecreases
Basedon theabovesimulation results,weconcludethatthegrowthmode of metalfilamentsis affected byboth thecationmobility and the nucleation energy of metal filaments, asschematicallyshowninFig.9.Froma qualitativepointofview,this figureperfectly matches the above simulation results, i.e.,under a given cation mobility (nucleation energy of metalfilaments),thegrowthmode ofmetalfilamentsfromtheCE totheAEgraduallychangesintothatfromtheAEtotheCEasthenucleationenergyofmetalfilaments(cationmobility)decreases
In addition,basedon this figure,theobserveddifferentgrowthmodesofAgfilamentsinAg/a-Si/Pt[25],Ag/PEDOT:PSS/Pt[215]
and Ag/SiO2/Pt [25] structures can be reasonably explained asfollows.ThechangeofthegrowthmodefromtheCEtotheAEintheAg/SiO2/PtstructureintothatfromtheAEtotheCEintheAg/a-Si/PtstructureismainlyduetoadecreaseinmobilityofAg+ions.For the Ag/PEDOT:PSS/Pt structure, although it hasthehighestmobilityofAg+ions,itmostlikelyhasthelowestnucleationenergy
ofAgfilaments
12
cuu duong than cong com
Trang 133.1.2 Anionmigration
In anion migration-based RRAM cells, the common storage
mediaareoxidessuchasTiOx[245],NiOx[75],HfOx[199],TaOx
[137]andgrapheneoxide[161]andtherestarenitridessuchas
AlN[246]andNiN[247].Forsimplicity,themigrationofanionsis
generallydescribedbythemigration oftheirpositivelycharged
counterparts,i.e.,oxygenvacancies(VOs)inoxidesandnitrogen
vacancies(VNs)innitrides.DuringRScycles,themigrationofthese
positivelychargedvacancies,drivenmainlybytheexternalelectric
field,canresultinavalencechangeofthecationsinthestorage
media.Therefore,anionmigration-basedRRAMsareusuallycalled
valencechangememories(VCMs)intheliterature[9,248].Here,
theVCMsareroughlygroupedintofilament-andinterface-type
VCMsbased on the cellarea dependence of theLRS resistance
(RLRS)tosimplifythediscussion
3.1.2.1 Filament-typeVCMs Infilament-typeVCMs,theRS
behav-iororiginatesfromtheformationandruptureofCFsinthestorage
media,therebyexhibitingnoorveryweakdependencebetween
thecellareaandRLRS[9].Ithasalreadybeendemonstratedthatthe
exact formation and rupture processes of the CFs are closely
related tothecarriertype in semiconductorsand to theinitial
distributionofanionvacanciesininsulators,asdiscussedinthe
followingparagraphs
Switchingkineticsinsemiconductors.Themostcommon
semicon-ducting storage media are NiO1+x [75,249–251], CoO1+x [252],
TiO2x[245]andZnO1x(x>0)[249].Theformertwocasesare
p-typesemiconductorswithabundantcationvacancies,whilethe
latter two are n-type semiconductors with abundant anion
vacancies.Inthesesemiconductors,theconductioncharacteristics
oftheCFscanbeeithersemiconductingormetallic,basedonthe
exactIcompvalueduringthesetprocess.Ingeneral,smallandlarge
IcompvaluesresultinsemiconductingandmetallicCFs,
respective-ly.Forinstance,inaPt/NiOnanowire/Ptcell,thecurrentintheLRS
(obtainedwithaIcompof1010A)tendstodecreaseinareducing
atmosphereandtoincreaseinanoxidizingatmosphere,indicatingtheformationofp-typesemiconductingCFs[250].Incontrast,inaPt/NiO/Pt cell, theresistance in the LRS (obtained witha Icomp
of103A)increaseswithincreasingtemperature,implyingtheformationofmetallicCFs[253,254].Notethattheformationandrupture ofsemiconducting CFsare primarily dominatedby anionmigration,whereasthoseofmetallicCFsareprimarilydominatedbythermochemicalreactions.Here,thefocusisontheswitchingkinetics
ofRRAMswithsemiconductingCFs,whiletheswitchingkineticsofRRAMswithmetallicCFswillbediscussedinSection3.3.1
In 2010,Kinoshtia etal [249]conductedconducting atomicforcemicroscope(C-AFM)measurementsonaNiOfilm,whichisap-type semiconductor, and a GZO film, which is an n-typesemiconductor.During measurements,theRh-coatedSitip(Rh-Tip) was grounded, and a bias voltage (V) was appliedto thebottomelectrode(BE),asseeninFig.10candd.Forthep-typeNiOfilm,theHRSwaswrittenwithanegativebiasandtheLRSwithapositivebias(Fig.10a).However,forthen-typeGZOfilm,theHRSwaswrittenwithapositivebiasandtheLRSwithanegativebias(Fig.10b),whichisoppositetothatforthep-typeNiOfilm.Thisphenomenon can be explained based on the anion migration-inducedredoxreaction.Forp-typeNiO,anegativebiasontheBEwill lead tothemigration of O2ions away fromthe BE, thusresultingintheformationofastoichiometric(insulating)NiOneartheBEandaconsequentHRS(Fig.10c).Onthecontrary,apositivebiasontheBEisneededtocausetheformationofastoichiometric(insulating) GZO near the BE and a consequent HRS, asschematically shown in Fig.10d Thiswork suggeststhat withthesameactiveRSregion,theswitchingpolaritiesinp-typeandn-typesemiconductorsareoppositetoeachother.Inotherwords,ifp-type and n-type semiconductors show the same switchingpolarity,theactiveRSregionsin themwillbeopposite toeachother
Subsequently, to study the switching kinetics of migration-induced RS behaviors in semiconductors, Oka et al
cuu duong than cong com
Trang 14NiOnanowire/Ptjunctions,asshowninFig.11a.Thebasictypeis
anuncoveredPt/NiOnanowire/PtjunctiondenotedasTypeIII.The
Pt/NiOnanowire/Ptjunctions passivated byanamorphous SiO2
layerattheanodeside,atthecathode sideandover theentire
regionaredenotedasTypeI,TypeIIandTypeIV,respectively.Note
thatthedefinitionofanodeandcathodedependsonthepolarityof
external voltage and consequently reverses in set and reset
processes of bipolar RS behavior To ensure a thorough and
coherentdiscussion,anodeandcathodeinthismanuscriptalways
refertotheelectrodesfromwhichthecurrentflowsintoandoutof
theRRAMdeviceduringforming(orset)process,respectively.The
pristineresistancevalues werealmostidenticalinalljunctions
Afteraformingprocess,alljunctionsexhibitedstablebipolarRS,
and typicalI–Vcurves of TypeI, TypeII,Type III, and TypeIV
junctions are shown in Fig 11b–e, respectively The most
remarkabledifference between Fig 11d and e is that thereset
voltagehasbeensignificantlyloweredsolelybythepresenceofthe
passivationlayer over the entire region When thepassivation
layer is only at the anode side, however, the RS is almost
unaffected,asshowninFig.11b.Therefore,itisnaturaltoconclude
thattheactiveRSregionislocatednearthecathode.Indeed,this
conclusionhasbeenconfirmedunambiguouslybythefactthatthe
resetvoltagehasalsobeensignificantlyloweredbythepresenceof
thepassivationlayeratthecathodeside(Fig.11c).Meanwhile,the
sameconclusionhasalsobeendrawnbyNagashimaetal.basedon
aPt/cobaltoxidenanowire/Ptstructure[252].Inaddition,given
thattheactiveRSregionsinp-typeandn-typesemiconductorswill
beoppositetoeachotheriftheyshowthesameswitchingpolarity,
itcanbededucedhereinthattheactiveRSregionshouldbelocated
neartheanodeinn-typesemiconductors
Basedontheaboveexperimentalresults,the
anion-migration-dominatedswitching kineticsin semiconductorscan be
under-stoodasfollows.Inap-typestoragemedium,theremustbesome
mobileoxygenionsthatarepresentnearcrystaldefectssuchas
VOsand grainboundaries, as schematically shown in Fig 12a
When thetop electrode (TE) is positivelybiased, thesemobile
oxygenionswillmigratetowardtheTEandthenaccumulateinits
vicinity,thuscreatingabundantcationvacanciestherein(Fig.12b)
Notethatcationvacanciesthatcancreateanacceptorlevelnear
the valence band are the source of hole carriers in p-type
semiconductors Hence, these newly created cation vacanciescan develop into the nuclei of p-type semiconducting CFs.Subsequently, these nuclei will act as extensions of the anodeandlargernucleiwillgrowpreferentiallybecausetheycanmoreeffectively concentrate the electric field Once a full p-typesemiconductingCF forms,thememorycellwill switchintotheLRS (Fig 12c) With the growth mode from the anode to thecathode,it isnatural thatthethinnestpartoftheformedCFislocatednearthecathode.WhentheTEisnegativelybiased,mostoftheJouleheatwillbegeneratedatthethinnestpartoftheCF,thussignificantlyacceleratingthemobilityofoxygenionsinthisregion.Drivenbytheelectricfield,mobileoxygenionsinthisregionwillrapidlymigratetowardtheBEandthenbestoredatthestoragemedium/BEinterface or thegrainboundariesof theBE Conse-quently,theconcentrationofcationvacanciesinthethinnestpart
ofthep-typesemiconductingCFwillbesignificantlydecreased,resultingintheruptureoftheCFatthatlocation(Fig.12d).Forann-typestoragemedium,themediumalreadyhasmany
VOs,asschematicallyshowninFig.12e.WhentheTEispositivelybiased,theseVOswillmigratetowardtheBEandthenaccumulate
initsvicinity(Fig.12f).BecauseVOsthatcancreateanacceptorlevelneartheconductionbandarethesourceofelectroncarriersinn-typesemiconductors,theseaccumulatedVOswilldevelopintothe nuclei of n-type semiconducting CFs Subsequently, thesenuclei will act as extensions of the cathode and grow towardtheanode.Onceacompleten-typesemiconductingCFforms,thememorycellwillswitchintotheLRS(Fig.12g).Withthegrowthmode from thecathode tothe anode,the thinnest partof theformed CF should be located near theanode When the TE isnegativelybiased,mostoftheJouleheatwillbegeneratedatthethinnestpartoftheCF,thussignificantlyacceleratingthemobility
ofVOsinthisregion.Drivenbytheelectricfield,VOsinthisregionwillrapidlymigratetowardtheTEandthenbeannihilatedbytheoxygenionsthatarestoredatthestoragemedium/TEinterfaceorthegrainboundariesoftheTEduringtheformingprocess.Asaresult,theconcentrationofVOsinthethinnestpartofthen-typesemiconductingCFwillbesignificantlydecreased,leadingtotheruptureoftheCFatthatlocation(Fig.12h)
Hereinitisnecessaryandmeaningfultoexplainwhytheactive
RSregionofacertaintypeofsemiconductorinFig.10isoppositetothatinFig.12.Thediscussionisfocusedonthep-typeNiOfilmand
14
cuu duong than cong com
Trang 15NiO film in Fig 10a shows an intermediate state, indicating
theexistenceofaweakCF.SincethisweakCFisformedduringthe
fabrication process,a cylindrical shape can be expected.When
the BE is negatively biased withthe TE grounded, there is no
preferentialmigrationofoxygenionsalongthisweakCFbecauseof
itsuniformityindiameter.Therefore,themostseriousdepletionof
oxygenionsappearsnaturallyinthevicinityoftheBE(Fig.10c),
i.e.,theactiveRSregionlocatesneartheelectrodethatisnegatively
biased during the reset process In contrast, the formed CF in
Fig.12chasaconicalshapewithitswiderandnarrowerdiameters
near the TE and BE, respectively During the subsequent reset
process withthe TE negatively biased and the BE grounded, a
preferentialmigrationofoxygenionsappearsinthevicinityofthe
BE becausemost of the Jouleheat is generated in this region
(Fig.12d).Consequently,themostseriousdepletionofoxygenions
appearsnaturallyinthevicinityoftheBE,i.e.,theactiveRSregion
locates near the electrode that is grounded during the reset
process,whichisjustoppositetowhatshowninFig.10c
Switching kinetics in insulators The common insulators in
filament-typeVCMsareTa2O5[7,137,255–257],HfO2[96,97],ZrO2
[89,90], etc The switching kinetics in these insulators can be
significantlyaffectedbytheinitialdistributionofanionvacancies
inthem Here thefocusis on Ta2O5,and thediscussionis also
applicabletoalloftheotherinsulators.Notethatmanymetastable
suboxides such as TaO2 and TaO are usually inevitable in the
fabricatedTa2O5films,althoughTa2O5isthemoststabletantalumoxide Hence, the more exact expression of Ta2O5 should be
Ta2O5xorTaOx,asshowninmostpublishedpapers[7,137,255–257]
AnRRAMcellcomposedofaTa2O5xlayersandwichedbetweentwo inertelectrodes,suchasPtorW,showsan initialuniformdistributionofVOsintheTa2O5xlayer.Suchamemorycellcanexhibitbothbipolar[137]andunipolar[255]switchingbehaviors.Thegrowthkineticsof theCFs is independentof theswitchingpolarityandisidenticaltothatoftheanion-migration-dominatedbipolar switching in n-type semiconductors (Fig 12e–g) Incontrast,therupturekineticsoftheCFsiscloselyrelatedtotheswitchingpolarity.Indetail,theruptureoftheCFsduringbipolarswitchingis causedmainlyby theion-migration-inducedredoxreaction[137],whichisidenticaltothatshowninFig.12h,whiletheruptureoftheCFsduringunipolarswitchingiscausedmainly
bytheJouleheat-inducedthermalmeltingattheirthinnestparts
[255]
AninitialnonuniformdistributionofVOsinaTa2O5xstoragelayerisoftenobtainedbytheuseofatopmetalelectrodewithahighoxygen affinity (e.g.,Ta, Tior Al) [201]or by deliberatelyintroducingaVO-richconductinglayer(e.g.,TaO2x)betweenthetopelectrodeandtheTa2O5xlayer[7].Itisworthpointingouthere that such a nonuniform distribution of VOs is usuallybeneficial to the RS, including decreasing the forming voltage(Vform), improvingtheswitchingstabilityandendurance ability,
cuu duong than cong com
Trang 16of VOs in a Pt/TaO2x/Ta2O5x/Pt cell The VO-rich conducting
TaO2xlayercanserveasareservoirofVOs,anditcanalsoactasa
seriesresistortoreplacetheIcompduringthesetprocess.Whenthe
TEispositivelybiased,therichVOsintheTaO2xlayerwillmigrate
towardtheBEanddevelopintoCFs(Fig.13b).OncetheCFsconnect
totheBE,thePt/TaO2x/Ta2O5x/PtcellwillswitchintotheLRS
(Fig.13c).Such a growthmode oftheCFs hasbeenverifiedby
simulations[256],andhasalsobeenrecentlyconfirmedbyPark
etal using in situ TEMin a Pt/TaO2x(30nm)/Ta2O5x(10nm)/
SiO2(1.5nm)/Ptstructure[257].TorupturetheCFs,abipolarreset
processisneeded,asschematicallyshowninFig.13d,becausea
positivevoltagewillfurtherenhancethestrengthoftheexisting
CFsbyprovidingmoreVOstotheCFs[258]
3.1.2.2 Interface-type VCMs.In interface-type VCMs, the
resis-tance in the LRS is inversely proportional to the cell area,
suggestingthattheentirecellareais involvedintheswitching
behavior[9,259].Aninterface-typeVCMcellisusuallycomposed
ofasemiconductorlayerthatissandwichedbetweenoneelectrode
withan Ohmiccontact anda secondelectrode witha Schottky
contact [9,259] Based on energy band theory, Ohmiccontacts
showing linear I–V behavior form between n-type (p-type)
semiconductorsandmetalswithlow(high)workfunction,while
SchottkycontactsshowingrectifyingI–Vbehaviorformbetween
n-type(p-type)semiconductorsandmetalswithhigh(low)work
function
Fig.14a andbshowsI–Vcurves ofM/Pr0.7Ca0.3MnO3/SrRuO3
(M/PCMO/SRO) and M/SrTi0.99Nb0.01O3/Ag (M/Nb:STO/Ag) cells,respectively.HeretheMrepresentsatopelectrodeofTi,Au,orSRO,withworkfunctionsof4.3,5.1and5.3eV,respectively.The SRO and Ag bottom electrodesare chosen toform OhmiccontactswiththePCMOand Nb:STO,respectively Onecanseeclearly that the contact resistance of the M/PCMO (p-type)interface decreases withthe workfunction ofM, whereasthat
of the M/Nb:STO (n-type) interface increases with the workfunctionofM.Moreimportantly,theI–VcurvesoftheTi/PCMO,Au/Nb:STO and SRO/Nb:STO interfaces show rectifying I–Vbehavior,thus revealingthepresence ofSchottky contacts.The
RSphenomenaonlyappearattheseinterfaces,suggestingacrucialroleofSchottkycontactsintheseinterface-typeVCMs.Further-more,theseexperimentsprovideinsightintothedirectionalityofsuchRSphenomena,meaningthattheset(reset)processoccurswhenaforward(reverse)biasvoltageisappliedtotheSchottkyinterface
NotethatthedirectionalityofsuchRSphenomenaisoppositetothat ofthefilament-typeVCMs.Here, thefocus inon theSRO/Nb:STO/Agstructure.Asdescribedpreviously,thegrowthofCFsinn-type semiconductors starts from the cathode due to theaccumulationoftheVOs.Inthiscase,theVOswillaccumulateattheSRO/Nb:STOinterfacewhenapositivevoltageisappliedtothe
Agelectrode.Asaresult,theSchottkybarrierwillbedegradedandtheresistanceoftheSRO/Nb:STO/Agstructurewilldecrease,whicharecontrarytoFig.14b.Tosolvethiscontradiction,Waseretal
[260]recentlysuggestedareasonablemodel.ThekeypointoftheirmodelisthatthereisneitherasupplyofVOsfrom,noranuptakeof
VOs by, the bottom electrode A negative voltage at the topelectrodewilldriveVOstotheupperinterface.BecausethebottomelectrodecannotcontributetoafurthersupplyofVOs,asufficientlyhighelectricfieldwillresultinaVO-depletedregionbeneaththe
VO-richtop interfacelayer, resettingthedeviceintotheHRS ApositivevoltageonthetopelectrodewillreversethisprocessandeliminatetheVO-depletedregion,thussettingthedeviceintotheLRS.Asmentionedbytheauthorsthemselves,however,themodelwillhavetobeconfirmedbyfurtherexperimentsandshouldnot
beregardedasacompleteandfinalmodeltoexplainthispeculiarswitchingbehavior
16
cuu duong than cong com
Trang 173.2 Chargetrapping/de-trapping
Thechargecarriersinjectedfromtheelectrodesmaybetrapped
bychargetrapsinastoragemediumtoformaspacecharge.The
spacechargecaneithermodulatethebarrierstoinjectionofthe
chargecarriersfromtheelectrodesoraffectthetransportprocess
ofchargecarriersthroughthestoragemedium,therebyresulting
intheRSbehavior.Basedonthedistributionstate,chargetrapscan
begroupedintothreecategories,asdiscussedbelow
3.2.1 Interfacialchargetraps
Inadditiontotheproposedanion-migrationmodelinSection
3.1.2,thebipolarRSphenomenaoftheSchottkyjunctionscanalso
be explained by charge trapping/de-trapping [261,262] The
trappingstateofthechargetraps attheSchottkyjunctionscan
be changed by external voltages Accordingly, the barriers to
injectionofchargecarriersfromtheelectrodeswillbemodulated,
resultinginthebipolarRSbehavior.Ingeneral,thechargetrapping
processtakesplaceunderareversebiasandleadstotheHRS,while
thechargede-trappingprocesstakesplaceunderaforwardbias
andleadstotheLRS.Forexample,ithasbeenconfirmedthatthe
Au/Nb:STOjunctioncanbesetintotheLRSandresetintotheHRS
when the Au electrode is positively and negatively biased,
respectively [262] The HRS shows rectifying I–V behavior
indicating the recovery of the Schottky barrier, while the LRS
showslinear I–Vbehaviorindicating a collapse oftheSchottky
barrier, as displayed in Fig 15a Schematics of the electron
detrappingandtrappingprocessesintheAu/Nb:STOjunctionare
showninFig.15bandc,respectively.Thechargetrapshavebeen
provedtobespacedefectsintroducedduringthedepositionofAu
electrodesbyionsputtering.Whenalargeforwardbiasisapplied
totheSchottkyjunction,electronsaredrawnoutfromthetraps,
leavingbehindpositivelychargedtraps(Fig.15b).Suchpositively
chargedempty traps can provide an additional potential, thus
reducing the build-in potential and the depletion width for
maintainingtheFermienergybalancebetweentheAuandNb:STO
Asaresult,theAu/Nb:STOjunctionissetintotheLRS.Incontrast,
whentheSchottkyjunctionintheLRSisreverselybiased,electrons
willbeinjectedintoandthentrappedbytheemptytraps,resulting
inneutraloccupiedtraps(Fig.15c).Consequently,thecollapsed
Schottkybarrier recoversto itsvirginstateand theAu/Nb:STO
junctionisresetbackintotheHRS.Inaddition,theshortretention
time(250s)oftheLRSinaplanarPt/Ba0.7Sr0.3TiO3/Ptdevicecan
serveaspowerfulevidenceforthevalidityofthechargetrapping/de-trappingmodel[263]
3.2.2 Chargetrapsprovidedbyamiddlenanoparticlelayer
An RRAM cell with charge traps provided by a middlenanoparticle layerisschematically shownin Fig.16a ThehoststoragemediainsuchcellscanvaryfrominorganicssuchasZnO
[264]toorganicssuchasAlq3[265].Thenanoparticlelayersareoftenformedbydepositingasinglelayerwithanominalthicknessbelow10nm[266].Inthiscase,theinitialislandgrowthprocesshas not been completed, thus preventing the islands fromcoalescingtoformacontinuousfilm.Thecommonnanoparticlelayers are metals suchas Cu and Al,and theothers are somesemiconductingmaterialssuchascopperphthalocyanine(CuPc)
[266].TherearetwotypesofRSbehaviorsintheseRRAMcells,i.e.,conventional bipolarswitching andpeculiarunipolar switching
Fig 16b shows the conventional bipolar switching of a Cu/ZnO(20nm)/Cu(3nm)/ZnO(20nm)/Ptcell[264].Anexternalvoltage was applied tothe Cu electrode withthe Pt electrodegrounded.OnecanseethatstablebipolarswitchingwithaVsetof
1.7VandaVresetof1.2Visobtainedafteraformingprocessof
3.5V To understand the conduction behavior and switchingmechanismofthememorycell,thepositivepartoftheswitchingcurveisre-plottedusingdouble-logarithmiccoordinates(Fig.16c).Based on the fitting results, the I–V characteristic of the HRSfollowsalinearOhmicbehavioratlowvoltagewiththeadditionof
aquadratictermathighervoltage,whichistypicalofaninsulatorwith shallow traps and space charge limited current (SCLC)injection.For theLRS,theI–Vcharacteristicstillconsistsoftwoportions:anOhmicregion(I/V)andaChild’slawregion(I/V2),whichcanbeexplainedbythetrap-filledSCLC.Hence,thebipolarswitching behavior can be explained by a charge trapping/de-trappingprocess,calledthetrap-controlledSCLCmodel.Indetail,chargetrappingunderapositivevoltageleadstothesetprocess,whereaschargede-trappingunderanegativevoltageresultsintheresetprocess
Fig 16d shows the peculiar unipolar switching of an Al/Alq3(50nm)/Al(5nm)/Alq3(50nm)/Alcell[265].Theword‘pecu-liar’herereferstothephenomenonthattheVresetislargerthanthe
Vset,whichdiffersfromtheconventionalunipolarswitchingwherethe Vreset is smaller than the Vset (Fig 1b) The detailedcharacteristics of such switching behavior can be summarized
asfollows
(i) WhenthecellisintheLRS(ONstate),anN-shapeI–Vcurveisobtainedduringthepositivevoltagesweep,i.e.,thereisalocalmaximumcurrentatVmax,followedbya regionofnegativedifferentialresistance(NDR)andalocalminimumcurrentat
Vmin.(ii)IfavoltagenearVminisappliedandthenrapidlysetbackto0V,thedeviceisleftintheHRS(OFFstate)
(iii)WhenthecellisintheHRS,thecurrentremainslowuntilathresholdvoltage(Vth)isreached,atwhichtimethecellissetintotheLRS
(iv)TheVthiscomparableto,butslightlylessthan,Vmax.(v)IfavoltageclosetoVmaxandaboveVthisappliedandthenreducedto0V,thedeviceisleftintheLRS
(vi)MultilevelstoragecanbeobtainedbysettingthevoltageintheNDRregion,asdemonstratedinFig.16e
Such peculiarunipolar switchingis almostidenticaltowhatwasobservedinan electroformedAu/SiO/Aldiodeby Simmonsand Verderber [12].Theyalso proposeda model, calledtheSVmodel,toexplaintheirexperimentalresults.Onthebasisofthismodel, the initial LRS of the electroformed Au/SiO/Al diode is
cuu duong than cong com
Trang 18SiOlayerduringtheelectroformingprocess.Theseatomscannot
only act as electron traps but also provide available sites for
tunnelingofelectrons.TheNDRregioniscausedbythetunneling
ofelectronsintotrapsitesandthesubsequentestablishmentofa
space charge field, which opposes the applied field and thus
reducesthecurrent.IftheexternalvoltageneartheVminisrapidly
reducedtozero,thetrapped electronsare leftin theinsulator,
leadingtotheHRS.Incontrast,iftheexternalvoltageneartheVmin
isslowlyreduced tozero,thetrappedelectronshave sufficient
timetoleakoutfromtheinsulator,leadingtotheLRS.Theabrupt
currentjumpatVthisduetothede-trappingprocessofthetrapped
electrons.ForfurtherdescriptionoftheSVmodel,thereadersare
encouragedtorefertotheoriginalpaper.Hence,byequatingthe
nanoparticletrapswiththeAutraps,theSVmodelcanserveasa
goodexplanationforthepeculiarunipolarswitchingofRRAMcells
withthechargetrapsprovidedbyamiddlenanoparticlelayer.It
mustbenotedhere,however,thatsuchRRAMcellsareinitiallyin
theHRS,whichdiffersfromtheinitialLRSoftheelectroformedAu/
SiO/Aldiode.Thisdiscrepancymayimplytheexistenceofother
possible switching mechanisms and that further attention is
neededinthisresearchfield.Moreover,thedecisivefactorforthe
appearanceofeachRSbehavior(conventionalbipolarswitchingor
peculiar unipolar switching)alsoneeds to beconfirmed in the
future
3.2.3 Randomlydistributedchargetraps
AnRRAMcellwithrandomlydistributedchargetrapsisshown
schematicallyinFig.17a.Basedonthesize,thechargetrapscanbe
groupedintonanoparticle-andatom-leveltraps.The
nanoparticle-level traps include metal nanoparticles(e.g., Au and Ag
nano-particles[266])andtheirderivatives(e.g.,Aunanoparticlescapped
with1-dodecanethiol[267]), semiconductor nanoparticles (e.g.,
ZnO,ZnS,andCdSenanoparticles[268]),carbonnanotubes[189],
18
cuu duong than cong com
Trang 19showRS behaviorsthat areidenticaltothose of thecells with
chargetrapsthatareprovidedbyamiddlenanoparticlelayer,i.e.,
theconventionalbipolarswitching(e.g.,theAl/PS+Au-NPs/Alcell
peculiarunipolarswitching (e.g.,theAl/xBP9F+Au-NPs/ITOcell
[266])explainedbytheSVmodel.Therefore,thediscussionbelow
isfocusedontheRRAMcellswithrandomlydistributedatom-level
traps
Therearetwotypesofatom-leveltraps.Thefirsttyperefersto
the intrinsic crystal defects such as vacancies, which lead to
conventionalbipolarswitchingbehaviorthatcanbeexplainedby
thetrap-controlledSCLCmodel[270,271].Theothertypeof
atom-leveltrapswasfirstintroducedbyChenetal.[272]insixsolid
solutionsthatwerehostedbyinsulatorsanddopedbyelectronic
conductors If named with the form of insulator:conductor,
these six solid solutions wereSiO2:Pt, Si3N4:Pt, LaAlO3:LaNiO3,
LaAlO3:SrRuO3, CaZrO3:LaNiO3 and CaZrO3:SrRuO3 The word
‘atom-level’meansnoPtclustersinthefirsttwosolidsolutions
andno ordering or phaseseparationin the other four cases,as
verified by the UV reflectivity test and cross-sectional
high-resolutionTEM(HR-TEM)analysis,respectively.Inthisstudy,we
considerSiO2:Ptasanexampletodiscusstheswitchingbehavior
and underlying mechanism of these RRAM cells Based on the
straightforward criterion for distinguishing between random
insulators and conductors, provided by Anderson in 1958, the
diffusiondistancezforelectronsat0Kisfiniteininsulators,whileit
isinfiniteinconductors[272].Becausethelateralpercolationlimit
oftheSiO2:Ptisf0.38(f:molarfractionofPtintheSiO2:Pt),the
SiO2:0.2Ptmusthaveafinitez.Theexactvalueofzcanbeobtained
bytestingtheresistanceoffilmswithvariousthicknessesd,thatis,filmswithd zaremetallicacrossthethickness,whilefilmswith
d zareinsulating.Fig.17bshowstheinitialR–VcurvesofthePt/SiO2:0.2Pt/MocellswithvariousSiO2:0.2Ptlayerthicknesses.OnecanseethatthevirginSiO2:0.2PtfilmisanOhmicconductorwithalow resistanceup to d=16nm, whileit becomesa non-Ohmicinsulatorwithahighresistanceatd=21nm.Theseresultssuggest
16nm<z<21nm.Mostremarkably,peculiarbipolar switchingwasobservedinthePt/SiO2:0.2Pt/Mocellswithadfrom7nmto
16nm.Theword‘peculiar’ referstothefactthatthese cellsareinitiallyintheLRS,whichiscontrarytotheconventionalbipolarswitchingwithaninitialHRS.Incontrast,thePt/SiO2:0.2Pt/Mocellwith d=21nm(d=5nm) stayed in the HRS (LRS) all the time.Moreover, three interesting characteristics about this peculiarbipolar switchingwere found: (i)the Vresetofthe Pt/SiO2:Pt/Mocellwasindependentoffandd;(ii)atlowertemperature,theR–Vhysteresis loop expanded vertically, while the Vreset remainedunchanged(Fig.17c);and(iii)UVirradiationwasabletoswitchthePt/SiO2:Pt/MocellfromtheHRStotheLRS(Fig.17d).Allofthesecharacteristics argue against a thermally activated switchingmechanism such as ion migration and suggest the chargetrapping/de-trapping mechanism.Thetransitionfrom theLRStotheHRScanbeunderstoodbytheinjectionofelectronsbyFowler–Nordheimtunnelingfromtheelectrodewithlowerworkfunction.These injected electrons are trapped at sites near the originalconductingpathwaysandthenprovideCoulombrepulsiontoblockfurther electron transport along these conducting pathways.TheabsenceofRSbehaviorinthe Pt/SiO2:0.2Pt(5nm)/Mocellis
cuu duong than cong com
Trang 20insuchathinlayerisnotenoughtoblockfurtherelectrontransport
along the original conducting pathways Under a reverse bias,
successivede-trappingofthesetrappedelectronsthroughthesame
tunnelingbarriertypicallyleavesbehindaseriesofintermediate
states,whichisbeneficialformultilevelstorage
3.3 Thermochemicalreaction
In thermochemical reaction-dominated RRAMs, the forming
andsetprocessescorrespondtothethermaldecompositionofthe
storagemediaandconsequentformationoftheCFs,andthereset
processistriggeredbythermalmeltingoftheexistingCFs[9].The
formed CFs usually show metallic conduction behavior, as
demonstrated in Pt/NiO/Pt [253,254], Pt/ZnO/Pt [26] and W/
polystyrene/W[273].BecauseJouleheatingisindependentofthe
electricpolarity,bothunipolar andbipolaroperationmodesare
valid in such RRAM cells Accordingly, nonpolar switching is
introducedinsomeliteraturestodescribethisswitchingbehavior
The discussion of the switching kinetics of thermochemical
reaction-based RRAMs below is classified into two categories
basedonthestoragemedia
3.3.1 Thermochemicalreactioninsemiconductingmetaloxides
With a Icomp of 103A, semiconducting metal oxides
sandwiched between two inert electrodes, such as Pt/NiO/Pt
[136,253,254,274],Pt/CoO/Pt[274],Pt/TiO2/Pt[135,274] andPt/
ZnO/Pt[26],frequentlyshowthermochemicalreaction-dominated
switchingbehavior.Thedrivingforcefortheformationofmetallic
CFsistheenergeticallyfavoredlowervalencestatesofthesemetal
oxidesathightemperature,asseenfromtheEllinghamdiagramin
[9]
To clarify the switching kinetics, a three-terminal device
configurationwasoftenemployed[135,136,274],asschematically
illustratedinFig.18a Theoperationprocessofthisdeviceisas
follows First, a forming process between electrode A and
electrode C (A–C configuration) is performed by applying a
positivebiasonelectrodeAwithelectrodeCgrounded.Second,a
unipolarresetprocessisconductedwiththeA–Cconfiguration
Note that the A–C configuration can be regarded as a serial
connection of the memory cell beneath electrodeA and the
memorycellbeneathelectrodeC.Finally,theresistancestates
beneathelectrodesAandCareexaminedbymeasuringtheI–V
curvesof theA–B andB–Cconfigurations,respectively.Using
this three-terminal device, Nagashima et al [274] recently
studiedtwop-type oxides(NiOxand CoOx)and three n-type
oxides(TiO2x,yttriastabilizedzirconia(YSZ)andSnO2x),and
theobtainedresults areshown inFig.18b–e.Basedonthese
results,itcanbeunambiguouslyconcludedthattheactive RS
regionislocatednearthecathodeinp-typeoxidesbutnearthe
anodeinn-typeoxides.Inaddition,itcanbefurtherdeduced
that,duringtheformingprocess,theCFsgrowfromtheanodeto
thecathodeinp-typeoxidesbutfromthecathodetotheanodein
n-typeoxides
ForthecompositionofthesemetallicCFs,itisnaturaltodeduce
thattheyshouldbecomposedofsuboxidesorevenmetalatoms
Toconfirmthisdeduction,manyattemptshavebeenmadeover
thepastfewyearsandmanysignificantresultshavebeenmade
thusfar.In2007,Park etal.[275]systematically examined the
structuralchangesofpolycrystallineNiOx(x=1–1.5)filmin the
HRS,theLRSandtheswitchingfailedstate(irreversibleLRS)by
HR-TEMandelectronenergy-lossspectroscopy(EELS).Theyfound
thattheCFsinNiOxarecomposedofNiatomsandarelocatedat
grainboundaries.In2010,byusingHR-TEMandinsituI–Vaswell
as low-temperature (130K) conductivity measurements,
Hwang’sgroup[276]confirmedthattheCFsinTiO2arecomposed
of TinO2n1 (so-called Magne´li phase) and they grow from thecathode totheanodewiththeir thinnestpartsnear theanode.Recently,Chenetal.[26]useinsituTEMtoshowthattheCFsinZnO are composedof Zn-dominatedZnO1x Moreimportantly,theysuccessfullyrecordedtherealtime formationand ruptureprocesses of these CFs, as shown in Fig 19 The I–Vcurves offormingandsubsequentresetprocessesaredisplayedinFig.19f
Fig.19a–dareaseriesofTEMimagescorrespondingtodatapointsa–dinFig.19f,revealingthattheCFsgrowfromthecathodetotheanodeduringtheformingprocess.Duringtheresetprocess,theCFswereconfirmedtoruptureneartheanode(Fig.19e),whichaccordswellwiththeconclusionmadebasedontheI–Vmeasurementsinthepreviousparagraph
All of the above experimental results can be reasonablyexplainedby theuniversalmodelfor thermochemicalreaction-dominatednonpolarswitchingbehavior proposedby Kimetal
[277],as shown in Fig 20 For a p-type semiconducting metaloxide,taking NiOasanexample,localizedholeinjection attheanodicinterfaceduringtheformingprocessispossibleduetothelowerSchottkybarrierforsomereasons(forexample,largesurfaceroughnessornon-uniformityoftheNiOlayerandpenetrationofelectrodeintotheNiOlayer),asschematicallyshowninFig.20a.As
aresult,athermochemicalreactionandtheaccompanyingoxygenlossoccurattheselocalareasbecauseoftheseriousJouleheating,leadingtothegenerationofNiinterstitials(Ni00
i)inaccordancewithNiO!Ni00i þ2e00þ1=2O2ðgÞ.Onthisoccasion,thelocationofholeinjectionmightserveasasourceofNi00i ions.Whenthegenerated
Ni00i ionsareabundantenough,theycombinetoformmetallicNifilaments,resultinginthegrowthofNifilamentsfromtheanodetothecathode(Fig.20b).Withsuchagrowthmode,thethinnestparts
oftheNifilaments,i.e.,theactiveRSregions,areexpectedtobelocatednearthecathode.Incontrast,inann-typesemiconductingmetal oxide such as TiO2, electrons are injected locally at thecathodic interface at a location where the interfacial Schottkybarrierislower(Fig.20c).TheconsequentJouleheatingeffectcansignificantly promote thelocalgeneration ofVOs atthe anodicinterface and their drift and diffusiontoward the cathode Thegenerated,abundantVOsaremostlikelydraggedtothelocationwhereelectroninjectionoccursduetoelectrostaticforceandthenaccumulate there, leading to the preferential nucleation of
TinO2n1filamentsatthecathodicinterface.Hence,theTinO2n1
filaments will grow from the cathode to the anode in n-typesemiconductingmetaloxides(Fig.20d)andshowaconicalshapewithwiderand narrowerdiameters atthecathodicand anodicinterfaces,respectively
3.3.2 Thermochemicalreactioninorganics
In an organic RRAM cell with thermochemical dominated RS behavior, the carbon-rich filaments are formedduringtheformingprocessbylocalthermaldecompositionoftheorganicfilm.Subsequently,thelocalruptureandre-formationofthesecarbon-richfilamentsresultinalternationbetweentheLRSandtheHRS.Asearlyasinthe1970s,suchRSbehaviorhadbeenreportedinsomepolymersformedbyaglow-dischargetechnique
reaction-[273,278].Forexample,whentheW/polystyrene/WcellwasintheLRS, Segui et al [273]found that:(i) it showed an OhmicI–Vcharacteristic;(ii)itsresistancedecreasedfrom10to6Vwhenthetemperaturewaschangedfrom293to77K;and(iii)itscurrentwasindependentoftheareaoftheelectrode.Allofthesepropertieswereinaccordancewiththeexistenceofthefilamentarycarbon-rich paths Moreover, theemission of hydrogen was inevitableduringthethermaldecompositionofthepolystyrenefilm.Thishadbeenprovedunambiguouslybythefactthat,afterswitching,anadditionalhydrogenpeakappearedinthespectrumobtainedbychromatographicanalysisinthevaporphaseofthegasaroundtheRRAMcell
20
cuu duong than cong com
Trang 213.4 Exclusivemechanismsininorganics
3.4.1 Insulator-to-metaltransitioninMottinsulators
SomeMottinsulatorsshowinganinsulator-to-metaltransition
(IMT) have also been introducedas storage mediafor RRAMs
Basedon theoriginof theRSbehavior,theseinsulatorscan be
groupedintotwocategories.ThefirstcategoryincludesVO2[279],
Ca2RuO4[280],NbO2[281],andsoon,inwhichtheRSbehaviorhas
beenuniversallyacknowledgedtooriginatefromtheelectric
field-inducedJouleheatingeffect.Eachofthesematerialshasaspecific
thresholdtemperatureofIMT(TIMT),forexample,TIMT=340Kfor
VO2[279],and357KforCa2RuO4[280].Thematerialwillchange
from an insulator to a conductor as its temperature increases
acrossthe TIMT, and vice versa Hence, thesematerials usually
exhibitthresholdswitching(i.e.,theLRScanholdonlywhenthe
externalvoltageislargerthanathresholdvoltageVth)andserveas
media in switch devices for RRAM crossbar arrays [77,281],
althoughnonvolatileRSbehaviorinVO2hasalsobeenreported
[282] Alternatively, the second category refers to the ternary
chalcogenidesAM4X8(A=Ga,Ge;M=V,Nb,Ta;X=S,Se),inwhich
theRSbehavior isattributedtoelectric-field-induced electronic
phaseseparationatthenanoscale[283].Thediscussionbelowis
focusedontheswitchingbehaviorandunderlyingmechanismof
AM4X8
Fig.21aisaperspectiveviewofthecrystalstructureofAM4X8,
where the M4 tetrahedral clusters are presented as blue
tetrahedra [284] This structure is called as a deficient spinel
cubicstructure,andcanbederivedfromtheregularspineltypeby
shifting the metal atoms off the centers of the chalcogen
octahedraalong[111]toformtheM4clusters.Theintracluster
M–Mdistancesarecompatiblewiththeformationofmolecular
bonds,thusleadingtotheformationofmolecular-likeelectronicstates within the clusters, while the larger intercluster M–Mdistancespreventmetal–metalbonding.AM4X8usuallyexhibitsavery smallMott–Hubbard gap(Eg)rangingfrom 0.1to0.3eV,which makes it very sensitive to external perturbations Forexample,dopingandexternalpressurecaneasilyinducetheIMT
inAM4X8[285,286].Moreimportantly,electricfield-inducedIMT
inAM4X8isattractinggreatattentionrecentlyduenotonlytotheinterestingphysicalphenomenonitselfbutalsotoitspotentialapplicationinRRAMs.In2008,Carioetal.[287]providedthefirstexperimental evidence for both volatile and nonvolatile RSbehaviors in bulk single crystalline GaTa4Se8 Afterwards, thesamephenomenawerereportedinothercompoundsbelongingtothe AM4X8 family [283] In 2011, Besland et al [288] firstdemonstratednonvolatileRSbehaviorinapolycrystallineAM4X8
film by using a Au/GaV4S8(1mm)/Au structure Under 10mspulsesof2.5V,aswitchingratioof33%wasobtained,asshown
inFig.21b
Ingeneral,theAM4X8showsvolatileandnonvolatileswitchingwhentheexternalelectricfieldisslightlyandmuchlargerthanathresholdvalue(Eth)ofafewkV/cm,respectively[283,285].TheEth
hasbeenprovedtoincreaseasapowerlawoftheEg,whichisingoodagreementwiththeuniversallawofEth/E2:5
g reportedforavalanchebreakdowninsemiconductors,demonstratingthatthevolatileswitchingofAM4X8originatesfromavalanchebreakdown
[285].ToclarifytheoriginofthenonvolatileswitchingofAM4X8,Corrazeetal.[289]conductedadetailedTEMstudyonaGaNb4Se8
crystalafteritwasswitchedintheLRS.Totheirdisappointment,all
oftheexperimentalresults,includingthehighresolutionimagesand the convergent beam electron diffraction experiments(performedwithregularstepsof20nmovera2mmlongsegment
cuu duong than cong com
Trang 22witha typicalbeamsizeof 1nm),didnotrevealany
crystallo-graphic symmetry breaking or amorphization between the
electrodesatthenanoscale.In contrast,thescanning tunneling
microscopy(STM)studyof aGaTa4Se8 crystalprovided alot of
usefulinformation[290].Fig.21cisahistogramofthegapwidths
forapristineGaTa4Se8crystal,establishedfromthegapwidthmap
shownintheinset.ThisindicatesthatthepristineGaTa4Se8hasa
homogeneousinsulatingelectronicphasewithanEgof200meV
Surprisingly, the GaTa4Se8 crystal in the LRS shows a very
inhomogeneouselectronicphase,asrevealedbyFig.21d There
aretwotypesof30–50nmdomainsembeddedinthe
electroni-cally unchanged crystal volume The first type of domains (in
white) are clearly metallic with gap values peaking at Eg=0,
whereasthesecondtypeofdomains(inblack)aresuper-insulating
correspondingtoacontinuumoflargergapsdistributedalmost
homogeneouslybetween 400 and 700meV Itshould be
men-tioned that in a Mott insulator, negative pressure (volume
expansion) is expected to lead to a continuous increase in Eg,
whilepositivepressure(volumecompression)canleadtoa
first-ordertransitionfromaMott insulatortoa correlatedmetal,as
shownby a schematictemperature–pressure phase diagram of
GaTa4Se8 in its pristine statein Fig 21e Given the significant
similarity between the electric field- and pressure-induced
metallic states of AM4Q8 [286], and thestrong electron–lattice
couplinginAM4Q8duringnonvolatileswitchingrevealedbylocal
sampledeformation[291],thenonvolatileswitchingofAM4Q8can
bereasonably explainedbytheelectric field-inducedelectronicphase separation at the nanoscale concomitant with a latticedeformation
3.4.2 Thesp2/sp3conversioninamorphouscarbon
Itiswell-knownthatcarboncanexistsinvariousforms,amongwhichthemostprominentonesarethesp2-dominatedgraphiticformwithhighconductivityandthesp3-dominateddiamondformshowing low conductivity The reversible conversion betweenthese two forms in amorphous carbon (a-C) with inert metalelectrodes (such as Pt and W) has been recently utilized forunipolarRRAMapplications[131,292,293].Theresearchinterest
in suchRRAMs is keen because,compared with other storagemedia, carbon exhibits advantages due to its simple chemicalcomposition,lowcost,compatibilitywithCMOSprocesses,andthepotentialforrealizingfuture‘all-carbondevices’bycombinationwiththehighlyconductiveinterconnectingcarbonmaterials.Thesetprocesscan beunderstood asthesp3!sp2conversionandconsequent formation of conductive sp2-rich carbon filamentsinduced mainly by Joule heating This explanation is stronglysupported by real-time TEM observation of the formation oftubules from a-C nanowires under high-bias-induced Jouleheating [294] To explain the reset process, the temperaturedistributionofacarbonfilamentwitha5nmdiameteraftera1nscurrent pulse with a current density of 1.7GA/cm2 has beensimulated[292].Theresultshowsapeaktemperatureof3928K,which is sufficient to rupture the existing sp2-rich carbonfilaments.Althoughthesp2/sp3conversioncanalmostperfectlyexplaintheRSbehaviorofa-C,itshouldbenotedthatanothermodel,basedontherearrangementofsp2carbonatomswithinthe sp3 matrix, has also been proposed [295] This model issupportedbyasignificantsimilaritybetweenthenear-edgeX-rayabsorption fine structure spectra obtained before and afterswitching, meaning that the sp3 to sp2 ratio remains almostunchanged.Hence,topromotethepracticaluseofRRAMsbased
ona-C,furtherstudyisneededtoprovideaclearerpictureoftheunderlyingswitchingmechanism
3.5 Exclusivemechanismsinorganics3.5.1 Chargetransfer
Underanexternalelectricfield,acomplexcontainingelectrondonorsandelectronacceptorsusuallyundergoesachargetransferprocess,during which electrons in theelectron donor moieties(such as carbazolegroups and tetrathiafulvalenes) are partiallytransferredtotheelectronacceptormoieties(suchasfullerenes,graphenesandgoldnanoparticles)[187,188,296,297].Afterchargetransfer, a partially filled highest occupied molecular orbital(HOMO) of a polymercontaining electrondonor moieties,or apartiallyfilledlowestunoccupiedmolecularorbital(LUMO)ofapolymer containing electron acceptor moieties, or both willappear, thus leading to an increase in the conductivity of thecomplex.Forinstance,afunctionalPVK-C60polymer,containingcarbazole moieties (electron donors) and fullerene moieties(electron acceptors) in a molar ratio of approximately 100:1,wassynthesizedbyLingetal.[296]viacovalenttetheringofC60toPVK.TheHOMOandLUMOenergylevelsofthesynthesizedPVK-
C60relativetothevacuumlevelweredemonstratedusingcyclicvoltammetry method to be 5.57 and 3.56eV, respectively.Interestingly,bipolarswitchingbehaviorwasobservedwhenthePVK-C60film was sandwichedbetween an Al electrode and anindiumtinoxide(ITO)electrode,asshowninFig.22a.Duringthetest,externalvoltageswereappliedtotheAlelectrodewiththeITOelectrodegroundedallthetime.Given theworkfunctionsofAl(4.28eV)andITO(4.8eV),theenergybarriersoftheAl/PVK-C60
andPVK-C60/ITOinterfacesunderpositive(negative)voltageare
from Ref [277] Copyright ß 2011, IOP Publishing Ltd.
22
cuu duong than cong com
Trang 23charge injections during the negative voltage sweep are more
favorable than during the positive voltage sweep, which can
reasonablyexplainwhythevirginAl/PVK-C60/ITOcellintheHRS
canbeswitchedintotheLRSonlybythenegativevoltagesweep
TheswitchingfromtheHRStotheLRSiscausedbytheelectric
field-inducedelectrontransferfromthecarbazolemoietiestothe
fullerene moieties and the consequent heavy p-doping of the
polymer,asschematicallyshowninFig.22b.Becauseofthestrong
electron-withdrawing ability of C60 with a high LUMO of
3.13eV and the strong dipole moment of VK-C60 (3.32D),
theelectronstrappedinC60moietiescanberetainedandcoexist
withthesurroundingpositivelychargedcarbazolemoieties,thus
leading to thenonvolatility of theLRS During the subsequent
positivevoltagesweep,thenegatively chargedC60moietieswill
lose thetrapped electrons toneutralize the positively charged
carbazolemoieties.Consequently,thedevicewasresetbackinto
itsvirginHRS
3.5.2 ConformationalchangeTheconformationalchangeofsomeorganicmoleculescanalso
be utilized for memory applications [298–301] Each of thesemolecules hasat leasttwo distinct isomers,and thechange inconformation is usually concomitant with a change in theconduction One representative group of such molecules ispolymerscontainingcarbazolependant groups, suchas poly(2-(9H-carbazol-9-yl)ethyl methacrylate) (PCz) [299], poly(2-(N-carbazolyl)ethylmethacrylate)(PMCz)[300],poly(9-(2-((4-vinyl-benzyl)oxy)ethyl)-9H-carbazole) (PVBCz)[300],poly(N-vinylcar-bazole)-phenylfluorene(PVK-PF)[301],etc.Itiswell-knownthatthecarbazolegroupisanelectron-donorandhole-transporter,andhasatendencytoformapartialorfullface-to-faceconformationwith the neighboring carbazole groups to result in extendedelectrondelocalization.Inthepristinestate,thesepolymersareinthe HRS because the carbazole groups included are randomlyoriented Under an external electric field, oxidation of thecarbazolegroupsoccursinitiallyinthevicinityoftheelectrodes
[290] Copyright ß 2013, American Chemical Society (For interpretation of the references to color in this figure legend, the reader is referred to the web version of the article.)
cuu duong than cong com
Trang 24from which holes are injected into the polymers, leading to
positivelychargedcarbazolegroups.Asaneffectiveelectrondonor,
thenearbyneutralcarbazolegroupsundergochargetransferor
donor–acceptorinteractions withthealreadypositivelycharged
carbazolegroupstoformpartialorfullface-to-faceconformation
withtheneighboringcarbazolegroups.Consequently,thepositive
charges are delocalized to the neighboring, ordered carbazole
groups.Asthedurationofstressingwiththeexternalelectricfield
lengthens,thisprocesswillgraduallypropagatethroughthewhole
thicknessofthepolymerfilm.Onceasignificantfractionof the
carbazolegroups hasundergonesucha conformationalchange,
charges can be easily transported through the neighboring,
ordered carbazole groups either on the same or neighboring
polymerchains(intrachainorinterchainhopping),thusleadingto
theappearanceoftheLRS.Fig.23aschematicallyshowssucha
conformational change of PVK-PF More importantly, such a
conformationalchange of PMCz hasbeen directly captured by
HR-TEM.Fig.23bisatypicalHR-TEMimageofPMCzinthepristine
state(HRS),fromwhichonecanseeonlyamorphousstructure.In
contrast,theHR-TEMimageofPMCzintheLRS(Fig.23c)hasclear
ordereddomains, whichresemblesthepolycrystallinestructure
observedintheHR-TEMimageofPVKwithhighconductiondueto
orderedcarbazolegroups.Thestabilityoftheorderedcarbazole
groupsinduced by theelectric field is dependent on the exact
chemicalstructureofthepolymers.Asthestabilityoftheordered
carbazolegroupsimproves,theswitchingbehaviorcanvaryfrom
volatileswitchinginPVBCz[300],tononvolatilebipolarswitching
in PVK-PF [301], to nonvolatile write-once-read-many-times(WORM)memorybehaviorinPCz[299]andPMCz[300]
4 RRAMsfordatastorage4.1 CurrentperformanceAfterdecadesofefforts,manyexcitingrecordsregardingtheperformance ofRRAMshave beenset thus far.First,scalabilitydownto10nmincellsizehasbeendemonstratedinHfOx-and
WOx-based RRAMs [2,6] Second, ultra-fast switching speed of
100pshasbeenreportedinTaOx-andPt-dispersedSiO2-based
24
cuu duong than cong com
Trang 25proved in Ni/GeO/HfON/TaN and TiN/Hf/HfO2/TiN sandwich
structures[5,6].Moreover,extremeenduranceof>1012switching
cycleshasbeensuccessfullyrealizedinaPt/Ta2O5x/TaO2x/Ptcell
[7].Finally,satisfactoryretentionofseveralmonths
(experimen-tallydemonstrated) and even over 10 years (extrapolated) has
often been observed in RRAMs [42] Note that each record
performanceisfarsuperiortothatofFlashmemoriesandeven
comparabletothatofDRAMs.However,itmustbeadmittedthat
these exciting records are mostly observed in different RRAM
systems, and tointegrate them intoa singleRRAM cell is still
impossible.Inaddition,theperformancevariancefromswitching
cycletocycleandfromdevicetodeviceisanothertroublesome
issuethatmustbesettledbeforepracticaluseoftheRRAMs
4.2 Methodsforperformanceenhancement
ToenhancetheperformanceofagivenRRAMsystem,various
methodshavebeenproposedandtriedoverthepastdecades.The
discussion below is focused on the common methods for
performanceenhancementofRRAMs,includingdoping,electrode
engineering,interface engineering,optimizationofdevice
struc-tureandmeasurementcircuit, and multilevelstorageoperation
andconductancequantization
4.2.1 Doping
Itiswell-knownthatdopingisaveryeffectivewaytomodulate
thepropertiessuchaselectricalconductivityandmagnetismofa
given material.In theresearchfield ofRRAMs, ithasalsobeendemonstratedthatdopingactsasapowerfulmethodtoenhancetheperformanceofRRAMs.Forexample,thecommonbipolarRSbehavior of cation migration-based RRAMs is a troublesomeobstacleifwe wanttointegratesuchdevices into3-Dcrossbararrays withasimple one-diode/one-resistor(1D1R)structuretoovercomethesneak-pathissue.Thisisbecausethereversecurrentdensity of a diode is usually too low to reset a RRAM device.Fortunately, the bipolar RS behavior of cation migration-basedRRAMscanbechangedtothenonpolaronebysimplydopingthestorage media with the corresponding active electrode metals.Chenetal.[28]havesuccessfullyobtainednonpolarRSbehaviorin
a Cuionmigration-basedRRAMdevicewithAlNasthestoragemedium.ThedopingofCuintotheAlNfilmwasrealizedbyrapidlyannealinganAlN(50nm)/Cu(3nm)/AlN(50nm)tri-layerat7008C
inN2ambientfor60s.AnX-raydiffraction(XRD)patternoftheAlN:CufilmonaPt/Ti/SiO2/Si(100)substrateisshowninFig.24a,which revealsonlya wurtziteAlN(002)peak.Theinsetofthisfigurerepresentsalowmagnificationcross-sectionalTEMimageofthe Pt/AlN:Cu/Pt device, which clearly shows the tri-layerstructure The initial Pt/AlN:Cu/Pt device is in the LRS, andconsequentlynoformingprocessisneededtotriggerthestableRSbehavior.ThisisbecausetheinsertedCulayercaneasilydiffuseintotheAlNfilm,especiallyalongthegrainboundariesbetweenadjacentcolumnarAlNgrainsduringtheannealingprocess,which
ispracticallyathermalformingprocess.ItisinterestingthatthePt/AlN:Cu/PtdeviceshowsanonpolarRSbehavior(Fig.24b)thatisremarkablydifferentfromthebipolarRSbehaviorintheCu/AlN/Pt
cuu duong than cong com
Trang 26uniformi-ty between different devices (Fig 24c), excellent endurance
propertyupto 103 (Fig.24d)and retention performanceup to
10years(extrapolateddata,Fig.24e),andfastswitchingspeedof
100ns(Fig.24f),thusactingasastrongcandidateforhigh-density
1D1R memory applications In addition, similar nonpolar RS
behaviorhasalsobeenreported inRRAMdevicesbased on
Cu-dopedSiO2[302],Cu-dopedZrO2[88],Cu-dopedHfO2[38],etc
Conversely,dopingcangreatlyimpacttheconcentration and
mobilityofVOsandcanconsequentlymodulatetheperformanceof
oxygenionmigration-basedRRAMdevices[27,303].Zhangetal
[27]systematicallystudiedtheeffectofchemicalvalenceandthe
radiusofdopantiononformationenergy(Ef)ofneutralVOinZrO2
via first principle calculations The VO in ZrO2 was built by
removingoneoxygenatomfromamonoclinicZrO2supercellof96
atoms,asshowninFig.25a.Tosimulatethedopingeffect,oneZr
atomwasreplacedbyadopant(Al,Ti,orLa),andtheVOanddopant
wereassumedtoformnearestneighbors(Fig.25b).Basedonthe
simulation results in Fig 25c, they found that the Ef (VO) is
significantlyinfluencedbythechemicalvalence,whiletheimpact
ofthedopantionradiusisratherweak.TheobviousreductionofEf
(VO)causedbytrivalentdopantcouldbeattributedtotheCoulomb
interaction of dipoles formed between dopants (negatively
chargedacceptor) andVOs(positivelychargeddonor).Based on
theseresults,theypredictedthat thedopingoftrivalentmetals
suchasAlandLaintotheZrO2 layerwouldhelptocontrolthe
formationofVOandresistiveswitchingbehaviors.Todemonstrate
this,theysummarized thedifferencesin RS behaviorsbetween
undopedandAl-dopedZrO2RRAMdevices,asshowninFig.25d
ande.NotonlywasthehighmeanVformof9.89V(withastandarddeviation of 3.86V) reduced to that of 3.80V (with standarddeviationof1.15V),butthelargedispersionsofRHRSandRLRSwerealso significantly suppressed Moreover, when compared toundoped HfO2, enhanced performances were also achieved inGd-dopedHfO2RRAMdevicesincludingimproveduniformityofswitchingparameters,enlargedmemorywindow,andincreasedswitchingspeedwithoutobviousreliabilitydegradation[303].All
oftheseexperimentalworkshaveprovedthecorrectnessoftheirprediction,whichcouldberegardedasaguideforoptimizingtheperformanceofoxide-basedRRAMdevicesbydoping
Abroaddefinitionofdopingshouldincludetheintroductionofnanoparticlesintothestoragemedia.NoblemetalnanoparticlessuchasPt[304–307],Ru[308],andNi[309]nanoparticlesareusually intentionally selected to avoid chemical interactionbetweenthenanoparticlesandthestoragemedia.Thepresence
ofthesenanoparticleswillleadnotonlytoaslightreductionoftheeffectivethicknessofthestoragemediabutalsotolocallyconcentratedandenhancedelectricfieldsbelowandabovethemetalnanoparticles,asrevealedbysimulationresultsin[307].Thesetwoeffectswillfinallyresultinthereductionofthresholdvoltages(suchasinPt-NPs-dopedSrZrO3[305]andSiO2[306]
andNi-NPs-dopedNiO[308])andtheguidedformationofCFsandconsequentimproved stabilityof RS behavior(suchas inPt-NPs-dopedTiO2[304]andNiO[305]andRu-NPs-dopedAl2O3
[307]), thus demonstrating the feasibility of optimizing theperformance of RRAM devices by doping nanoparticles intostoragemedia.Itshouldbenotedthatthebriefdescriptionofdopingnanoparticlesinstoragemediahereisbecauseitseffect
26
cuu duong than cong com
Trang 27decorationofelectrodeswithnanoparticles(discussedinSection
4.2.2)
4.2.2 Electrodeengineering
IthasbeendemonstratedthattheRSbehaviorofagivenstorage
mediumcanbesignificantlyaffectedbythechoiceofelectrode
materials.Forexample,itwasreportedthattheON/OFFratioofaTE/Mn-dopedZnO/Ptstructuredecreasesfrom104to10asthe
TEchangesfromCutoTiN[310,311].SimilarbehaviorwasalsoobservedinAlN-basedRRAMs[49,246].Alloftheseresultsindicatethat, fora givenstorage medium,a large ON/OFFratiois morelikely to be obtained with cation-migration-based switchingmechanism
LLC.
cuu duong than cong com
Trang 28To provide a rule for electrode selectionfor O2
migration-basedRRAMdevices,Chenetal.[201]systematicallystudiedthe
effect of TE materials on the RS behavior of the TE/Ta2O5/Pt
structure.Sixmetalelectrodeswereadopted,i.e.,Ni,Co,Al,Ti,Zr
andHf.Fig.26aandbshowsthestatisticalresultsofVset/Vresetand
RLRS/RHRSoftheTE/Ta2O5/Ptstructures,respectively.Duringallof
theswitchingcycles,externalvoltageswereappliedtotheTEwith
thePtelectrodegrounded,andtheIcompwassetas1mA.Itcanbe
easilyseen that:(i)theNi/Ta2O5/Pt and Co/Ta2O5/Ptstructures
showveryscattereddistributionsofVset,RLRS,andRHRS;(ii)theZr/
Ta2O5/PtandHf/Ta2O5/PtstructureshavethelargestVsetandVreset
withalowerscatterinthedistribution;and(iii)theAl/Ta2O5/Pt
andTi/Ta2O5/PtstructuresexhibitthebestRSpropertywithvery
concentrated distributions and appropriate amplitudes of all
parameters.TheseresultssuggestthatthechoiceoftheTEhasa
significantinfluenceontheperformanceoftheTE/Ta2O5/PtRRAM
device.TounderstandthereasonwhytheRSbehavioroftheTE/
Ta2O5/Ptstructure varies withthechoice ofTE, Augerelectron
spectroscopy (AES) depth profiles of these structures were
obtained.Asrepresentatives,memorydevices withTEof Ni,Al,
and Hf were delivered to AES analysis after 100 successive
switchingcycles, and thecorresponding curves are depicted in
Fig 26c–e, respectively The out-diffusion of oxygen ions are
highlightedbytheblackboxineachfigure.Basedonthesefigures,
onecanclearlyseethat:(i)theoxygensignalincreasessharplyat
theNi/Ta2O5interface,indicatingweakout-diffusionoftheoxygen
ions;(ii)slightout-diffusionofoxygenionsintotheAlTEoccursat
the Al/Ta2O5 interface; and (iii) very obvious out-diffusion of
oxygenionsintotheHfTEtakesplaceattheHf/Ta2O5interface
Theout-diffusionofoxygenionsleadedtotheoxidationofTEsand
the consequent formation of interfacial layers, which was
confirmedbythedirectTEMobservationofa2nmamorphous
AlOxatthelayerAl/Ta2O5interfaceanda7nmamorphousHfOx
layer at the Hf/Ta2O5 interface Note that the out-diffusion of
oxygen ions will spontaneously leave VOs in the Ta2O5 layer
Therefore,theformationofinterfacialsub-oxidelayersandVOsin
the Ta2O5 layers controls the RS behavior of the TE/Ta2O5/Pt
structures
Itiswell-knownthattheabilityofametaltoabsorboxygen
atoms(i.e.,oxygenaffinity)canbeapproximatelyrevealedbythe
magnitudeofthestandardGibbsfreeenergyofformationofthe
corresponding stable metal oxide According to [227], Df
G8(2-NiO)=–423.4kJ/mol,DfG8(2CoO)=–428kJ/mol,DfG8(2 / 3Al2O3)=–
1054.9kJ/mol, DfG8(TiO2)=–888.8kJ/mol, DfG8(ZrO2)=–
1042.8kJ/mol, DfG8(HfO2)=–1088.2kJ/mol and DfG8((2/
5)Ta2O5)=764.4kJ/mol.NotethatalowerDfG8correspondsto
ahigheroxygenaffinity.ForNiandCo,theiroxygenaffinitiesare
farhigherthanthatofTa.Asaresult,fewoxygenionsareabsorbed
intotheTEfromtheTa2O5layer,asschematicallyshowninFig.26f
TheentireTa2O5filmisalmoststoichiometricandmanifestshigh
resistivity,thusoftenrequiringarelativelyhighvoltagetosetthe
deviceand leading to thelowest RLRS In thesubsequent reset
process,averylargepeakcurrentof10mAwillgenerateagreat
amountofJouleheattorupturetheexistingVOfilaments[255]
DuetotherandomnatureoftheJouleheat-dominatedRSbehavior,
theNi/Ta2O5/PtandCo/Ta2O5/Ptstructureswillinvoluntaryshow
characteristicssuchasveryscatteredVsetvoltage,RLRSandRHRS
Simultaneously,theTEswithlowoxygenaffinitymayalsocause
theevolution of O2 gasduring the forming and setprocesses,
causingphysicaldegenerationoftheRRAMcells.Conversely,the
oxygenaffinitiesofZrandHfarefarlowerthanthatofTa,leading
totheformationofthickinterfaciallayers(Fig.26h).Theinterfacial
layersmayserveasseriesresistancesduringthesetprocessand
blocktheback-diffusionofoxygenionsintotheTa2O5layerduring
the reset process, thus resulting in the largest Vset and Vreset
Finally,forTiandAl,theiroxygenaffinitiesarecomparabletothat
ofTa,whichwillleadtotheformationofthininterfaciallayersandthegenerationofappropriateamountofVOs(Fig.26g).Duringthesuccessive switching cycles, the interfacial layers will serve asreservoirsofoxygenions,andthegeneratedVOswillfacilitatetheset process Consequently, the Ti/Ta2O5/Pt and Al/Ta2O5/Ptstructures show the best RS property with very concentrateddistributions and appropriate amplitudes of all parameters.Therefore, it can be suggested that the metal electrodes withcomparableoxygenaffinitiestothemetalintheswitchinglayerare the best choices to optimize O2 migration-based RRAMdevices.ThisrulecanactasaguideforelectrodeselectioninthefutureandmayalsoprovideaperfectexplanationfortheobservedexcellentenduranceintheTiN/TiO2/Pt(>2106cycles)[65],Hf/HfO2/TiN(>1010cycles)[97]andTa/TaOx/Pt(>1010cycles)[312]
structures
Ithasalsobeendemonstratedthatthealloyingofelectrodescanenhancetheswitchingstability,retentionpropertyandeventhermal stability of RRAM cells [29,206,207,313] For instance,based on a Pt (50nm)/CuxTe1x(50nm)/Al2O3(3nm)/n-Si struc-ture,Goux et al [29] have systematically studiedthe effect ofalloying of the electrochemically active electrode on the RSpropertyofanECMcell.Threemaincompositionregionscanbedistinguished, associated withthe typical I–Vcurves shown in
Fig.27c.Fortheregion(1)x<0.5,veryanunstableCufilamentisgeneratedduringthesetprocess,asimpliedbytheverylargeRLRSandtheverysmallIRESETinFig.27aandb,respectively.ThelowerxvaluesusuallyresultinvolatileRSphenomenon(Fig.27c),whichindicatesthattheCufilamentformedduringthesetprocesswillspontaneouslyruptureaftertheremovaloftheexternalvoltage.Fortheregion(3)x>0.7,astableCufilamentisformedduringthesetprocess,andduringthesubsequentresetprocess,averylargeresetcurrentisrequiredtorupturetheexistingCufilament(i.e.,
Ireset IcompshowninFig.27b),whichissimilartotheRSbehavior
ofthedevicewithapureCuelectrode.Interestingly,attractiveRSbehavior with IresetIcomp is observed for the region (2)0.5<x<0.7 Remarkable resistance uniformity during >103
switching cycles and excellent retention property of >104s at
858C have also been demonstrated in this region The abovephenomenacanbeexplainedbasedonthefactthatintheCuxTe1x,theenergybarrierforCudiffusiondecreaseswithincreasingCuconcentrationduetolargerbondingenergyofCu–TecomparedtoCu–Cu[29].Fortheregion(1)x<0.5,thebetterstabilityoftheCuTeandTephasesprobablydoesnotallowtheformationofanystable Cuphase, so theCu atomsinjected intothe Al2O3 layerduringthesetprocesswillreadilydiffusebacktotheelectrodeaftertheremovaloftheexternalvoltage,leadingtothevolatileRSproperty (Fig 27d) In contrast,for region (3) x>0.7, theeasyinjectionofCuatomsintotheAl2O3layerusually resultsintheovergrowth of the Cu filament during the set process Conse-quently, a very large reset current (Ireset Icomp)is needed torupture theexisting strong Cu filament duringthe subsequentresetprocess.Finally,thewell-controlledCufilamentformationinregion(2)0.5<x<0.7maybeexplainedbythestabilityoftheCu-deficient Cu2dTe phases in this composition range, which cansuppress the spontaneous rupture and overgrowth of the Cufilamentandconsequentlyenhancetheswitchinguniformity.The decoration of electrodes with nanoparticles is anotherpowerfulway toenhanceRRAM performance[30,233,314,315].For example, Shi et al [30] have significantly improved theswitchinguniformityofAg/ZnO(100nm)/Ptdevicesbydecorat-ingthePtelectrodeswithAgparticles,asshowninFig.28.TheAgparticleswerefabricatedbyPLDunderapureAratmosphereof
10Pa By comparing AFM images of the Pt electrode with AgparticlesinFig.28bandthebarePtelectrodeinFig.28a,onecanclearlyseearandomdistributionofAgparticleswithadiameterof
20nmandaparticledensityof120mm2onthecommercialPt
28
cuu duong than cong com
Trang 29substrate with an average grain size of 100nm Typical I–V
characters of the Ag/ZnO/Pt devices with the commercial Pt
substrate and the Pt substrate with Ag particles are shown in
Fig.28c and d,respectively Toprovide moreclearinformation
abouttheeffectofAgnanoparticlesontheRS,statisticalanalyses
ontheRLRS/RHRSandVset/Vresetwereperformedanddisplayedin
Fig.28eandf,respectively.Basedonthesefigures,onecanseethat,
forthedevicewithoutAgparticles,bothVsetandVresetscatterina
widerangefrom0.1to2Vandfrom0.2to0.8V,respectively
Meanwhile,RLRSvariesfrom10to102VandRHRSvariesfrom
106to108V.Incontrast,thedevicewithAgparticlesshowsa
muchnarrowerdistributionofVset/Vreset,i.e.,from0.1to0.23Vfor
Vset and 0.13 to 0.23V for Vreset Correspondingly, RLRS is
between 10 and 20Vand RHRS is between 0.8106 and
3107V.Hence,asignificantimprovementoftheRSpropertyis
clearlyrevealedinthedevicewiththeAgparticles.Thisisbecause
theAgparticlescanactasseedsforthegrowthoftheCFs,thus
significantlyreducingthedispersionandrearrangementoftheCFs
duringrepeatedswitchingcycles
4.2.3 Interfaceengineering
Interface engineering mainly means enhancing the
perfor-mancesofRRAMdevicesbyintroducinganadditionalthinlayerat
eitherorbothofthetwoelectrode/storagemediuminterfaces.The
commonadditionalthinlayersareoxidessuchasAlOx[31]and
SiOx[316].Themostobviousroleplayedbyanadditionalthinlayer
is a seriesresistor[31,316,317] For example,Chenet al [316]
observedareductionoftheoperatingcurrentinTiN/V:SiO2(17nm)/
Ptafterinsertinga3nma-SilayerattheTiN/V:SiO2interface.TheyfoundthattheconductionmechanismoftheLRSchangedfromOhmic conduction followed by Poole–Frenkelemission in theTiN/V:SiO2/PtdevicetoOhmicconductionfollowedbySchottkyemission in the TiN/a-Si/V:SiO2/Pt device Consequently,they suggested that the reduction of the operation current ismainlycausedbytheseriesresistanceoftheSiO2layerformedbyoxidationofthea-Silayerduringthesetprocess.Choetal.[31]
observed an enlargement of the memory window in an Al/PI:PCBM(20nm)/Aldevice bycarefullycontrollingthethick-nessofanadditionalAlOxlayeratthePI:PCBM/Alinterface.ThedevicelayoutisshowninFig.29a.TheadditionalAlOxlayerwascreatedbyO2plasmatreatment,anditsthicknessincreaseswiththetotalO2plasmatreatmenttime(Fig.29b).Fig.29cshowsthetypical I–V characteristics of the Al/PI:PCBM/Al devices withdifferentlengthsofO2plasmatreatmenttime,demonstratingthereduction of operating current with increasing AlOx layerthickness.TheONandOFFresistancesand theON/OFFratioas
afunctionoftheO2plasmatreatmenttimeareshowninFig.29d.OnecanseethatboththeONandOFFresistancevaluesgraduallyincreasewiththeO2plasmatreatmenttime.Furthermore,whencomparedwiththeONresistance,arelativelylargeincreaseinOFFresistancecontributestoahigherON/OFFratiointhedeviceswiththeO2plasmatreatment.TheseresultsindicatethattheadditionalAlOxlayerservesasaseriesresistorandgreatlyaffectstheinitialOFF resistance The OFF resistance does not seem to increase
Fig 27 R LRS (a) and I RESET (b) as a function of x in Cu x Te 1x , both extracted after set switching using I comp = 100mA (full circles) or I comp = 5mA (empty squares) (c) Typical I–V
cuu duong than cong com