1. Trang chủ
  2. » Kỹ Thuật - Công Nghệ

Tài liệu Hanbook of LASERS P1 ppt

20 548 0
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Handbook of Lasers P1 ppt
Trường học CRC Press
Chuyên ngành Lasers
Thể loại Tài liệu
Năm xuất bản 2001
Thành phố Boca Raton
Định dạng
Số trang 20
Dung lượng 56,51 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Upconversion processes make possible many additional lasing transitions and excitation schemes.. Upconversion excitation techniques include multi-step absorption, ion-ion energy transfer

Trang 1

Ti3+

Cr3+

Cr4+

Sm +2

V +2

Wavelength (µm)

4

(SrF )

2

(MgF )

2

(LiYF ) 4

6

(BeAl O , LiSrAlF )2

(Mg SiO )2

Co +2 (MgF )2

(Al O )

3 2

Ni 2+(MgF , MgO)2

2.5

Figure 1.1.11 Reported wavelength ranges of representative tunable crystalline lasers operating

at room temperature (from the Handbook of Laser Wavelengths, CRC Press, Boca Raton, FL,

1998)

Upconversion processes make possible many additional lasing transitions and excitation schemes Upconversion excitation techniques include multi-step absorption, ion-ion energy transfer, excited state absorption, and photon avalanche processes Lasers based on upconversion schemes are noted in the mode column of the laser tables Transitions involved in upconversion processes are given in Table 1.1.3 and can be identified by reference to the relevant energy level diagrams for the ions in Figures 1.1.4 – 1.1.8 The success of many of the schemes depends upon the degree of resonance of energy transfer transitions and the rate of nonradiative transitions by multiphonon emission and thus varies with the host crystal.

Cascade and cross-cascade lasing schemes have also been employed; transitions involved

in cascade and cross-cascade lasing schemes are summarized in Tables 1.1.4 and 1.1.5 For examples of avalanche-pumped upconversion lasers, see References 18 and 1037.

Trang 2

Table 1.1.3 Multi-step Upconversion Excitation Schemes

optical transition ⇒ ion-ion energy transfer transitions ➟ nonradiative transition

Laser

i o n

Upper

l a s e r

l e v e l

C o d o p a n t

i o n U p c o n v e r s i o n e x c i t a t i o n s c h e m e

Pr3+ 3P0 —

Yb3+

1) 3H4→1G4 2) 1G4 →3P1 ➟3P0 1) 2F7/2→2F5/2 (Yb3+) 2) 2F5/2 –2F7/2 (Yb3+) ⇒3H4–1G4 (Pr3+) 3) 1G4 →3P1,0

Nd3+ 4D3/2 — 1) 4I9/2→4F5/2 ➟ 4F3/2

2)4F3/2→4D3/2 1) 4I9/2→4G5/2 ➟ 4F3/2 2)4F3/2→4D3/2

2P3/2 — 1) 4I9/2→4G5/2 ➟ 4F3/2

2)4F3/2→4D3/2 ➟ 2P3/2

Ho3+ 5S2 Yb3+ 1) 2F7/2→2F5/2 (Yb3+)

2) 2F5/2–2F7/2 (Yb3+) ⇒5I8–5I6 (Ho3+) 3) 2F7/2→2F5/2 (Yb3+)

4) 2F5/2–2F7/2 (Yb3+) ⇒5I6–5S2 (Ho3+)

5I7 Yb3+ 1) 2F7/2→2F5/2 (Yb3+)

2) 2F5/2–2F7/2 (Yb3+) ⇒5I8–5I6 (Ho3+) ➟5I7

Er3+ 2P3/2 — 1) 4I15/2→4I11/2(Er13+)

2) 4I15/2→4I11/2(Er23+) 3) 4I11/2–4I15/2(Er13+) ⇒4I11/2–4F7/2➟ 4S3/2 (Er23+) 4) 4S3/2–4I15/2(Er23+) ⇒4F9/2–2K13/2 (Er33+) ➟ 2P3/2

4G11/2 — 1) 4I15/2→4I13/2 (fourfold) ⇒4G11/2

2H9/2 — 1) 4I15/2→4I11/2(Er13+)

2) 4I15/2→4I11/2(Er23+)

3) 4I11/2–4I15/2(Er13+) ⇒4I11/2–4F7/2 (Er23+) ➟ 4S3/2

4) 4I15/2→4I11/2➟ 4I13/2 (Er33+) 5) 4S3/2–4I15/2(Er23+) ⇒4I13/2–2H9/2(Er33+)

Trang 3

Table 1.1.3—continued

Multi-step Upconversion Excitation Schemes

Laser

i o n

Upper

l a s e r

l e v e l

C o d o p a n t

i o n U p c o n v e r s i o n e x c i t a t i o n s c h e m e

4S3/2 —

1) 4I15/2→4I9/2 ➟ 4I11/2 2) 4I11/2 →4F5/2,7/2 → ➟ 4S3/2 1) 4I15/2→4I11/2(Er13+) 2) 4I15/2→4I11/2(Er23+) 3) 4I11/2–4I15/2(Er13+) ⇒4I11/2–4F7/2➟ 4S3/2 (Er23+)

4F9/2 Yb3+

Yb3+

1) 2F7/2→2F5/2 (Yb3+) 2) 4I15/2→4I13/2(Er3+) 3) 2F5/2–2F7/2 (Yb3+) ⇒4I13/2–4F9/2 (Er3+) 1) 2F7/2→2F5/2 (Yb3+)

2) 2F5/2–2F7/2 (Yb3+) ⇒4I15/2–4I11/2 (Er3+) 3) 2F7/2→2F5/2 (Yb3+)

4) 2F5/2–2F7/2 (Yb3+) ⇒4I11/2–4F7/2 (Er3+) ➟ 4F9/2

4I11/2 — 1) 4I15/2→4I13/2(Er13+)

2) 4I15/2→4I13/2(Er23+) 3) 4I13/2–4I15/2 (Er13+) ⇒4I13/2–4I9/2 ➟ 4I11/2 (Er23+)

Tm3+ 1I6 Yb3+ 1) 2F7/2→2F5/2 (Yb3+)

2) 2F7/2–2F5/2 (Yb3+) ⇒3H6–3H5 (Tm13+) ➟ 3F4 3) 2F7/2→2F5/2 (Yb3+)

4) 2F5/2 2F7/2 (Yb3+) ⇒3F4 3F3 (Tm13+) ➟ 3H4

5) 3F3 –3H6 (Tm13+) ⇒3F3–1D2 (Tm23+) 6) 2F7/2→2F5/2 (Yb3+)

7) 2F5/2 2F7/2 (Yb3+) ⇒1D2 3PJ (Tm23+) ➟ 1I6

Tm3+ 1D2 — 1) 3H6→3H4

2) 3H4→1D2

1) 3H6→3H4 (Tm13+)

2) 3H6→3H4 (Tm23+) 3) 3H4–3H6 (Tm13+) ⇒3H4–1D2 (Tm23+)

Tm3+ 3H4 Yb3+ 1) 2F7/2→2F5/2 (Yb3+)

2) 3H6→3H5 ➟ 3F4 (Tm3+) 3) 2F5/2–2F7/2 (Yb3+) ⇒3F4–3F2 (Tm3+) ➟ 3H4

Trang 4

Table 1.1.3—continued

Multi-step Upconversion Excitation Schemes Laser

i o n

Upper

l a s e r

l e v e l

C o d o p a n t

i o n U p c o n v e r s i o n e x c i t a t i o n s c h e m e

Tm3+ 1G4 Yb3+ 1) 2F7/2→2F5/2 (Yb3+)

2) 2F7/2–2F5/2 (Yb3+) ⇒3H6–3H5 (Tm3+) ➟ 3F4 3) 2F7/2→2F5/2 (Yb3+)

4) 2F5/2 2F7/2 (Yb3+) ⇒3F4 3F2➟ 3H4 (Tm3+) 5) 2F7/2→2F5/2 (Yb3+)

6) 2F5/2–2F7/2 (Yb3+) ⇒3H4–1G4 (Tm3+)

Table 1.1.4 Cascade Laser Schemes

→ lasing transition ➟ nonradiative transition

L a s e r i o n Cascade transitions

Pr3+ 3P0→1G4→3F4

3P0→1G4→3H5

Nd3+ 4F3/2→4I13/2→4I11/2

Ho3+ 5S2→5I5→5I6

5S2→5I5→5I7

5S2→5I6→5I8

5S2→5I7→5I8

5S2→5I5➟ 5I6→5I7

5S2→5I5➟ 5I6→5I8

5S2→5I5➟ 5I6→5I7→5I8

5S2→5F5➟ 5I4➟ 5I5→5I6→5I7

5I6→5I7→5I8

Er3+ 4S3/2→4I9/2 →4I11/2

4S3/2→4I9/2 →4I13/2

4S3/2→4I11/2 →4I13/2

4S3/2→4I13/2 →4I15/2

4S3/2→4I9/2 ➟ 4I11/2 →4I13/2

4S3/2→4I9/2 ➟ 4I11/2 →4I13/2 →4I15/2

4F9/2→4I11/2 →4I13/2

4I11/2 →4I13/2 →4I15/2

Tm3+ 3F4→3H5 ➟ 3H4→3H6

Trang 5

Table 1.1.5 Cross-Cascade Laser Schemes

→ lasing transition ⇒ nonradiative energy transfer transitions

L a s e r i o n s Cross-cascade transitions

Er3++ Ho3+ 4S3/2→4I13/2 (Er3+)

4I13/2–4I15/2(Er3+) ⇒5I8– 5I7 (Ho3+)

5I7→5I8 (Ho3+)

4I11/2 →4I13/2 (Er3+)

4I13/2–4I15/2(Er3+) ⇒5I8– 5I7 (Ho3+)

5I7→5I8 (Ho3+)

Er3++ Tm3+ 4S3/2→4I13/2 (Er3+) ⇒

4I13/2–4I15/2(Er3+) ⇒3H6– 3F4(Tm3+)

3F4→3H6(Tm3+)

4I11/2 → 4I13/2 (Er3+)

4I13/2–4I15/2(Er3+) ⇒3H6– 3F4(Tm3+)

3F4→3H6(Tm3+)

Tm3++ Ho3+ 3H4→3H5 ➟ 3F4(Tm3+)

3F4– 3H6(Tm3+)⇒5I8– 5I7 (Ho3+)

55I7→5I8 (Ho3+)

3H4→3F4 (Tm3+)

3F4– 3H6(Tm3+)⇒5I8– 5I7 (Ho3+)

55I7→5I8 (Ho3+)

Er3++ Tm3++ Ho3+ 4I11/2 →4I13/2 (Er3+)

4I13/2–4I15/2(Er3+) ⇒3H6–3F4(Tm3+)

3F4– 3H6(Tm3+)⇒5I8– 5I7 (Ho3+)

55I7→5I8 (Ho3+)

Trang 6

Further Reading

Caird, J and Payne, S A., Crystalline Paramagnetic Ion Lasers, in Handbook of Laser Science and Technology, Suppl 1: Lasers, CRC Press, Boca Raton, FL (1991), p 3.

Hanna, D C and Jacquier, B., Eds., Miniature coherent light sources in dielectric media,

Opt Mater 11, Nos 2/3 (1999).

Kaminskii, A A., Crystalline Lasers: Physical Processes and Operating Schemes, CRC

Press, Boca Raton, FL (1996).

Kaminskii, A A., Laser Crystals, Their Physics and Properties, Springer-Verlag,

Heidelberg (1990).

Moulton, P., Paramagnetic Ion Lasers, in Handbook of Laser Science and Technology, Vol I: Lasers and Masers, CRC Press, Boca Raton, FL (1995), p 21

Trang 7

1.1.2 Host Crystals Used for Transition Metal Laser Ions

Table 1.1.6 Host Crystals Used for Transition Metal Laser Ions

C r y s t a l Ti 3+ V 2+ Cr 2+ Cr 3+ Cr 4+ Mn 5+ Fe 2+ C o 2+ N i 2+

O x i d e s

La3Ga5.5Nb0.5O14

La3Ga5.5Ta0.5O14

H a l i d e s

Trang 8

Table 1.1.6—continued

Host Crystals Used for Transition Metal Laser Ions

C r y s t a l Ti 3+ V 2+ Cr 2+ Cr 3+ Cr 4+ Mn 5+ Fe 2+ C o 2+ N i 2+

C h a l c o g e n i d e s

P h o s p h i d e

1.1.3 Host Crystals Used for Lanthanide Laser Ions

Table 1.1.7 Host Crystals Used for Divalent Lanthanide Laser Ions

C r y s t a l Sm 2+ D y 2+ Tm 2+

H a l i d e s

Table 1.1.8 Host Crystals Used for Trivalent Lanthanide Laser Ions

C r y s t a l Ce 3+ Pr 3+ Nd 3+ Sm 3+ Eu 3+ D y 3+ Ho 3+ Er 3+ Tm 3+ Yb 3+

O x i d e s

Ba0.25Mg2.75

Y2Ge3O12

Trang 9

Table 1.1.8—continued

Host Crystals Used for Trivalent Lanthanide Laser Ions

C r y s t a l Ce 3+ Pr 3+ Nd 3+ Sm 3+ Eu 3+ D y 3+ Ho 3+ Er 3+ Tm 3+ Yb 3+

O x i d e s

Bi4(Si,Ge)3O12

Ca0.25Ba0.75

(NbO3)2

CaGd4(SiO4)3O

CaLa4(SiO4)3O

CaMg2Y2Ge3O12

Ca(NbGa)2

-Ga3O12

Ca2Ga2Ge4O14

Ca3Ga2Ge4O14

Ca3(Nb,Ga)2

(Ga3O12

Trang 10

Table 1.1.8—continued

Host Crystals Used for Trivalent Lanthanide Laser Ions

C r y s t a l Ce 3+ Pr 3+ Nd 3+ Sm 3+ Eu 3+ D y 3+ Ho 3+ Er 3+ Tm 3+ Yb 3+

ErVO4

K3(La,Nd)(PO4)2

Trang 11

Table 1.1.8—continued

Host Crystals Used for Trivalent Lanthanide Laser Ions

C r y s t a l Ce 3+ Pr 3+ Nd 3+ Sm 3+ Eu 3+ D y 3+ Ho 3+ Er 3+ Tm 3+ Yb 3+

LaAl11MgO19

LaBGeO

(La,Pr)P5O14

La3Ga5.5Nb0.5O14

β''-Na1+xMgx

Al11-xO17

Trang 12

Table 1.1.8—continued

Host Crystals Used for Trivalent Lanthanide Laser Ions

C r y s t a l Ce 3+ Pr 3+ Nd 3+ Sm 3+ Eu 3+ D y 3+ Ho 3+ Er 3+ Tm 3+ Yb 3+

(WO4)2

Na3

(PO4)2

Na5

(Nd,La)-(MoO4)4

Na5(

(WO4)4

Nd(Ga,Cr)3(BO3)4

SrxBa1-x(NbO3)2

Trang 13

Table 1.1.8—continued

Host Crystals Used for Trivalent Lanthanide Laser Ions

C r y s t a l Ce 3+ Pr 3+ Nd 3+ Sm 3+ Eu 3+ D y 3+ Ho 3+ Er 3+ Tm 3+ Yb 3+

Sr2Ca3(PO4)3

Sr3Ca2(PO4)3

Sr3Ga2Ge4O14

H a l i d e s

Trang 14

Table 1.1.8—continued

Host Crystals Used for Trivalent Lanthanide Laser Ions

C r y s t a l Ce 3+ Pr 3+ Nd 3+ Sm 3+ Eu 3+ D y 3+ Ho 3+ Er 3+ Tm 3+ Yb 3+

CaF2-ErF3-TmF3

YbF3

CaF2-SrF2-BaF2

YF3-LaF3

Trang 15

Table 1.1.8—continued

Host Crystals Used for Trivalent Lanthanide Laser Ions

C r y s t a l Ce 3+ Pr 3+ Nd 3+ Sm 3+ Eu 3+ D y 3+ Ho 3+ Er 3+ Tm 3+ Yb 3+

K5(Nd,Ce)Li2F10

SrF2-CeF3-GdF3

Trang 16

Table 1.1.8—continued

Host Crystals Used for Trivalent Lanthanide Laser Ions

C r y s t a l Ce 3+ Pr 3+ Nd 3+ Sm 3+ Eu 3+ D y 3+ Ho 3+ Er 3+ Tm 3+ Yb 3+

O x y h a l i d e s

Na2Nd2Pb6

(PO4)6Cl2

C h a l c o g e n i d e s

Trang 17

1.1.4 Tables of Transition Metal Ion Lasers

Table 1.1.9 Transition Metal Ion Lasers

Optical pump Mode of operation

AL — alexandrite (BeAl2O4:Cr) laser AML — actively mode-locked

ErLYF — Er:LiYF4 (YLF) laser qs — Q-switched

ErYAG — Er:Y3Al5O12 (YAG) laser PML — passively mode-locked

Hg — mercury arc lamp SML — synchronously mode-locked KrL — krypton-ion laser

NdGL — Nd:glass laser

NdL — neodymium laser

NdYAG — Nd:Y3Al5O12 (YAG) laser

NdYLF — Nd:LiYF4 (YLF) laser

NdYAP — Nd:YAlO3 (YAP) laser

RL — ruby (Al2O3:Cr) laser

RS — Raman-shifted

TiS — Ti:sapphire (Al2O3) laser

TmYAP — Tm:YAlO3 (YAP) laser

TmHoYAG — Tm,Ho:Y3Al5O12 (YAG) laser

W — tungsten arc lamp

Xe — xenon arc lamp

Titanium (Ti 3 + , 3 d 1 )

H o s t

c r y s t a l

Laser

t r a n s i t i o n

W a v e l e n g t h ( m)

T e m p (K)

O p t i c a l pump Mode R e f

Al2O3 2E →2T2 0.66–1.178 300 Ar laser cw 82–89

300 dye laser p 83, 90–96

300 Xe lamp p 91, 109–112

300 DNdYAP p 83, 84, 86, 92,

97–108

BeAl2O4 2E →2T2 0.73–0.95 300 DNdYAG cw 170

Trang 18

Vanadium (V 2 + , 3 d 3 )

H o s t

c r y s t a l

Laser

t r a n s i t i o n

W a v e l e n g t h ( m)

T e m p (K)

O p t i c a l pump Mode R e f

MgF2 4T2→4A2 1.07–1.16 80 Ar laser cw 261, 303–305

Chromium (Cr 2 + , 3 d 4 )

H o s t

c r y s t a l

Laser

t r a n s i t i o n

W a v e l e n g t h ( m)

T e m p (K)

O p t i c a l pump Mode R e f

Chromium (Cr 3 + , 3 d 3 )

H o s t

c r y s t a l

Laser

t r a n s i t i o n

W a v e l e n g t h ( m)

T e m p (K)

O p t i c a l pump Mode R e f

Al2(WO4)3 4T2→4A2 0.80 300 Kr laser cw 210

Al2O3 2E →4A2 0.6929(R2) 300 Xe lamp p 125

0.6943(R1) 300 Xe lamp p 131–2, 138 0.6943(R1) 300 Hg lamp cw 133–4, 297

0.6943–0.6952 300–500 Xe lamp p 137

Be3Al2Si6O18 2E →4A2 0.685 300 RS-DNdL p 123

4T2→4A2 0.720–0.842 300 Kr laser cw 164, 165

Trang 19

Chromium (Cr 3 + , 3 d 3 )—continued

H o s t

c r y s t a l

Laser

t r a n s i t i o n

W a v e l e n g t h ( m)

T e m p (K)

O p t i c a l pump Mode R e f

BeAl2O4 2E →4A2 0.6804 300 Xe lamp p 121,122

4T2→4A2 0.70–0.82 — Hg lamp cw 140–142

BeAl2O4 4T2→4A2 0.70–0.82 — Xe lamp cw 141, 142

300–330 Xe lamp p 120, 144–6 330–370 Xe lamp p 120, 145,

148, 149 548–583 Xe lamp p 142, 146 300–370 Xe lamp p 141, 142,

144, 147,

148, 150

Xe lamp PML 142, 151

0.701–0.818 300 Xe lamp p 121, 154

BeAl6O10 4T2→4A2 0.79–0.87 300 DNdYAG p 204

Ca3Ga2Ge4O14 4T2→4A2 0.87–1.21 300 RL, DL p 241, 1017 (Gd,Ca)3

(Ga,Mn,Zr)5O12

4T2→4A2 0.774–0.814 300 Xe lamp p 198

Gd3Ga5O12 4T2→4A2 0.769 300 Kr laser cw 174

Gd3Sc2Al3O12 4T2→4A2 0.75–0.81 300 Xe lamp p 183–185

Kr laser cw 174–5, 182

Ar laser cw 174–5, 182

Gd3Sc2Ga3O12 4T2→4A2 0.742–0.842 300 Xe lamp p 177, 178

Kr laser cw 174–176

Ar laser cw 174–176

KZnF3 4T2→4A2 0.766–0.865 300 Kr laser cw 193

dye laser p 191, 192 ruby laser qcw 194

0.775–0.816 80 Kr laser cw 191, 192 0.790–0.825 200 Kr laser cw 191, 192 (La,Lu)3(La,Ga)2

Ga3O12

La3Ga5GeO14 4T2→4A2 0.88–1.22 300 ruby laser p 241, 242,

1017

La3Ga5.5Nb0.5O14 4T2→4A2 0.9–1.25 300 ruby laser p 240, 1017

Trang 20

Chromium (Cr 3 + , 3 d 3 )—continued

H o s t

c r y s t a l

Laser

t r a n s i t i o n

W a v e l e n g t h ( m)

T e m p (K)

O p t i c a l pump Mode R e f

La3Ga5GeO14 4T2→4A2 0.88–1.22 300 ruby laser p 241, 242,

1017

La3Ga5.5Nb0.5O14 4T2→4A2 0.9–1.25 300 ruby laser p 240, 1017

La3Ga5SiO14 4T2→4A2 0.815–1.22 300 Kr laser cw 209, 1017

La3Ga5.5Ta0.5O14 4T2→4A2 0.925–1.24 300 ruby laser p 240, 241 LiCaAlF6 4T2→4A2 0.72–0.84 300 Kr laser cw 162

LiSr0.8Ca0.2AlF6 4T2→4A2 0.750–0.950 300 Xe lamp p 186 LiSrAlF6 4T2→4A2 0.780–1.010 300 Xe lamp p 201

0.78–0.92 300 Kr laser cw 196, 199

LiSrGaF6 4T2→4A2 0.820 300 Kr laser p 212, 1025

Na3Ga3Li3F12 4T2→4A2 0.748–0.832 300 Kr laser cw 180

ScBO3 4T2→4A2 0.787–0.892 300 Kr laser cw 162, 202,

203

Sr3Ga2Ge4O14 4T2→4A2 0.895 300 ruby laser p 1017

0.90–1.15 300 ruby laser p 241, 242

SrAlF5 4T2→4A2 0.852–1.005 300 Kr laser cw 227, 228

Y3Sc2Al3O12 4T2→4A2 0.767 300 Kr laser cw 196

Y3Sc2Ga3O12 4T2→4A2 0.76 300 Kr laser cw 173

Ngày đăng: 20/01/2014, 01:20

TỪ KHÓA LIÊN QUAN

🧩 Sản phẩm bạn có thể quan tâm