Upconversion processes make possible many additional lasing transitions and excitation schemes.. Upconversion excitation techniques include multi-step absorption, ion-ion energy transfer
Trang 1Ti3+
Cr3+
Cr4+
Sm +2
V +2
Wavelength (µm)
4
(SrF )
2
(MgF )
2
(LiYF ) 4
6
(BeAl O , LiSrAlF )2
(Mg SiO )2
Co +2 (MgF )2
(Al O )
3 2
Ni 2+(MgF , MgO)2
2.5
Figure 1.1.11 Reported wavelength ranges of representative tunable crystalline lasers operating
at room temperature (from the Handbook of Laser Wavelengths, CRC Press, Boca Raton, FL,
1998)
Upconversion processes make possible many additional lasing transitions and excitation schemes Upconversion excitation techniques include multi-step absorption, ion-ion energy transfer, excited state absorption, and photon avalanche processes Lasers based on upconversion schemes are noted in the mode column of the laser tables Transitions involved in upconversion processes are given in Table 1.1.3 and can be identified by reference to the relevant energy level diagrams for the ions in Figures 1.1.4 – 1.1.8 The success of many of the schemes depends upon the degree of resonance of energy transfer transitions and the rate of nonradiative transitions by multiphonon emission and thus varies with the host crystal.
Cascade and cross-cascade lasing schemes have also been employed; transitions involved
in cascade and cross-cascade lasing schemes are summarized in Tables 1.1.4 and 1.1.5 For examples of avalanche-pumped upconversion lasers, see References 18 and 1037.
Trang 2Table 1.1.3 Multi-step Upconversion Excitation Schemes
optical transition ⇒ ion-ion energy transfer transitions ➟ nonradiative transition
Laser
i o n
Upper
l a s e r
l e v e l
C o d o p a n t
i o n U p c o n v e r s i o n e x c i t a t i o n s c h e m e
Pr3+ 3P0 —
Yb3+
1) 3H4→1G4 2) 1G4 →3P1 ➟3P0 1) 2F7/2→2F5/2 (Yb3+) 2) 2F5/2 –2F7/2 (Yb3+) ⇒3H4–1G4 (Pr3+) 3) 1G4 →3P1,0
Nd3+ 4D3/2 — 1) 4I9/2→4F5/2 ➟ 4F3/2
2)4F3/2→4D3/2 1) 4I9/2→4G5/2 ➟ 4F3/2 2)4F3/2→4D3/2
2P3/2 — 1) 4I9/2→4G5/2 ➟ 4F3/2
2)4F3/2→4D3/2 ➟ 2P3/2
Ho3+ 5S2 Yb3+ 1) 2F7/2→2F5/2 (Yb3+)
2) 2F5/2–2F7/2 (Yb3+) ⇒5I8–5I6 (Ho3+) 3) 2F7/2→2F5/2 (Yb3+)
4) 2F5/2–2F7/2 (Yb3+) ⇒5I6–5S2 (Ho3+)
5I7 Yb3+ 1) 2F7/2→2F5/2 (Yb3+)
2) 2F5/2–2F7/2 (Yb3+) ⇒5I8–5I6 (Ho3+) ➟5I7
Er3+ 2P3/2 — 1) 4I15/2→4I11/2(Er13+)
2) 4I15/2→4I11/2(Er23+) 3) 4I11/2–4I15/2(Er13+) ⇒4I11/2–4F7/2➟ 4S3/2 (Er23+) 4) 4S3/2–4I15/2(Er23+) ⇒4F9/2–2K13/2 (Er33+) ➟ 2P3/2
4G11/2 — 1) 4I15/2→4I13/2 (fourfold) ⇒4G11/2
2H9/2 — 1) 4I15/2→4I11/2(Er13+)
2) 4I15/2→4I11/2(Er23+)
3) 4I11/2–4I15/2(Er13+) ⇒4I11/2–4F7/2 (Er23+) ➟ 4S3/2
4) 4I15/2→4I11/2➟ 4I13/2 (Er33+) 5) 4S3/2–4I15/2(Er23+) ⇒4I13/2–2H9/2(Er33+)
Trang 3Table 1.1.3—continued
Multi-step Upconversion Excitation Schemes
Laser
i o n
Upper
l a s e r
l e v e l
C o d o p a n t
i o n U p c o n v e r s i o n e x c i t a t i o n s c h e m e
4S3/2 —
—
1) 4I15/2→4I9/2 ➟ 4I11/2 2) 4I11/2 →4F5/2,7/2 → ➟ 4S3/2 1) 4I15/2→4I11/2(Er13+) 2) 4I15/2→4I11/2(Er23+) 3) 4I11/2–4I15/2(Er13+) ⇒4I11/2–4F7/2➟ 4S3/2 (Er23+)
4F9/2 Yb3+
Yb3+
1) 2F7/2→2F5/2 (Yb3+) 2) 4I15/2→4I13/2(Er3+) 3) 2F5/2–2F7/2 (Yb3+) ⇒4I13/2–4F9/2 (Er3+) 1) 2F7/2→2F5/2 (Yb3+)
2) 2F5/2–2F7/2 (Yb3+) ⇒4I15/2–4I11/2 (Er3+) 3) 2F7/2→2F5/2 (Yb3+)
4) 2F5/2–2F7/2 (Yb3+) ⇒4I11/2–4F7/2 (Er3+) ➟ 4F9/2
4I11/2 — 1) 4I15/2→4I13/2(Er13+)
2) 4I15/2→4I13/2(Er23+) 3) 4I13/2–4I15/2 (Er13+) ⇒4I13/2–4I9/2 ➟ 4I11/2 (Er23+)
Tm3+ 1I6 Yb3+ 1) 2F7/2→2F5/2 (Yb3+)
2) 2F7/2–2F5/2 (Yb3+) ⇒3H6–3H5 (Tm13+) ➟ 3F4 3) 2F7/2→2F5/2 (Yb3+)
4) 2F5/2 2F7/2 (Yb3+) ⇒3F4 3F3 (Tm13+) ➟ 3H4
5) 3F3 –3H6 (Tm13+) ⇒3F3–1D2 (Tm23+) 6) 2F7/2→2F5/2 (Yb3+)
7) 2F5/2 2F7/2 (Yb3+) ⇒1D2 3PJ (Tm23+) ➟ 1I6
Tm3+ 1D2 — 1) 3H6→3H4
2) 3H4→1D2
1) 3H6→3H4 (Tm13+)
2) 3H6→3H4 (Tm23+) 3) 3H4–3H6 (Tm13+) ⇒3H4–1D2 (Tm23+)
Tm3+ 3H4 Yb3+ 1) 2F7/2→2F5/2 (Yb3+)
2) 3H6→3H5 ➟ 3F4 (Tm3+) 3) 2F5/2–2F7/2 (Yb3+) ⇒3F4–3F2 (Tm3+) ➟ 3H4
Trang 4Table 1.1.3—continued
Multi-step Upconversion Excitation Schemes Laser
i o n
Upper
l a s e r
l e v e l
C o d o p a n t
i o n U p c o n v e r s i o n e x c i t a t i o n s c h e m e
Tm3+ 1G4 Yb3+ 1) 2F7/2→2F5/2 (Yb3+)
2) 2F7/2–2F5/2 (Yb3+) ⇒3H6–3H5 (Tm3+) ➟ 3F4 3) 2F7/2→2F5/2 (Yb3+)
4) 2F5/2 2F7/2 (Yb3+) ⇒3F4 3F2➟ 3H4 (Tm3+) 5) 2F7/2→2F5/2 (Yb3+)
6) 2F5/2–2F7/2 (Yb3+) ⇒3H4–1G4 (Tm3+)
Table 1.1.4 Cascade Laser Schemes
→ lasing transition ➟ nonradiative transition
L a s e r i o n Cascade transitions
Pr3+ 3P0→1G4→3F4
3P0→1G4→3H5
Nd3+ 4F3/2→4I13/2→4I11/2
Ho3+ 5S2→5I5→5I6
5S2→5I5→5I7
5S2→5I6→5I8
5S2→5I7→5I8
5S2→5I5➟ 5I6→5I7
5S2→5I5➟ 5I6→5I8
5S2→5I5➟ 5I6→5I7→5I8
5S2→5F5➟ 5I4➟ 5I5→5I6→5I7
5I6→5I7→5I8
Er3+ 4S3/2→4I9/2 →4I11/2
4S3/2→4I9/2 →4I13/2
4S3/2→4I11/2 →4I13/2
4S3/2→4I13/2 →4I15/2
4S3/2→4I9/2 ➟ 4I11/2 →4I13/2
4S3/2→4I9/2 ➟ 4I11/2 →4I13/2 →4I15/2
4F9/2→4I11/2 →4I13/2
4I11/2 →4I13/2 →4I15/2
Tm3+ 3F4→3H5 ➟ 3H4→3H6
Trang 5Table 1.1.5 Cross-Cascade Laser Schemes
→ lasing transition ⇒ nonradiative energy transfer transitions
L a s e r i o n s Cross-cascade transitions
Er3++ Ho3+ 4S3/2→4I13/2 (Er3+)
4I13/2–4I15/2(Er3+) ⇒5I8– 5I7 (Ho3+)
5I7→5I8 (Ho3+)
4I11/2 →4I13/2 (Er3+)
4I13/2–4I15/2(Er3+) ⇒5I8– 5I7 (Ho3+)
5I7→5I8 (Ho3+)
Er3++ Tm3+ 4S3/2→4I13/2 (Er3+) ⇒
4I13/2–4I15/2(Er3+) ⇒3H6– 3F4(Tm3+)
3F4→3H6(Tm3+)
4I11/2 → 4I13/2 (Er3+)
4I13/2–4I15/2(Er3+) ⇒3H6– 3F4(Tm3+)
3F4→3H6(Tm3+)
Tm3++ Ho3+ 3H4→3H5 ➟ 3F4(Tm3+)
3F4– 3H6(Tm3+)⇒5I8– 5I7 (Ho3+)
55I7→5I8 (Ho3+)
3H4→3F4 (Tm3+)
3F4– 3H6(Tm3+)⇒5I8– 5I7 (Ho3+)
55I7→5I8 (Ho3+)
Er3++ Tm3++ Ho3+ 4I11/2 →4I13/2 (Er3+)
4I13/2–4I15/2(Er3+) ⇒3H6–3F4(Tm3+)
3F4– 3H6(Tm3+)⇒5I8– 5I7 (Ho3+)
55I7→5I8 (Ho3+)
Trang 6Further Reading
Caird, J and Payne, S A., Crystalline Paramagnetic Ion Lasers, in Handbook of Laser Science and Technology, Suppl 1: Lasers, CRC Press, Boca Raton, FL (1991), p 3.
Hanna, D C and Jacquier, B., Eds., Miniature coherent light sources in dielectric media,
Opt Mater 11, Nos 2/3 (1999).
Kaminskii, A A., Crystalline Lasers: Physical Processes and Operating Schemes, CRC
Press, Boca Raton, FL (1996).
Kaminskii, A A., Laser Crystals, Their Physics and Properties, Springer-Verlag,
Heidelberg (1990).
Moulton, P., Paramagnetic Ion Lasers, in Handbook of Laser Science and Technology, Vol I: Lasers and Masers, CRC Press, Boca Raton, FL (1995), p 21
Trang 71.1.2 Host Crystals Used for Transition Metal Laser Ions
Table 1.1.6 Host Crystals Used for Transition Metal Laser Ions
C r y s t a l Ti 3+ V 2+ Cr 2+ Cr 3+ Cr 4+ Mn 5+ Fe 2+ C o 2+ N i 2+
O x i d e s
La3Ga5.5Nb0.5O14 •
La3Ga5.5Ta0.5O14 •
H a l i d e s
Trang 8Table 1.1.6—continued
Host Crystals Used for Transition Metal Laser Ions
C r y s t a l Ti 3+ V 2+ Cr 2+ Cr 3+ Cr 4+ Mn 5+ Fe 2+ C o 2+ N i 2+
C h a l c o g e n i d e s
P h o s p h i d e
1.1.3 Host Crystals Used for Lanthanide Laser Ions
Table 1.1.7 Host Crystals Used for Divalent Lanthanide Laser Ions
C r y s t a l Sm 2+ D y 2+ Tm 2+
H a l i d e s
Table 1.1.8 Host Crystals Used for Trivalent Lanthanide Laser Ions
C r y s t a l Ce 3+ Pr 3+ Nd 3+ Sm 3+ Eu 3+ D y 3+ Ho 3+ Er 3+ Tm 3+ Yb 3+
O x i d e s
Ba0.25Mg2.75
Y2Ge3O12
•
Trang 9Table 1.1.8—continued
Host Crystals Used for Trivalent Lanthanide Laser Ions
C r y s t a l Ce 3+ Pr 3+ Nd 3+ Sm 3+ Eu 3+ D y 3+ Ho 3+ Er 3+ Tm 3+ Yb 3+
O x i d e s
Bi4(Si,Ge)3O12 •
Ca0.25Ba0.75
(NbO3)2
•
CaGd4(SiO4)3O •
CaLa4(SiO4)3O •
CaMg2Y2Ge3O12 •
Ca(NbGa)2
-Ga3O12
•
Ca2Ga2Ge4O14 •
Ca3Ga2Ge4O14 •
Ca3(Nb,Ga)2
(Ga3O12
•
Trang 10Table 1.1.8—continued
Host Crystals Used for Trivalent Lanthanide Laser Ions
C r y s t a l Ce 3+ Pr 3+ Nd 3+ Sm 3+ Eu 3+ D y 3+ Ho 3+ Er 3+ Tm 3+ Yb 3+
ErVO4
K3(La,Nd)(PO4)2 •
Trang 11Table 1.1.8—continued
Host Crystals Used for Trivalent Lanthanide Laser Ions
C r y s t a l Ce 3+ Pr 3+ Nd 3+ Sm 3+ Eu 3+ D y 3+ Ho 3+ Er 3+ Tm 3+ Yb 3+
LaAl11MgO19
LaBGeO
(La,Pr)P5O14 •
La3Ga5.5Nb0.5O14 •
β''-Na1+xMgx
Al11-xO17
•
Trang 12Table 1.1.8—continued
Host Crystals Used for Trivalent Lanthanide Laser Ions
C r y s t a l Ce 3+ Pr 3+ Nd 3+ Sm 3+ Eu 3+ D y 3+ Ho 3+ Er 3+ Tm 3+ Yb 3+
(WO4)2
•
Na3
(PO4)2
•
Na5
(Nd,La)-(MoO4)4
•
Na5(
(WO4)4
•
Nd(Ga,Cr)3(BO3)4 •
SrxBa1-x(NbO3)2 •
Trang 13Table 1.1.8—continued
Host Crystals Used for Trivalent Lanthanide Laser Ions
C r y s t a l Ce 3+ Pr 3+ Nd 3+ Sm 3+ Eu 3+ D y 3+ Ho 3+ Er 3+ Tm 3+ Yb 3+
Sr2Ca3(PO4)3 •
Sr3Ca2(PO4)3 •
Sr3Ga2Ge4O14 •
H a l i d e s
Trang 14Table 1.1.8—continued
Host Crystals Used for Trivalent Lanthanide Laser Ions
C r y s t a l Ce 3+ Pr 3+ Nd 3+ Sm 3+ Eu 3+ D y 3+ Ho 3+ Er 3+ Tm 3+ Yb 3+
CaF2-ErF3-TmF3
YbF3
•
CaF2-SrF2-BaF2
YF3-LaF3
•
Trang 15Table 1.1.8—continued
Host Crystals Used for Trivalent Lanthanide Laser Ions
C r y s t a l Ce 3+ Pr 3+ Nd 3+ Sm 3+ Eu 3+ D y 3+ Ho 3+ Er 3+ Tm 3+ Yb 3+
K5(Nd,Ce)Li2F10 •
SrF2-CeF3-GdF3 •
Trang 16Table 1.1.8—continued
Host Crystals Used for Trivalent Lanthanide Laser Ions
C r y s t a l Ce 3+ Pr 3+ Nd 3+ Sm 3+ Eu 3+ D y 3+ Ho 3+ Er 3+ Tm 3+ Yb 3+
O x y h a l i d e s
Na2Nd2Pb6
(PO4)6Cl2
•
C h a l c o g e n i d e s
Trang 171.1.4 Tables of Transition Metal Ion Lasers
Table 1.1.9 Transition Metal Ion Lasers
Optical pump Mode of operation
AL — alexandrite (BeAl2O4:Cr) laser AML — actively mode-locked
ErLYF — Er:LiYF4 (YLF) laser qs — Q-switched
ErYAG — Er:Y3Al5O12 (YAG) laser PML — passively mode-locked
Hg — mercury arc lamp SML — synchronously mode-locked KrL — krypton-ion laser
NdGL — Nd:glass laser
NdL — neodymium laser
NdYAG — Nd:Y3Al5O12 (YAG) laser
NdYLF — Nd:LiYF4 (YLF) laser
NdYAP — Nd:YAlO3 (YAP) laser
RL — ruby (Al2O3:Cr) laser
RS — Raman-shifted
TiS — Ti:sapphire (Al2O3) laser
TmYAP — Tm:YAlO3 (YAP) laser
TmHoYAG — Tm,Ho:Y3Al5O12 (YAG) laser
W — tungsten arc lamp
Xe — xenon arc lamp
Titanium (Ti 3 + , 3 d 1 )
H o s t
c r y s t a l
Laser
t r a n s i t i o n
W a v e l e n g t h ( m)
T e m p (K)
O p t i c a l pump Mode R e f
Al2O3 2E →2T2 0.66–1.178 300 Ar laser cw 82–89
300 dye laser p 83, 90–96
300 Xe lamp p 91, 109–112
300 DNdYAP p 83, 84, 86, 92,
97–108
BeAl2O4 2E →2T2 0.73–0.95 300 DNdYAG cw 170
Trang 18Vanadium (V 2 + , 3 d 3 )
H o s t
c r y s t a l
Laser
t r a n s i t i o n
W a v e l e n g t h ( m)
T e m p (K)
O p t i c a l pump Mode R e f
MgF2 4T2→4A2 1.07–1.16 80 Ar laser cw 261, 303–305
Chromium (Cr 2 + , 3 d 4 )
H o s t
c r y s t a l
Laser
t r a n s i t i o n
W a v e l e n g t h ( m)
T e m p (K)
O p t i c a l pump Mode R e f
Chromium (Cr 3 + , 3 d 3 )
H o s t
c r y s t a l
Laser
t r a n s i t i o n
W a v e l e n g t h ( m)
T e m p (K)
O p t i c a l pump Mode R e f
Al2(WO4)3 4T2→4A2 0.80 300 Kr laser cw 210
Al2O3 2E →4A2 0.6929(R2) 300 Xe lamp p 125
0.6943(R1) 300 Xe lamp p 131–2, 138 0.6943(R1) 300 Hg lamp cw 133–4, 297
0.6943–0.6952 300–500 Xe lamp p 137
Be3Al2Si6O18 2E →4A2 0.685 300 RS-DNdL p 123
4T2→4A2 0.720–0.842 300 Kr laser cw 164, 165
Trang 19Chromium (Cr 3 + , 3 d 3 )—continued
H o s t
c r y s t a l
Laser
t r a n s i t i o n
W a v e l e n g t h ( m)
T e m p (K)
O p t i c a l pump Mode R e f
BeAl2O4 2E →4A2 0.6804 300 Xe lamp p 121,122
4T2→4A2 0.70–0.82 — Hg lamp cw 140–142
BeAl2O4 4T2→4A2 0.70–0.82 — Xe lamp cw 141, 142
300–330 Xe lamp p 120, 144–6 330–370 Xe lamp p 120, 145,
148, 149 548–583 Xe lamp p 142, 146 300–370 Xe lamp p 141, 142,
144, 147,
148, 150
Xe lamp PML 142, 151
0.701–0.818 300 Xe lamp p 121, 154
BeAl6O10 4T2→4A2 0.79–0.87 300 DNdYAG p 204
Ca3Ga2Ge4O14 4T2→4A2 0.87–1.21 300 RL, DL p 241, 1017 (Gd,Ca)3
(Ga,Mn,Zr)5O12
4T2→4A2 0.774–0.814 300 Xe lamp p 198
Gd3Ga5O12 4T2→4A2 0.769 300 Kr laser cw 174
Gd3Sc2Al3O12 4T2→4A2 0.75–0.81 300 Xe lamp p 183–185
Kr laser cw 174–5, 182
Ar laser cw 174–5, 182
Gd3Sc2Ga3O12 4T2→4A2 0.742–0.842 300 Xe lamp p 177, 178
Kr laser cw 174–176
Ar laser cw 174–176
KZnF3 4T2→4A2 0.766–0.865 300 Kr laser cw 193
dye laser p 191, 192 ruby laser qcw 194
0.775–0.816 80 Kr laser cw 191, 192 0.790–0.825 200 Kr laser cw 191, 192 (La,Lu)3(La,Ga)2
Ga3O12
La3Ga5GeO14 4T2→4A2 0.88–1.22 300 ruby laser p 241, 242,
1017
La3Ga5.5Nb0.5O14 4T2→4A2 0.9–1.25 300 ruby laser p 240, 1017
Trang 20Chromium (Cr 3 + , 3 d 3 )—continued
H o s t
c r y s t a l
Laser
t r a n s i t i o n
W a v e l e n g t h ( m)
T e m p (K)
O p t i c a l pump Mode R e f
La3Ga5GeO14 4T2→4A2 0.88–1.22 300 ruby laser p 241, 242,
1017
La3Ga5.5Nb0.5O14 4T2→4A2 0.9–1.25 300 ruby laser p 240, 1017
La3Ga5SiO14 4T2→4A2 0.815–1.22 300 Kr laser cw 209, 1017
La3Ga5.5Ta0.5O14 4T2→4A2 0.925–1.24 300 ruby laser p 240, 241 LiCaAlF6 4T2→4A2 0.72–0.84 300 Kr laser cw 162
LiSr0.8Ca0.2AlF6 4T2→4A2 0.750–0.950 300 Xe lamp p 186 LiSrAlF6 4T2→4A2 0.780–1.010 300 Xe lamp p 201
0.78–0.92 300 Kr laser cw 196, 199
LiSrGaF6 4T2→4A2 0.820 300 Kr laser p 212, 1025
Na3Ga3Li3F12 4T2→4A2 0.748–0.832 300 Kr laser cw 180
ScBO3 4T2→4A2 0.787–0.892 300 Kr laser cw 162, 202,
203
Sr3Ga2Ge4O14 4T2→4A2 0.895 300 ruby laser p 1017
0.90–1.15 300 ruby laser p 241, 242
SrAlF5 4T2→4A2 0.852–1.005 300 Kr laser cw 227, 228
Y3Sc2Al3O12 4T2→4A2 0.767 300 Kr laser cw 196
Y3Sc2Ga3O12 4T2→4A2 0.76 300 Kr laser cw 173