1. Trang chủ
  2. » Công Nghệ Thông Tin

Tài liệu Sự phát triển và tương lai của Wi-Fi pptx

11 362 1
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Sự phát triển và tương lai của Wi-Fi
Thể loại bài viết
Định dạng
Số trang 11
Dung lượng 538,05 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Trong loạt bài này chúng tôi sẽ giới thiệu cho các bạn một số kiến thức cơ bản về công nghệ này, song song với đó là một phác thảo vắn tắt về sự phát triển của nó.. Do tần số 5GHz sử dụ

Trang 1

Sự phát triển và tương lai của Wi-Fi

Nguồn : quantrimang.com 

Quản trị mạng – Công nghệ Wi-Fi xuất hiện lần đầu vào năm 1997 Ngày

nay công nghệ này đã được phát triển rất mạnh và hiện đang ở chuẩn

802.11n Trong loạt bài này chúng tôi sẽ giới thiệu cho các bạn một số kiến thức cơ bản về công nghệ này, song song với đó là một phác thảo vắn tắt

về sự phát triển của nó

Giới thiệu

Chuẩn 802.11 là chuẩn được sử dụng cho công nghệ Wi-Fi bắt đầu từ năm 1997

do Institute for Electrical and Electronics Engineers (IEEE) ban bố Theo thời gian chuẩn này đã được phát và ngày nay chúng ta đang có phiên bản 802.11n

Institute for Electrical and Electronics Engineers (IEEE)

Chúng ta hãy bắt đầu với giới thiệu vắn tắt về IEEE là gì IEEE là một tổ chức khoa học nghề nghiệp được xây dựng nhằm mục đích hỗ trợ các hoạt động nghiên cứu khoa học, thúc đẩy sự phát triển khoa học công nghệ trong các lĩnh vực điện tử, viễn thông, công nghệ thông tin, khoa học máy tính Viện này gồm

có nhiều kỹ sư điện và điện tử (nhiều người có bằng cấp cao đang làm việc tại các trường Đại học danh tiếng trên toàn thế giới), có thể nói họ là các chuyên gia trong từng lĩnh vực Tổ chức các chuẩn này ra đời xuất phát từ sự cần thiết cần

có các chuẩn được chấp thuận rộng rãi để bảo đảm khả năng tương thích giữa các thiết bị trên toàn thế giới Đây chính là một trong những nhiệm vụ khó khăn nhất của IEEE, bảo đảm sự chấp thuận rộng rãi; một nhiệm vụ mà họ không phải lúc nào cũng thực hiện được Các chuẩn được công bố bởi IEEE bao gồm tất cả các lĩnh vực kỹ thuật điện tử có liên quan đến mạng máy tính Khi có ai đó phân tích các chuẩn, một điều quan trọng cần phải nhớ rằng hiệu suất thường không phải là mục tiêu thiết kế của các chuẩn Trong thực tế, các chuẩn có thể không

Trang 2

được hoàn hảo Mặc dù vậy, như chúng tôi gợi ý ở trên, một chuẩn chỉ có giá trị nếu nó được chấp thuận rộng rãi; mục tiêu này chính là sợi chỉ đỏ xuyên suốt quá trình thiết kế các chuẩn

Tiểu ban của IEEE mà loạt bài viết này giới thiệu về là tiểu ban LAN/MAN Tiểu ban này đã được chỉ định bộ định danh 802, vì vậy mỗi một chuẩn được quyết định bởi tiểu ban này sẽ bắt đầu với bộ định danh 802 Chỉ số 11 trong 802.11 có nghĩa chuẩn có liên quan đến sự điều biến trong không gian; vì vậy tất cả các chuẩn 802.11 sẽ được công bố bởi tiểu ban 802 và sử dụng sự điều biến trong không gian Bạn sẽ thường thấy chỉ số 802.11 và nhiều chuẩn khác cho chủ đề được viết cùng với thời gian phía sau bộ chỉ định, chẳng hạn như 802.11-1997 Thời gian được ghi này chính là thời điểm công bố chuẩn Khi đưa ra một chuẩn, tiểu ban sẽ công bố những cập nhật mới nhất và thời gian này sẽ thay đổi theo công bố gần nhất Thêm vào đó bạn cũng sẽ thường thấy các bộ định danh được miêu tả cùng với một chữ cái in thường, chẳng hạn như 802.11b Ở đây các chữ cái in thường chỉ thị sự sửa đổi đối với chuẩn được công bố ban đầu Trong trường hợp 802.11, chữ cái in thường được gán cho những sửa đổi đã được phê chuẩn nhằm trợ giúp công nghệ 802.11có được tốc độ lớn hơn, phạm

vi rộng hơn, độ tin cậy tốt hơn, hoặc sự kết hợp cả ba yếu tố trên

802.11-1997

Chuẩn được công bố đầu tiên cho Wi-Fi là 802.11-1997, đây là chuẩn được công bố vào năm 1997 Các bạn cần phải nhớ rằng khi chúng tôi nói IEEE không phải lúc nào cũng thành công trong mục tiêu chấp thuận rộng rãi? Đây là một trường hợp như vậy Chuẩn ban đầu đã nhận được rất ít sự thừa nhận Một phần là do tốc độ bit thấp của nó chỉ khoảng 1 hoặc 2MB/s Tốc độ bit thực sự phụ thuộc vào liên kết vật lý được sử dụng để truyền tải dữ liệu Chuẩn

802.11-1997 đã cho phép ba công nghệ khác nhau có thể sử dụng:

1 Hồng ngoại: Công nghệ cung cấp thông lượng 1 MB/s

2 Frequency Hoping Spread Spectrum: Công nghệ cung cấp thông lượng 1

hoặc 2 MB/s

3 Direct Sequence Spread Spectrum: Công nghệ cũng cung cấp thông

lượng 1 hoặc 2 MB/s

Tỉ lệ chấp thuận thấp đối với chuẩn công nghệ này là do một phần tốc độ bit thấp, tuy nhiên nó cũng có một phần là sự đắt đỏ của công nghệ Vào năm 1997, việc thiết kế các bộ thu và phát được yêu cầu để sử dụng chuẩn 802.11-1997 khá đắt tính trên đầu các máy tính, đặc biệt là các máy tính laptop, do khả năng

di động của chúng yêu cầu cần phải có công nghệ Wi-Fi) Tuy nhiên về sau này,

Trang 3

chuẩn 802.11 được cập nhật vào năm 1999 với các bộ định danh “a” và “b” đã nhận được sự đồng thuận nhiều hơn Mặc dù 802.11a và 802.11b đều được phát hành đồng thời vào năm 1999 nhưng chỉ có 802.11b được chấp thuận một cách rộng rãi

802.11a và 802.11b

802.11a là một chuẩn được cải thiện từ 802.11-1997 Trong khi 802.11-1997 chỉ

có thể truyền tải dữ liệu với tốc độ 2MB/s thì 802.11a có thể truyền tải dữ liệu với tốc độ 54 MB/s Việc tăng tốc độ truyền tải dữ liệu này là do sử dụng tần số 5GHz thay cho tần số 2.4GHz được sử dụng trong 802.11-1997 ( tần số được

sử dụng cho các tùy chọn Frequency Hoping Spread Spectrum và the Direct Sequence Spread Spectrum; không có tùy chọn hồng ngoại) Ngoài việc tăng về tốc độ, một ưu điểm khác trong việc sử dụng tần số 5GHz là không có nhiều thiết

bị sử dụng tần số này, vì vậy khả năng xuyên nhiễu giữa các thiết bị sẽ giảm Mặc dù vậy việc sử dụng băng tần 5GHz cũng có một nhược điểm lớn Do tần

số 5GHz sử dụng sóng ngắn (tần số có tỷ lệ ngược với bước sóng; chính vì vậy tần số càng cao thì bước sóng sẽ càng ngắn) nên kỹ thuật này có phạm vi phủ sóng kém hơn và tín hiệu bị cản trở nhiều hơn bởi những vật cản như các bức tường; thậm chí không có nhiều bức tường nhưng nếu tín hiệu truyền trong không gian có nhiều đối tượng (bàn và ghế,…) cường độ tín hiệu bị suy giảm rất nhanh

802.11b thừa hưởng Direct Sequence Spread Spectrum từ chuẩn 802.11-1997 ban đầu, cùng với tần số hoạt động 2.4 GHz Việc tiếp tục sử dụng tần số 2.4 GHz có cả ưu điểm và nhược điểm Ưu điểm ở đây là tần số này không bị điều chỉnh lại và vì vậy giá thành chi phí sản xuất sẽ rẻ hơn Tuy nhiên nhược điểm là

có nhiều thiết sử dụng sử dụng tần số này (điện thoại kéo dài, các bộ kiểm tra trẻ nhỏ), tất cả chúng đều có thể xuyên nhiễu lẫn nhau

Thay đổi chủ yếu trong 802.11b là tốc độ dữ liệu tối đa Tốc độ dữ liệu tối đa của 802.11b đạt khoảng 11MB/s, con số có thể so sánh với tốc độ Ethernet truyền thống ở những năm 1999 và 2000 Vơi tốc độ này, nhiều khách hàng có thể sử dụng Wi-Fi, thừa hưởng tất cả những ưu điểm về khả năng di động mà không bị các nhược điểm về tốc độ Cùng với việc giảm được đánh kể giá thành trong công nghệ đã làm cho công nghệ 802.11b được sự chấp thuận một cách rộng rãi

802.11g

Khi tốc độ Ethernet tăng, điều này đã tác động đến chuẩn 802.11 Vào năm

2003, IEEE đã phê duyệt chuẩn 802.11g Chuẩn 802.11g này hoạt động ở tần số 2.4 GHz, giống như 802.11b và 802.11-1997, nhưng nó sử dụng kỹ thuật

Trang 4

Orthogonal Frequency Division Multiplexing (OFDM) đã được sử dụng bởi

802.11a Kỹ thuật OFDM này đã cho phép 802.11g hoạt động ở tốc độ 54 MB/s; một sự tăng đáng kể về tốc độ so với 802.11b là 11 MB/s Giống như 802.11b, 802.11g cũng được chấp thuận một cách rộng rãi cho cả khách hàng và doanh nghiệp

802.11n

802.11n là chuẩn mới nhất hiện nay, chuẩn này vừa được phê chuẩn vào tháng

9 vừa qua 802.11n sử dụng một công nghệ mới để tăng tốc độ dữ liệu đó là Multiple Input / Multiple Output (MI-MO) Chúng tôi sẽ giới thiệu sâu cho các bạn

về chuẩn 802.11n trong phần tiếp theo của loạt bài này, tuy nhiên các bạn có thể đoán ngay từ MI-MO rằng 802.11n sẽ làm việc với nhiều bộ thu phát và điều này

đã cho phép nó tăng được tốc độ dữ liệu

Trong phần hai này, chúng tôi sẽ giới thiệu cho các bạn cách mở tường lửa CentOS và cấu hình các điểm truy cập (AP) Sau đó sẽ là phân phối file CA đến tất cả các máy tính và cấu hình chúng với các thiết lập thẩm định và mã hóa Cuối cùng là thiết lập SQL để bạn có thể lưu trữ các thông tin AP và thông tin người dùng trong một cơ sở dữ liệu thay vì các file văn bản

Mở tường lửa

CentOS có tường lửa đính kèm được kích hoạt một cách mặc định Để lưu

lượng RADIUS đến được FreeRADIUS, bạn phải mở các cổng mà nó sử dụng

Kích System > Administration > Security Level and Firewall Sau đó kích mũi tên để mở rộng phần Other Ports Thêm các cổng UDP 1812 và 1813 sau đó kích Apply

Khởi động lại máy chủ để load các thiết lập mới

Nếu bạn thực hiện những thay đổi về cấu hình trong khi FreeRADIUS đang hoạt động, khi đó bạn phải khởi động lại máy chủ để những thay đổi của bạn có hiệu

lực Để stop máy chủ, hãy vào cửa sổ terminal và nhấn Ctrl + C Sau đó đánh

'/usr/sbin/radiusd -X' lần nữa (hoặc nhấn phím mũi tên hướng lên) để bắt đầu

quá trình khởi động lại Nếu bạn đang mở một cửa sổ terminal mới, bạn phải

đánh 'su' trước để chạy ở chế độ root

Lúc này máy chủ sẽ chạy và chuẩn bị chấp nhận các yêu cầu thẩm định từ phía người dùng Wi-Fi

Khi mạng mã hóa của bạn hoạt động, bạn có thể bỏ qua '–X' để bắt đầu

FreeRADIUS mà không cần việc gỡ rối Máy chủ sẽ làm việc trong chế độ

Trang 5

background và bạn có thể tham chiếu đến các file bản ghi và việc giải thích dữ liệu

Cấu hình các AP

Đây cũng là lúc bạn có thể cấu hình các AP Sau khi thiết lập chúng để sử dụng

mã hóa WPA (TKIP) hay WPA2 (AES) Enterprise, bạn phải nhập vào các thiết lập RADIUS Những thiết lập này bao gồm địa chỉ IP của máy FreeRADIUS, cổng (1812), và những bí mật mà bạn đã định nghĩa cho AP nào đó Hầu hết các

AP đều hỗ trợ việc giải thích để lưu các thông tin session Nếu bạn cần giải thích, bạn phải nhập vào các thông tin chi tiết tương tự của máy chủ với cổng

1813

Cài đặt file CA trên tất cả các máy tính

Mặc dù giao thức thẩm định PEAP không yêu cầu các chứng chỉ máy khách, tuy nhiên bạn vẫn phải cài đặt một chứng chỉ cho Certificate Authority (CA) trên mỗi một máy tính Điều này là vì chúng ta sẽ sử dụng chứng chỉ tự ký cho máy chủ thay cho việc mua một chứng chỉ đã ký từ một CA mà Windows có thể nhận diện, chẳng hạn như VeriSign hoặc GoDaddy

Bạn cần copy file etc/raddb/certs/ca.dervào tất cả các máy tính Bạn có thể

copy nó vào ổ USB và thực hiện paste vào mỗi một máy tính Để copy, bạn hãy

mở một terminal mới và đánh "su" để vào chế độ root, hoặc sử dụng một chế độ đang tồn tại nào đó, và chạy một lệnh copy, chẳng hạn như "cp

/etc/raddb/certs/ca.der /newlocation/certs"

Mẹo: Để tìm ra đường dẫn đến thiết bị, chẳng hạn như USB, kích Places > Computer, mở thiết bị và kích chuột phải vào bất cứ file nào trên thiết bị đó, sau

đó chọn Properties và copy lấy giá trị Location

Lúc này, trên mỗi máy tính Windows, kích chuột phải vào file chứng chỉ và chọn

Install Certificate Sau đó đặt nó vào kho lưu trữ Trusted Root Certification Authorities Trên hộp thoại xác nhận, chọn Yes để cài đặt

Cấu hình các máy tính với các thiết lập thẩm định và mã hóa

Trên các mạng WEP và WPA/WPA2-personal, bạn chỉ chọn mạng và sẽ được nhắc nhở về key Mặc dù việc kết nối đến các mạng mã hóa doanh nghiệp gặp nhiều phức tạp trong việc cấu hình hơn nhưng khi đã cấu hình, bạn có thể kết nối một cách đơn giản với mạng bằng cách nhập vào username và password, thậm chí bạn có thể lưu những thông tin này để không phải nhập nó nhiều lần

Trang 6

Nếu chưa có một profile nào không tồn tại trong mạng, bạn cần tạo một profile mới Sau đó cấu hình các thiết lập Nhớ rằng, bạn đang sử dụng mã hóa WPA (TKIP) hoặc WPA2 (AES) Enterprise với thẩm định PEAP Trong hộp thoại các thuộc tính của PEAP, bạn cần chọn để hợp lệ hóa chứng chỉ máy chủ và chọn chứng chỉ mình đã import Thêm vào đó bạn có thể nhập địa chỉ IP của máy chủ

để sử dụng khi hợp lệ hóa Sau đó bảo đảm rằng bạn sử dụng phương pháp Password (EAP-MSCHAP v2) Kích nút Configure để bảo đảm thiết lập

(Automatically use my Windows logon name and password) trên hộp thoại không

được kiểm

Cần lưu ý rằng, lần đầu bạn kết nối mạng, hộp thoại Validate Server Certificate

sẽ xuất hiện, đôi khi nó có thể ẩn đằng sau các cửa sổ khác Khi đó hãy kích Ok

để chấp nhận chứng chỉ và tiếp tục kết nối

Thiết lập SQL cho người dùng và tra cứu AP

Nếu bạn có một số lượng lớn người dùng và các AP, hoặc bạn thay đổi các thông tin chi tiết của họ hay của các AP một cách thường xuyên, khi đó bạn có thể sử dụng một cơ sở dữ liệu để lưu các thông tin thay cho các file văn bản Bạn có thể cài đặt và cấu hình máy chủ của mình hoặc sử dụng một máy chủ được host trước, chẳng hạn từ một nhà cung cấp website Bằng cách nào trong hai cách trên, bạn cũng phải cài đặt gói phần mềm FreeRADIUS MySQL

(freeradius2-mysql)

Lúc này bạn cần load cấu trúc cơ sở dữ liệu mặc định vào máy chủ cơ sở dữ

liệu Nếu đang chạy máy chủ của bạn trong CentOS, bạn hãy chạy lệnh "mysql -uroot -prootpass radius < /etc/raddb/sql/mysql/schema.sql" từ một Terminal

Nếu sử dụng một máy chủ từ xa hoăc máy chủ được host từ một nhà cung cấp,

khi đó bạn hãy chạy "gedit" với một root Terminal và sử dụng Text Editor để mở

etc/raddb/sql/mysql/schema.sql Sau đó copy và paste các lệnh SQL vào máy

chủ để chạy chúng

Nếu bạn muốn sử dụng SQL cho các thông tin chi tiết của AP, hãy load file

etc/raddb/sql/mysql/nas.sql vào cơ sở dữ liệu của bạn

Bạn cần chỉnh sửa các file cấu hình FreeRADIUS để mách bảo máy chủ sử

dụng SQL Từ root Text Editor,, mở etc/raddb/radiusd.conf và không comment dòng "$INCLUDE sql.conf" Mở etc/raddb/sites-enabled/inner-tunnel và

không comment "sql" từ phần Authorize Lúc này FreeRADIUS sẽ sử dụng các

file và SQL

Bạn cần cung cấp cho FreeRADIUS kết nối cơ sở dữ liệu và các thông tin chi tiết

về đăng nhập Từ trình soạn thảo gốc, mở etc/raddb/sql.conf Sau đó bảo đảm

Trang 7

cho database = 'mysql' Nếu đang sử dụng một cơ sở dữ liệu từ xa hoặc một

cơ sở dữ liệu được cấu hình sẵn, hãy nhập vào địa chỉ máy chủ Bảo đảm bạn

nhập vào Username và Password cho máy chủ của mình Với giá trị radius_db value, nhập vào tên cơ sở dữ liệu Nếu đang sử dụng SQL cho các thông tin chi tiết của AP, không comment "readclients = yes"

Cuối cùng, chèn các hàng vào bảng để định nghĩa các tài khoản người dùng Định dạng tương tự như định dạng đối với file người dùng:

username attribute op value

egeier Cleartext-Password := pass123

Đây là một ví dụ về những gì bạn có thể chèn vào bảng cho các thông tin về AP nếu đã kích hoạt nó:

nasname shortname type secret

192.168.0.1 private-network-1 other testing123

Khắc phục sự cố

Cần lưu ý rằng trong khi thiết lập máy chủ hoặc sau khi tạo những thay đổi, hãy

sử dụng chế độ gỡ rối để thấy được hành động của máy chủ Nếu bạn gặp phải các vấn đề về đăng nhập hoặc kết nối, hãy kiểm tra một cách cẩn thận và phần

gỡ rối và phân tích những thay đổi được thực hiện gần đây

Trong phần hai của loạt bài này, chúng tôi sẽ tiếp tục giới thiệu cho các bạn về trạng thái hiện hành của công nghệ Wi-Fi, 802.11n

Giới thiệu

Trong phần trước của loạt bài này, chúng tôi đã bắt đầu giới thiệu về Viện các kỹ

sư điện và điện tử - Institute for Electrical and Electronics Engineers (IEEE) và

đã mô tả sự phát triển của công nghệ Wi-Fi Trong phần hai này, chúng tôi sẽ giới thiệu công nghệ Wi-Fi trong hình thể gần đây nhất, được biết đến với chuẩn 802.11n

MIMO

Sự cách tân mới trong 802.11n chính là sự xuất hiện của anten Multiple Input Multiple Output (MIMO) trong các chuẩn Wi-Fi Các cấu hình anten Wi-Fi trước chỉ sử dụng công nghệ Single Input Single Output (SISO) Như tên gợi ý của nó, MIMO có nghĩa rằng có nhiều anten để thu cũng như nhiều anten để phát dữ liệu MIMO là một trong ba cấu hình chung được sử dụng cho công nghệ đa anten Các cấu hình này, như thể hiện trong hình 1 là:

Trang 8

1 Single Input Multiple Output (SIMO) – Một đầu vào, nhiều đầu ra

2 Multiple Input Single Output (MISO) – Nhiều đầu vào, một đầu ra

3 Multiple Input Multiple Output (MIMO) – Nhiều đầu vào, nhiều đầu ra

Hình 1: Các cấu hình anten khác nhau

Công nghệ MIMO có rất nhiều lợi ích đối với người dùng Đầu tiên đó là trường hợp có nhiều người dùng cùng truy cập vào cùng một tài nguyên Wi-Fi Cho ví

dụ, trong văn phòng của bạn có thể có một nút Wi-Fi đặt ở phòng chờ, bạn và các đồng nghiệp của mình có thể kết nối đến nút này khi uống cafe sáng trong giờ nghỉ giải lao ở đó Trước khi có chuẩn 802.11n, nếu có nhiều người dùng cùng truy cập vào một nút 802.11n, lúc này hiệu suất truy cập sẽ bị giảm một cách đáng kể Còn với công nghệ mới này, mỗi anten có thể được gán cho một người dùng và tất cả người dùng (giả định rằng số lượng người dùng nhỏ hơn hoặc bằng số anten) sẽ không nhận thấy sự giảm về tốc độ truy cập

Sự phân bố của anten

Trang 9

MIMO cũng có nhiều lợi ích khi chỉ có một người dùng Chúng ta hãy quay trở lại kịch bản phòng chờ của văn phòng Lúc này cho rằng chỉ có một người dùng đang truy cập vào nút Wi-Fi Mặc dù một trong số các đồng nghiệp của bạn đang

sử dụng điện thoại di động blackberry của họ thì vẫn có một lượng sóng ngắn đang được phát ra, hay thậm chí có ai đó đang sử dụng điện thoại không dây Đây là một vấn đề cũ đối với Wi-Fi Nó là tình huống mà trong đó chỉ có một người sử dụng Wi-Fi nhưng lại rất khó khăn trong việc nhận tín hiệu vì có quá nhiều tạp âm trong môi trường (tạp âm điện từ trường) MIMO có thể trung hòa

sự xuyên nhiễu này bằng cách gửi đi cùng một tín hiệu đến cùng người dùng nhưng trên nhiều anten Người dùng nhận các tín hiệu này có thể so sánh một trong các tín hiệu với nhau, sau đó quyết định xem tín hiệu nào là thực (tín hiệu trước khi bị xuyên nhiễu)

Phương pháp cho việc đếm sự xuyên nhiễu tín hiệu này được gọi là phân bố anten Có 5 cách chung để thực hiện sự phân bố này

Phân bố theo không gian

Khi một ứng dụng sử dụng một anten phân bố theo không gian thì trạm gốc phải

có nhiều anten, các anten này được đặt tách biệt nhau về mặt vật lý Thông thường các anten này sẽ có cùng các đặc tính Khoảng cách giữa các anten có thể bất kỳ Nhưng thường thì khoảng cách này tương đương với độ dài bước sóng của tín hiệu được phát đi Trong một số trường hợp khác, anten có thể được đặt cách nhau đến vào dặm Đây là lược đồ phân bố anten thường được

sử dụng nhất là bạn sẽ thấy trong các trạm gốc Wi-Fi 802.11n

Phân bố theo kiểu dáng

Sự phân bố theo kiểu mẫu thường được sử dụng nhất với các anten định

hướng Trong lược đồ phân bố anten này, nhiều anten định hướng sẽ được đặt gần với anten có kiểu mẫu bức xạ khác Lược đồ này có thể cung cấp hiệu suất tốt hơn khi đem so với các lược đồ đang sử dụng một anten đa hướng

Phân bố theo độ phân cực

Sự phân bố theo độ phân cực gồm có một cặp (hoặc nhiều cặp) anten, mỗi cặp

có một phân cực đối diện Vì các tín hiệu được phát từ một trong các anten này

có phân cực đối diện diện nên sự xuyên nhiễu bởi các tín hiệu cũng sẽ khác Chính vì vậy bộ thu sẽ có khả năng nhận tín hiệu tốt hơn, hoặc tối thiểu bộ thu

có thể sử dụng cả hai tín hiệu để xây dựng lại sự truyền phát ban đầu

Phân bố theo mảng thích nghi

Trang 10

Mảng thích nghi gồm có một mảng các anten có thể thay đổi các kiểu phân cực của chúng một cách dễ dàng Kiểu anten này rất đắt và yêu cầu rất nhiều sự điều khiển, và điều này càng làm cho giá thành của chúng đắt lên Với lý do này, kiểu anten này hầu như khó phù hợp với công nghệ Wi-Fi

Phân bố thu/phát

Sự phân bố thu/phát có thể xuất hiện khi một trạm gốc có một anten phát và một anten khác để thu Không có nhiều ưu điểm về thu phát trong lược đồ này, mặc

dù vậy nó có thể tiết kiệm được nhiều chi phí và không cần bộ ghép song công duplexer

Các lợi ích trong tương lai

Ở trên chúng tôi đã đề cập rằng MIMO sẽ đem lại nhiều lợi ích đến người dùng Nhưng những lợi ích kể trên vẫn chưa đủ, MIMO vẫn có nhiều lợi ích khác

Dirty Paper Coding

Một công nghệ mà chúng tôi cảm thấy rất thú vị đó là công nghệ mang tên Dirty Paper Coding (DPC) Về cơ bản DPC là một vấn đề toán học và có liên quan đến việc mã hóa các tín hiệu trước khi truyền tải Trước khi giải thích về DPC là

gì, hãy cho phép chúng tôi giải thích công nghệ này sẽ giải quyết vấn đề gì Chúng ta hãy quay trở lại kịch bản phòng chờ của văn phòng , nơi đang có bạn

và một số đồng nghiệp của bạn đang truy cập vào trạm gốc Như tôi đã giải thích trước, MIMO cho phép mỗi anten được gán cho mỗi một người dùng để mỗi người dùng sẽ sử dụng anten trạm gốc của riêng mình Tuy nhiên điều này làm cho các tín hiệu sẽ xuyên nhiễu lẫn nhau và làm giảm phạm vi truyền tải Lúc này DPC có nhiệm vụ sẽ giải quyết vấn đề Về cơ bản, thuyết DPC cho chúng ta hiểu rằng, nếu bạn biết cả hai tín hiệu đang được phát thì bạn sẽ biết sự xuyên nhiễu và có thể thay đổi các tín hiệu để bộ nhận sẽ nhận được tín hiệu dự định

Điều này nghe có vẻ đơn giản nhưng trong thực tế lại không diễn ra như vậy Đó

là vì nếu bạn thay đổi một trong số các tín hiệu thì nhiễu cũng thay đổi, từ đó yêu cầu bạn thay đổi tín hiệu khác, và lại tiếp tục làm thay đổi nhiễu Vì vậy với các tín hiệu phức tạp đang được phát trên trạm gốc Wi-Fi, sẽ rất khó tính toán những thay đổi được yêu cầu cho DPC Thậm chí còn khó hơn để thực hiện đủ nhanh

để người dùng không thấy sự chậm trễ

Đa nguồn cho một người dùng

Đa nguồn cho một người dùng (MSSU) có nghĩa rằng trong trường hợp này chỉ

có một người dùng kết nối đến một trạm gốc MIMO Lúc này, thay vì mỗi một

Ngày đăng: 18/01/2014, 20:20

HÌNH ẢNH LIÊN QUAN

Hình 1: Các cấu hình anten khác nhau - Tài liệu Sự phát triển và tương lai của Wi-Fi pptx
Hình 1 Các cấu hình anten khác nhau (Trang 8)

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

🧩 Sản phẩm bạn có thể quan tâm

w