1. Trang chủ
  2. » Trung học cơ sở - phổ thông

de thi hoc ky 1 khoi 12 Trac nghiem 50 cau

18 9 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 18
Dung lượng 859,16 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Một đoàn cứu trợ lũ lụt đang ở vị trí A của tỉnh Quảng Bình muốn tiếp cận vị trí C để tiếp tế lương thực và thuốc phải đi theo con đường từ A đến B và từ B đến C như hình vẽ.. Tuy nhiên [r]

Trang 1

ĐỀ MINH HỌA KIỂM TRA CHẤT LƯỢNG HỌC KỲ I

Thời gian: 90 phút

Câu 1 Đường cong trong hình bên là đồ thị của hàm số nào dưới đây:

A y x 4 2x2 1

B y x 4 2x21

C yx42x21

D yx4 2x21

Câu 2 Cho hàm số

2 2 1

y

x

 Khẳng định nào sau đây đúng

A Hàm số nghịch biến trên các khoảng ( ;1) và (1; )

B Hàm số có tiệm cận ngang x  1

C Hàm số có tiệm cận đứng y  1

D Hàm số đồng biến trên các khoảng ( ;1) và (1; )

Câu 3 Giá trị nhỏ nhất của hàm số y x 42x2 4 là

Câu 4 Hàm số y x 4  2x2 đồng biến trên khoảng nào sau đây:1

A (  ; 1);(0;1) B ( 1;0);(0;1) C ( 1;0);(1;  D Đồng biến trên R)

Câu 5 Các khoảng nghịch biến của hàm số

1

x y x

 là :

A  ;2 B 1; 

C   ;  D  ;1 và 1; 

Câu 6 Cho hàm số

1

y x

x

 

Hàm số đã cho có bao nhiêu cực trị?

Trang 2

Câu 7 Giá trị lớn nhất của hàm số :y x 3 3x2 9x35 trên đoạn 4;4 là

Câu 8 Đường tiêm cận đứng của đồ thị hàm số

1 2

x y x

 có phương trình là

Câu 9 Cho đồ thị (C): y x33x2 2 Phương trình tiếp tuyến của (C) tại điểm có hoành

độ x  có hệ số góc là0 3

Câu 10 Cho đố thị (C):

1

x y x

 Gọi I là giao điểm của 2 đường tiệm cận, tọa độ điểm I là

A I1;2 B I2;1 C I2; 1  D I  1;2

Câu 11 Bảng biến thiên trong hình bên là bảng biến thiên của hàm số nào sau đây?

A y x 42x2 1

B y x 33x2 x2

C y x3 x1

D y x 32x 3

Câu 12 Hàm số y ax 3bx2cx d có bảng biến thiên như hình bên Khẳng định nào sau đây đúng?

A Hàm số có đúng một cực trị

B Hàm số có giá trị nhỏ nhất bằng 3

C Hệ số a 0

D Hàm số có giá trị cực đại bằng 2

Câu 13 Cho hàm số y x 4x2 Khẳng định nào sau đây là khẳng định đúng?1

A Hàm số có hai cực trị

B Hàm số nghịch biến trên khoảng 1, 

C Hàm số có một điểm cực tiểu

Trang 3

D Hàm số đồng biến trên khoảng  ,0

Câu 14 Hàm số y x 33x2 2 đạt cực tiểu tại

Câu 15 Tìm m để phương trình x43x2 2 có 3 nghiệm ?m

A

1 4

m 

1 4

m 

Câu 16 Giao điểm của đường thẳng y2x 3 và đồ thị hàm số

1

x y x

 

là điểm M và N Khi đó hoành độ trung điểm I của MN có giá trị bằng

5

2

Câu 17 Giá trị lớn nhất của hàm số yx 3 5 x

A maxD y  2

B maxD y 2 2

C maxD y 2

D maxD y 1

Câu 18 Tìm m để hàm số y x 3 2x2mx có hai cực trị

A

4 3

m 

B

4 3

m 

C

4 3

m 

D

4 3

m 

Câu 19 Tìm các giá trị của tham số m sao cho hàm số

2

x y

x m

 đồng biến trên khoảng (0;1)

Câu 20 Tìm m để đồ thị của hàm số y x 4 2mx22m m 4 có ba điểm cực trị tạo thành một tam giác vuông

Câu 21 Tìm tất cả các giá trị của tham số m để e x x 2 x 1 m

có nghiệm trên [0;2]

A me B  e m e 2 C m e 2 D m hoặc e m e 2

Câu 22 Tìm tất cả các giá trị của m để phương trình x3 6x2m có ba nghiệm phân biệt.0

A 0m 2 B 0m4 C 0m32 D 0m8

Trang 4

Câu 23 Cho hàm số y x 3 3x2 có đồ thị là 2  C Tìm tọa độ điểm M thuộc  C sao cho

tiếp tuyến của đồ thị  C tại M song song với đường thẳng ( ): y9x 2

A M(0;1) B M(4;3) C M(0;1),M(4;3) D M(0; 1), M( 4;3)

Câu 24 Một đoàn cứu trợ lũ lụt đang ở vị trí A của tỉnh Quảng Bình muốn tiếp cận vị trí C để

tiếp tế lương thực và thuốc phải đi theo con đường từ A đến B và từ B đến C (như hình vẽ) Tuy nhiên do nước ngập con đường từ A đến B nên đoàn cứu trợ không thể đi đến C bằng

xe, nhưng đoàn cứu trợ có thể chèo thuyền từ A đến vị trí D trên đoạn đường từ B đến C với vận tốc 4km/h rồi đi bộ đến C với vận tốc 6km/h Biết A cách B một khoảng 5km, B cách C một khoảng 7km Xác định vị trí điểm D để đoàn cứu trợ đi đến xã C nhanh nhất

A BD5 km

B BD4 km

C BD2 5 km

D BD2 2 km

5 km

7 km

C A

Câu 25 Tìm m để hàm số y2x33m 1 x26m 2x nghịch biến trên khoảng có độ3 dài lớn hơn 3

Câu 26 Tập xác định D của hàm số y(x 1)2 là

C (  ; 1] [-1; ) D D \{1}

Câu 27 Rút gọn biểu thức a1 2.a3 2 có kết quả là

Câu 28 Tập xác định D của hàm số y ln(3x 1) là

A

1 ( ; )

3

D   

B

1 ( ; ) 3

C

1

=[ ; ) 3

D

1

\{ } 3

D 

Câu 29 Đạo hàm của hàm số y e1 2x là

A 'ye x B y'e1 2 x C y' 2 e1 2 x D.y'2e1 2 x

Trang 5

Câu 30 Biết loga b2,loga c Khi đó giá trị của 3

2 3 loga a b

c

  bằng

A

1

3

2 3

Câu 31 Đối với hàm số f x( )esin 2x ta có

A f ' 12 3e

 

 

 



 

 

C

3 2 '

12

f    e

 

 

 

Câu 32 Giải bất phương trình

x  x

Câu 33 Tìm tập xác định của hàm số  3 6 

2 log 2 x 1

A

1

; 2

D    

1

; 2

D     

1

; 2

D  

Câu 34 Cho hàm số

1 ln 1

y

x

Khẳng định nào sao đây là khẳng định sai?

A ' 1x y  e y B

1 ' 1

1

x y

x

 

1 ' 1

y x

 D ' 1 0x y  

Câu 35 Một người gửi tiết kiệm 50 triệu đồng vào một ngân hàng với lãi suất 7% một năm.

Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm, số tiền lãi sẽ được nhập vào vốn ban đầu Sau 5 năm mới rút lãi thì người đó thu được số tiền lãi là

A 20,128 triệu đồng B 70,128 triệu đồng

C.3,5 triệu đồng D.50,7 triệu đồng

Câu 36 Có mấy loại khối đa diện đều ?

Câu 37 Thể tích của khối lập phương ABCD A B C D có cạnh bằng a là. / / / /

Trang 6

A V 3a B

1 3

C

3 1 3

D Va3

Câu 38 Cho hình hộp chữ nhật ABCD A B C D có . / / / / AB a AD , 2 ,a AA/ 3a Thể tích khối hộp chữ nhật ABCD A B C D là. / / / /

A V 6a2 B V 6a3 C V 2a3 D V 18a3

Câu 39 Diện tích xung quanh của hình nón tròn xoay có đường sinh l 10cm, bán kính đáy

5

rcm

A 50cm2 B 50 cm 2 C 25 cm 2 D 100 cm 2

Câu 40 Thể tích của khối trụ có bán kính đáy r2cmvà chiều cao h9cm

A 18 cm 3 B 18cm3 C 162 cm 3 D 36 cm 3

Câu 41 Điều kiện cần và đủ để mặt phẳng ( )P tiếp xúc với mặt cầu ( ; ) S O r tại điểm H là

A Mặt phẳng ( )P vuông góc với bán kính OH

B Mặt phẳng ( )P song song với bán kính OH

C Mặt phẳng ( )P vuông góc với bán kính OH tại điểm O

D Mặt phẳng ( )P vuông góc với bán kính OH tại điểm H

Câu 42 Cho hình chóp .S ABCD có đáy ABCD là hình thoi với AC 2 ,a BD3a,

SAABCD , SA6a Thể tích khối chóp S ABCD là

A V 12a3 B V 6a3 C V 18a3 D V 2a3

Câu 43 Cho hình lăng trụ đứng tam giác ABC A B C , tam giác ABC có . / / / AB a AC , 2a, góc BAC 600, BB/  Thể tích khối lăng trụ a ABC A B C là . / / /

A Va3 B

3 2

a

V 

C Va3 3 D

3 3 2

a

V 

Câu 44 Cho hình chóp S ABC có đáy ABC là tam giác đều cạnh 2a , tam giác SAB là tam

giác đều và nằm trong mặt phẳng vuông góc với mặt đáy Thể tích khối chóp S ABC là

A

3 2

a

V 

B Va3 C V 3a3 D

3 3 2

a

V 

Trang 7

Câu 45 Cho hình chóp S ABC có đáy ABC là tam giác vuông tại B , SAABC , gọi ,D E

lần lượt là trung điểm của SB và SC Tâm của mặt cầu ngoại tiếp hình chóp S ABC là

A điểm B B điểm S C điểm D D điểm E

Câu 46 Cho hình chóp tam giác đều S ABC có cạnh đáy bằng a , cạnh bên hợp với mặt đáy

một góc 60 Thể tích V của khối chóp 0 S ABC là

A

3 3

16

a

V 

B

3 12

a

V 

C

3 3 12

a

V 

D

3 3 24

a

V 

Câu 47 Cho hình chóp .S ABCD có đáy là một hình vuông cạnh a Các mặt phẳng

(SAB), (SAD cùng vuông góc với mặt phẳng () ABCD , cạnh bên SC tạo với đáy một góc) 0

30 Thể tích V của khối chóp S ABCD là

A

3 6

9

a

V 

B

3 6 4

a

V 

C

3 3 3

a

V 

D

3 2 4

a

V 

Câu 48 Cho hình chóp tam giác đều S ABC có tất cả các cạnh đều bằng 4 Diện tích của mặt

cầu ngoại tiếp hình chóp S ABC là

2 4

3r

Câu 49 Cho khối lăng trụ đứng ABC A B C có đáy ABC là tam giác đều cạnh 2a , gọi I là ' ' '

trung điểm BC , góc giữa ' A I và mặt phẳng ( ABC bằng ) 0

30 Thể tích của khối lăng trụ ' ' '

ABC A B C là

3 3 3

a

D

3 2 4

a

Câu 50 Cho hình chóp tam giác S ABC có đáy là tam giác vuông tại B , cạnh SA vuông góc

với mặt đáy, biết AB a SA a ,  2 Khoảng cách từ Ađến mp SBC là 

A

6

6

a

3 3

a

D

6 3

a

HƯỚNG DẪN GIẢI Câu 1.

Trang 8

Đồ thị có hình dạng như trên nên a0,b 0

 Đáp án C

Câu 2 Ta có  

2 2

1

x

 , nên hàm số nghịch biến trên các khoảng ( ;1) và (1; )

 Đáp án A

Câu 3 Ta có y 4x34x

y   x

Bảng biến thiên:

Từ bảng biến thiên, ta có giá trị nhỏ nhất bằng – 4

 Đáp án B

Câu 4 Ta có y 4x3 4x

y   xx

Bảng biến thiên

Từ bảng biến thiên ta có hàm số đồng biến trên các khoảng ( 1;0);(1; )

 Đáp án C

Câu 5 Vì  2

3

1

x

nên hàm số nghịch biến trên các khoảng  ;1 và 1;

 Đáp án D

Trang 9

Câu 6 Ta có:

2 2 1

x y x

 

y   x

Bảng biến thiên:

Từ bảng biến thiên, kết luận hàm số có 2 cực trị

 Đáp án C

Câu 7 Ta có : y 3x2 6x 9

y   x x

Ta có ( 1) 40, y(3)=8, y(- 4)= - 41, y(4) =15 y 

Vậy giá trị lớn nhất bằng 40

 Đáp án A

 Đáp án B

Câu 9 Ta có y 3  9

 Đáp án C

Câu 10 Tiệm cận đứng x  , tiệm cận ngang 1 y  2

Tọa độ điểm I1;2

 Đáp án A

Câu 11 Dựa vào bảng biến thiên ta có nhận xét:

- Là bảng biến thiên của hàm số dạng y ax 3bx2cx d

- Hệ số a 0

- Hàm số đồng biến trên R (phương trình y  vô nghiệm hoặc có nghiệm kép.0

Trang 10

 Đáp án D

Câu 12 Dựa vào bảng biến thiên ta có nhận xét:

- Hàm số có hai cực trị

- Hàm số có giá trị cực tiểu bằng 3 tại x 0

- Hàm số có giá trị cực đại bằng 5 tại x 2

- Hệ số a 0

 Đáp án C

Câu 13 y x 4 x2 1

Ta có y' 4 x32x

y   x

Dựa vào bảng biến thiên ta có

 Đáp án C

Câu 14 y x 33x2 2

Ta có y' 3 x26x

0 ' 0

2

x y

x

   

 Dựa vào bảng biến thiên ta có

 Đáp án C

Câu 15 x43x2 2m

Hàm số y x43x2 2 có giá trị cực đại bằng -2, do đó phương trình

4 3 2 2

    có 3 nghiệm khi m = -2

 Đáp án C

Trang 11

Câu 16 Phương trình hoành độ giao điểm của đường thẳng y2x 3 và đồ thị hàm số

1

x

y

x

 

 là:

1

x

x x

 

 1 2 3

x x

 

Vậy hoành độ trung điểm I của MN có giá trị bằng

5

6

 Đáp án B

Câu 17 Xét hàm sốyx 3 5 x trên [3;5]

'

y

' 0y   x4

 3 2

y  , y 5  2, y 4 2

 Đáp án C

Câu 18 y x 3 2x2mx

2

' 4 3m

  

Hàm số y x 3 2x2mx có hai cực trị khi

4

3

   

 Đáp án B

Câu 19

2

2 0 2

0; 1

m m

x m

 

 Đáp án D

Câu 20

3

yxmx;y' 0  x0,x2 m

Trang 12

Loại bỏ m  3, m  Thử trực tiếp 1 m  và 1 m  3vào được kết quả m 1

 Đáp án A

Câu 21

Tìm max và min của f x( )e x x 2 x 1

trên đoạn [0;2]

Ta có

2 [0;2]

max ( )f xe

và min ( )[0;2] f x e

Vậy  e m e 2

 Đáp án B

Câu 22.

Ta có x3 6x2m  0 x36x2 m

3 6 2

yxx , y'3x212x, ' 0y   x0,x , (0) 0, (4) 324 ff

Chọn 0m32

 Đáp án C

Câu 23

0 2

0

1, ( 1) 2

3, (3) 2

 Vậy M( 1; 2),  M(3;2)

 Đáp án D

Câu 24 Gọi BD x km ( ), 0 x 7

2 25

Thời gian đi từ A đến C là:

2

( )

Hàm số T đạt giá trị nhỏ nhất tại x 2 5

 Đáp án C

Câu 25 y2x33m 1x26m 2x3

2

Trang 13

1 2

8 3

m

 Đáp án D

Câu 26 Tập xác định D của hàm số y(x 1)2

Điều kiện: x  1 0

x1

Tập xác định D \ 1 

 Đáp án D

Câu 27. a1 2.a3 2 a1 2 3  2 a4

 Đáp án D

Câu 28.

Điều kiện: 3x  1 0

1 3

x

Tập xác định

1 ( ; ) 3

 Đáp án B

Câu 29 Đạo hàm của hàm số y e1 2x là y'2e1 2 x

 Đáp án D

Câu 30 Biết loga b2,loga c Khi đó giá trị của 3

2 3 loga a b

c

  bằng

Từ b a c a 2,  3 ta có

1

2 3

3

a c

 Vậy

log

3

a

c



 Đáp án A

Câu 31 Đối với hàm số f x( )esin 2x ta có

Trang 14

D B

D'

C' B'

A'

Dùng máy tính tính f ' 12 kq

 

 

  , thử lại với đáp án đề cho, ta được kq 3e

 Đáp án B

Câu 32

Ta có

 Đáp án C

Câu 33 Tìm tập xác định của hàm số  3 6 

2 log 2 x 1

Điều kiện xác định

2

Tập xác định

1

; 2

D    

 Đáp án A

Câu 34 Cho hàm số

1 ln 1

y

x

Khẳng định nào sao đây là khẳng định sai?

1 ln 1

y x

Vậy đáp án sai là ' 1 0x y  

 Đáp án D

Câu 35

5 50(1 7%)  50 20.128

 Đáp án A

Câu 36  Đáp án C

Câu 37

Trang 15

C B

A S

j

C

B A

C'

B' A'

3

Va a a a

 Đáp án D

Câu 38

3 2 3 6

 Đáp án B

Câu 39

2 5.10 50

xq

 Đáp án B

Câu 40

 Đáp án D

Câu 41  Đáp án D

Câu 42

2 1

2

ABCD

 Đáp án B

Câu 43

ABC

a

ABC

 Đáp án D

Câu 44

Gọi H là trung điểm của AB

Trang 16

C

B A

S

E D

S

C

B A

3 4

ABC

a

3 2

a

 Đáp án B

Câu 45

 

 

1 2

(1), (2) suy ra tâm của mặt cầu ngoại tiếp hình chóp S ABC là điểm E

 Đáp án D

Câu 46

3

SO

AO

 Đáp án C

Câu 47.

Trang 17

0

tan 30

2

SA

AC

3 2

 Đáp án A

Câu 48.

4 (4 ) 4

6

r SI 

S 4r2 4 ( 6) 2 24

 Đáp án C

Câu 49.

0

0

' tan 30

3

3

A A

AI

4

ABC

Trang 18

 Đáp án B

Câu 50.

.

.

1

3

1 ( ,( )) 3

( ,( ))

2

S ABC ABC

S ABC A SBC SBC

ABC

A SBC

V

 Đáp án D

Ngày đăng: 02/11/2021, 15:17

TỪ KHÓA LIÊN QUAN

🧩 Sản phẩm bạn có thể quan tâm

w