Xác suất thi đậu của người này ở mỗi lần thi là 60%.. b Tính xác suất người này dự thi ít nhất ba lần.. Xác suất thi đậu của mỗi người ở mỗi lần thi là 60%.. c A cần phải xuất phát từ nh
Trang 1BÀI TẬP C.2
ĐẠI LƯỢNG NGẪU NHIÊN-
QUY LUẬT PHÂN PHỐI
-0 -
1/.Một thí sinh dự thi lái xe đến khi đậu mới thôi Xác suất thi đậu của người này ở mỗi lần thi là 60% Gọi X là số lần dự thi của người này
a) Tìm quy luật phân phối xác suất của X
b) Tính xác suất người này dự thi ít nhất ba lần
c) Có 200 người dự thi lái xe cho đến khi đậu Xác suất thi đậu của mỗi người ở mỗi lần thi là 60% Theo Anh Chị có bao nhiêu người dự thi ít nhất ba lần.
2/ X(năm) là tuổi thọ của một loại sản phẩm điện tử có phân phối chuẩn X~N(4;1) Thời gian bảo hành sản phẩm là 2 năm
a) Tìm tỷ lệ sản phẩm cần được bảo hành
b) Tại một đại lý; trong năm 2008 bán được 100 sản phẩm, theo Anh Chị có bao nhiêu sản phẩm cần được bảo hành
c) Thời gian bảo hành là bao nhiêu ,để tỷ lệ sp cần được bảo hành là 15,87%
3/ Trường ĐHKT có 500 SV nội trú căng tin của trường phục vụ cơm trưa cho
SV theo 2 ca:
Ca 1 : từ 11.00 giờ – 11.30 giờ
Ca 2 : từ 11.40 giờ - 12.10 giờ
SV có thể chọn bất kỳ ca nào để dùng cơm
Theo Anh Chị căng tin cần có ít nhất bao nhiêu chỗ ngồi để xác suất luôn luôn đáp ứng đủ chỗ ngồi cho SV đến dùng cơm trưa không bé hơn 95% 4/ Một công ty du lịch tổ chức tuần trăng mật cho 100 cặp vợ chồng mới cưới tại Đà lạt
Tại khách sạn phục vụ điểm tâm sáng theo hai ca:
Trang 2
Ca 1: từ 6.30 – 7.00
Ca 2: từ 7.10 - 7.40
Mỗi cặp vợ chồng luôn đi ăn cùng nhau và có thể chọn tùy ý một trong hai
ca
Số chỗ ngồi tại căng tin của khách sạn phải có ít nhất bao nhiêu chỗ ngồi, để xác suất luôn đáp ứng đủ chỗ ngồi cho các cặp vợ chồng đến dùng điểm tâm ≥ 99%
5/ Cho : X~B(20,80%)
Y~H(60,40,10)
Z~P(4)
S= 4X-5Y-4Z+100; X, Y, Z độc lập
Tính E(S) , Var(S)
6/ Cho X~N(4,16)
Tính: P(X> 10) ; P( 5<X<7) ; P( -2<X<3)
7/ Cho X~N(0,1)
Biết rằng P ( X < xα) = 0 9750 , tìm xα
P (| X | ≥ xβ) = 0 0456 , tìm x β
8/ Tại 1 địa phương vùng cao, theo số liệu các năm vừa qua trung bình một năm có 3 thí sinh đậu đại học Tính xác suất năm 2008 có :
a) 5 thí sinh đậu
b) có ít nhất 5 thí sinh đậu
9/ Một trường Đại học có chỉ tiêu tuyển sinh là 500
a) Có 2000 thí sinh dự thi, xác suất thi đậu của mỗi thí sinh là 30% Tính xác suất để số thí sinh trúng tuyển không vượt quá chỉ tiêu
b) Số thí sinh là bao nhiêu , để biến cố: số thí sinh trúng tuyển không vượt quá chỉ tiêu có xác suất ≥ 95%
( xác suất đậu của mỗi thí sinh là 30% )
10/ Trọng lượng của một loại trái cây có phân phối chuẩn, kiểm tra 1000 trái thấy có :
Trang 3106 trái có trọng lượng > 300 g ,
40 trái có trọng lượng < 180 g
a) Tìm trọng lượng trung bình và độ lệch chuẩn của trái cây trên
b) Hãy ước lượng số trái cây có trọng lượng trong khoảng 200 g–250 g trong 1000 trái trên
11/.X(phút): thời gian đi từ nhà đến trường của sinh viên A là một đại lượng ngẫu nhiên có phân phối chuẩn Biết rằng 76,24% số ngày A đi từ nhà đến trường mất trên 22 phút và 10% số ngày mất trên 28 phút
a) Tính thời gian trung bình A đi từ nhà đến trường
b) Giả sử A xuất phát từ nhà trước giờ vào học 26 phút Tính xác suất A
bị trể giờ học
c) A cần phải xuất phát từ nhà trước giờ vào học bao nhiêu phút để xác suất bị trể giờ vào học của A bé hơn 3%
12/.Một thiết bị điện tử gồm có 10 ngàn linh kiện Trong đó có 2 ngàn linh kiện loại loại I, 3 ngàn linh kiện loại II và 5 ngàn linh kiện loại III Xác suất để một linh kiện loại I bị hỏng là 0,003% Xác suất để một linh kiện loại II bị hỏng là 0,002% Xác suất để một linh kiện loại III bị hỏng là 0,001%
Thiết bị ngừng hoạt động khi có ít nhất ba linh kiện bị hỏng
Hãy tính xác suất để thiết bị này ngừng hoạt động
Biết rằng việc các linh kiện hoạt động tốt hay hư hỏng làhoàn toàn độc lập với nhau
13/.Tại một địa phương có 5 mạch nước ngầm khác nhau, trong đó có 1 mạch bị nhiểm thạch tín Có 900 giếng nước tại địa phương lấy từ 5 mạch nước này nhưng không rõ nguồn gốc mạch nước ngầm của giếng ( mỗi giếng thuộc duy nhất một mạch nước ngầm ) Một đoàn kiểm tra muốn xác định giếng có bị nhiểm thạch tín không, bằng cách xét nghiệm mẫu nước Có hai phương pháp được đề nghị:
Cách 1: Xét nghiệm từng mẫu giếng nước riêng biệt
Cách 2:
a) Nếu biết chi phí mỗi lần xét nghiệm là như nhau thì hãy tính xem cách xét nghiệm nào có lợi hơn
Ghép chung 9 mẫu nước giếng khác nhau thành 1 nhóm làm xét nghiệm, nếu mẫu ghép không bị nhiểm thì kết luận cả 9 mẫu không bị nhiểm và ngược lại nếu mẫu ghép bị nhiểm thì làm thêm 9 xét nghiệm riêng cho 9 mẫu để xác định giếng nào bị nhiểm
Trang 4b) Hãy tính xem nên ghép mỗi nhóm là bao nhiêu mẫu giếng nước để chi phí xét nghiệm là thấp nhất
Cho biết bảng biến thiên của hàm số ( ) (1 1 0,8x)
x x
với giá trị x làm tròn đến số lẻ thứ tư như sau:
X 1 2,9382 20,2316
f(x) 1,2 cực đại
cực tiểu