Mục tiêu chính của bài nghiên cứu là tìm hiểu và phân tích sự tác động qua lại giữa các biến, từ đó đưa ra các chính sách và giải pháp hiệu quả cao nhất để mang lại nhiều cơ hội, lợi nhuận và phòng tránh rủi ro cho các nhà đầu tư, thúc đẩy nền kinh tế của đất nước. Để hiểu rõ hơn mời các bạn cùng tham khảo nội dung chi tiết của bài viết này.
Trang 1Tóm tắt
Bài nghiên cứu sử dụng Mô hình phân tích chuỗi thời gian Var(p) để xem xét mối quan hệ của các nhân tố kinh tế vĩ mô như CPI – chỉ số giá tiêu dùng, tỷ giá hối đoái, tốc độ tăng trưởng cung tiền, và giá cổ phiếu trên sàn HSX Đây thực sự là một vấn
đề quan trọng và rất cần được quan tâm ở tại Việt Nam Các kết quả của mô hình được tổng hợp thông qua kiểm định nhân quả Granger, Đồ thị hàm phản ứng xung và Bảng phân rã phương sai Mục tiêu chính của bài nghiên cứu là tìm hiểu và phân tích sự tác động qua lại giữa các biến, từ đó đưa ra các chính sách và giải pháp hiệu quả cao nhất
để mang lại nhiều cơ hội, lợi nhuận và phòng tránh rủi ro cho các nhà đầu tư, thúc đẩy nền kinh tế của đất nước
Từ khóa: Mô hình VAR(P), chỉ số giá tiêu dùng (CPI), VN-Index, tỷ giá hối đoái,
tốc độ tăng trưởng cung tiền
ỨNG DỤNG MÔ HÌNH PHÂN TÍCH CHUỖI THỜI GIAN TRONG PHÂN TÍCH
MỐI QUAN HỆ CỦA CÁC NHÂN TỐ KINH TẾ VĨ MÔ VÀ GIÁ CỔ PHIẾU
TRÊN SÀN CHỨNG KHOÁN THÀNH PHỐ HỒ CHÍ MINH (HSX)
26.
Sinh viên lớp 17DQF Nguyễn Tâm Nhi
Trường Đại học Tài chính - Marketing
Trang 21 GIỚI THIỆU
Trong xu thế hội nhập quốc tế ngày nay, sự phát triển của các quốc gia trên thế giới đã khẳng định mối liên hệ giữa các chính sách kinh tế vĩ mô và thị trường chứng khoán Hiện nay, có nhiều bài viết nghiên cứu về vấn đề trên, tuy nhiên, trong mỗi điều kiện và thời điểm khác nhau thì các yếu tố và sự tác động sẽ hoàn toàn bị biến đổi Do đó, trong bối cảnh này, việc nghiên cứu về mối quan hệ của các nhân tố kinh
tế vĩ mô và giá cổ phiếu trên sàn HSX là vô cũng hữu ích
Trên thế giới đã có nhiều nghiên cứu về mối quan hệ các chính sách vĩ mô tác động đến giá cổ phiếu Friedman và Schwartz (1963) đã nghiên cứu về mối quan hệ cung tiền và thu nhập chứng khoán, theo đó thì giá chứng khoán sẽ tăng lên khi gia tăng cung tiền, vì điều đó làm gia tăng thanh khoản và tín dụng cho cổ phiếu Tỷ lệ lạm phát, tỷ lệ tăng trưởng của thị trường chứng khoán Mỹ trong thời gian 1929 đến năm
1981 đã thể hiện rằng: “Lạm phát tăng cao luôn là kẻ thù của thị trường cổ phiếu” (Leeb và Conrad,1996) Trong nghiên cứu của Al-Qenae và cộng tác viên (2002) về cổ phiếu niêm yết trên thị trường chứng khoán Kuwait cho thấy, giá của cổ phiếu có tỷ lệ thuận với biến EPS và GNP, nhưng lại có tỷ lệ nghịch với các biến lãi suất và lạm phát Liu và Sharestha (2008) đã phân tích trên thị trường chứng khoán Trung Quốc, tìm
ra mối tương quan thuận giữa cổ phiếu với gía trị sản xuất công nghiệp, cung tiền và tương quan nghịch giữa giá cổ phiếu với tỷ lệ lạm phát, lãi suất và tỷ giá Mahmudul
và Sahah Uddin (2009) với nghiên cứu về mối quan hệ lãi suất và giá cổ phiếu ở các nước phát triển và các nước đang phát triển Thông qua đó, làm rõ tác động tiêu cực giữa giá cổ phiếu và lãi suất Tác giả George Filis (2009) sử dụng mô hình Var để tìm hiểu về mối quan hệ giữa giá cổ phiếu và giá trị sản lượng công nghiệp và kết quả thấy được giá trị sản lượng công nghiệp có tác động tích cực đến giá cổ phiếu.Mehr-un-Nisa và Nishat (2012) đã sử dụng phương pháp GMM (Generalized Method of Moments) nghiên cứu sự ảnh hưởng của chi tiêu tài chính công ty và các yếu tố vĩ mô đến giá của cổ phiếu niêm yết trên Thị trường chứng khoán Karachi (Pakistan) Năm
2012, Aurangzeb đã nghiên cứu trên ba thị trường chứng khoán ở khu vực Nam Á và xác định các nhân tố ảnh hưởng đến giá các cổ phiếu
Tại Việt Nam, trong nghiên cứu “Phân tích tác động của các nhân tố kinh tế vĩ
mô đến thị trường chứng khoán Việt Nam” thể hiện mối quan hệ tích cực giữa chỉ số giá thị trường đối với các biến cung tiền, sản lượng công nghiệp và giá dầu thế giới Nhưng, VN-Index lại có quan hệ tiêu cực đối với lãi suất và tỷ giá hoái đối (Phan Thị Bích Nguyệt và Phạm Dương Phương Thảo, 2013) Hussainey và Ngoc (2009) nghiên
Trang 3cứu ảnh hưởng của các yếu tố vĩ mô của Việt Nam và của Mỹ đến giá cổ phiếu của Việt Nam Từ đó, đưa ra kết luận mối tương quan thuận giữa giá trị sản xuất công nghiệp của Việt Nam và Mỹ đối với cổ phiếu Việt Nam Đồng thời, làm rõ mối tương quan nghịch giữa lãi suất và giá cổ phiếu
Mục tiêu của bài nghiên cứu này, là xem xét mối quan hệ của các biến số kinh tế vĩ
mô đối với chỉ số VN-index Từ đó, giúp các nhà đầu tư đưa ra các phân tích và chiến lược phù hợp Đồng thời, đề xuất các chính sách giúp tăng trưởng kinh tế và phát triển thị trường chứng khoán Việt Nam
2 GIỚI THIỆU DỮ LIỆU VÀ PHƯƠNG PHÁP NGHIÊN CỨU
2.1 Dữ liệu nghiên cứu
Đây là số liệu được thu thập cho khoảng thời gian từ tháng 01/2010 đến tháng 4/2020, bao gồm ba yếu tố kinh tế vĩ mô và chỉ số VN-Index được sử dụng trong phân tích (Bảng 1)
Bảng 1: Mô tả các biến số
Chỉ sô VN-Index X1 Chỉ số Vn-Index là chỉ số đóng cửa ngày cuối cùng trong tháng Chỉ số CPI X2 Chỉ số giá tiêu dùng (hàng tháng)
Tỷ giá hối đoái X3 Tỷ số hối đối là tỷ giá VND/USD ngày cuối cùng trong tháng
Tốc độ tăng trưởng cung tiền X4 Tốc độ tăng trưởng cung tiền tháng này so với tháng trước
Nguồn dữ liệu:
Chỉ sô VN-Index https://cophieu68.vn/
Tỷ giá hối đoái https://aric.adb.org/
Tốc độ tăng trưởng cung tiền https://aric.adb.org/
2.2 Phương pháp nghiên cứu
Vào năm 1980, Giáo sư Đại học Princeton, Chrisphopher Sims đã đề xuất mô hình Vectơ tự hồi quy (VAR) Và nghiên cứu này đã trở thành một phương pháp thành công nhất trong phân tích thực nghiệm vĩ mô Mô hình VAR là một mô hình kinh tế lượng dung để xem xét động thái và sự phụ thuộc lẫn nhau giữa một số biến theo thời gian
Trang 4Trong mô hình VAR, mỗi một biến được giải thích bằng một phương trình chứa các giá trị trễ của chính biến số và các giá trị trễ của các biến số khác Do đó, mô hình VAR được xây dựng nhầm mục đích: xây dựng mô hình dự báo mà không cần lý do, cho phép xem xét ảnh hưởng động của các cú sốc đối với các biến khác và đánh giá tầm quan trọng của cú sốc đối với sự dao động của các biến
3 KẾT QUẢ NGHIÊN CỨU
3.1 Chọn độ trễ tối ưu
Độ dài độ trễ tối ưu cho mô hình VAR được lựa chọn dựa trên kiểm định log-likelihood test Kết quả kiểm định LR, AIC đều gợi ý cho độ trễ mô hình VAR tối ưu
là 1 (Bảng 2)
Bảng 2: Xác định độ trễ tối ưu cho mô hình VAR
0 -1717,435 NA 33905162 28,69058 28,78350 28,72832
1 -1663,650 103,0879 18065592* 28,06083* 28,52542* 28,24950*
2 -1649,072 26,96976* 18516101 28,08453 28,92078 28,42413
3 -1636,412 22,57597 19621043 28,14021 29,34812 28,63075
3.2 Kiểm định tính dừng của các chuỗi số liệu với mức ý nghĩa 5%
Trong phân tích chuỗi số liệu thời gian, nghiên cứu sử dụng kiểm định ADF (Augemented Dickey-Fuller test) để xác định tính dừng Thông qua đó, kết luận được thể hiện như sau: với mức ý nghĩa 5% các chuỗi số liệu X1 (chỉ số VNI-Index), X3 (Tỷ giá hối đoái), X4 (Tốc độ tăng trưởng cung tiền) đều không dừng, X2 (chỉ số CPI dừng) Sau đó, tiến hành thực hiện kiểm tra tính dừng các chuỗi sai phân bậc 1 và kết quả cho thấy các biến X1, X2, X3 đều dừng (Bảng 3)
Bảng 3: Kết quả kiểm định tính dừng
1 Giá trị các biến
Trang 5Biến Giá trị thống kê ADF Xác suất Giá trị tới hạn 5% (Thống kê t)
2 Giá trị các biến sai phân bậc 1
3.3 Kiểm định nhân quả Granger
Kiểm định Granger (Bảng 4) mô tả kết quả như sau:
- Chỉ số CPI, tỷ giá hối đoái và tốc độ tăng trưởng cung tiền và sự kết hợp của chúng đều không thực sự là nguyên nhân gây ra sự biến động của chỉ số VNI-Index (do p_value đều lớn hơn 0,5)
- Chỉ số VNI-Index, tỷ giá hối đoái và tốc độ tăng trưởng cung tiền và sự kết hợp của chúng đều không thực sự là nguyên nhân gây ra sự biến động của chỉ số CPI (do p_value đều lớn hơn 0,5)
- Chỉ số VNI-Index, CPI và tốc độ tăng trưởng cung tiền và sự kết hợp của chúng đều không thực sự là nguyên nhân gây ra sự biến động của tỷ giá hối đoái (do p_value đều lớn hơn 0,5)
- Chỉ số VNI-Index, CPI đều không thực sự là nguyên nhân gây ra sự biến động của tốc độ tăng trưởng cung tiền (do p_value đều lớn hơn 0,5) Nhưng tỷ giá hối đoái
và sự kết hợp của chúng lại thực sự là nguyên nhân gây ra sự biến động của tốc độ tăng trưởng cung tiền (do p_value đều nhỏ hơn 0,5)
Bảng 4: Kiểm định nhân quả Granger Dependent variable: DX1
Dependent variable: X2
Trang 6DX4 4,393487 6 0,6236
Dependent variable: DX3
Dependent variable: DX4
3.4 Hàm phản ứng xung
Hình 1: Hàm phản ứng xung
-20
0
20
40
60
1 2 3 4 5
Response of DX1 to DX1
-20 0 20 40 60
1 2 3 4 5
Response of DX1 to X2
-20 0 20 40 60
1 2 3 4 5
Response of DX1 to DX3
-20 0 20 40 60
1 2 3 4 5
Response of DX1 to DX4
-.4
-.2
.0
.2
.4
.6
1 2 3 4 5
Response of X2 to DX1
-.4 -.2 0 2 4 6
1 2 3 4 5
Response of X2 to X2
-.4 -.2 0 2 4 6
1 2 3 4 5
Response of X2 to DX3
-.4 -.2 0 2 4 6
1 2 3 4 5
Response of X2 to DX4
-50
0
50
100
150
1 2 3 4 5
Response of DX3 to DX1
-50 0 50 100 150
1 2 3 4 5
Response of DX3 to X2
-50 0 50 100 150
1 2 3 4 5
Response of DX3 to DX3
-50 0 50 100 150
1 2 3 4 5
Response of DX3 to DX4
-2
-1
0
1
2
1 2 3 4 5
Response of DX4 to DX1
-2 -1 0 1 2
1 2 3 4 5
Response of DX4 to X2
-2 -1 0 1 2
1 2 3 4 5
Response of DX4 to DX3
-2 -1 0 1 2
1 2 3 4 5
Response of DX4 to DX4
Response to Cholesky One S.D Innovations ± 2 S.E.
Trang 7Đối với chỉ số VNI-Index:
- Khi có một cú sốc đối với CPI thì chỉ số VNI-Index có phản ứng tăng nhẹ từ tháng thứ nhất cho đến tháng thứ hai thì có trạng thái dương, sau đó giảm nhẹ ở tháng thứ ba về trạng thái cân bằng Và từ tháng thứ ba tăng nhẹ dần đến chu kỳ cuối thì đạt trạng thái cân bằng và sau đó ổn định
- Khi có một cú sốc đối với tỷ giá hối đoái thì chỉ số VNI-Index từ mức cân bằng đạt được ở quý thứ hai, chỉ số VNI-Index bắt tăng nhẹ đến tháng thứ ba Sau đó giảm nhẹ đến tháng thứ tư và điều chỉnh tăng cho đến chu kỳ cuối
- Khi có một cú sốc đối với tốc độ tăng trưởng cung tiền thì chỉ số VNI-Index có phản ứng giảm nhẹ sau khoảng hơn ba tháng và điều chỉnh tăng không đáng kể đến tháng thứ tư Từ đó, giảm đến cuối chu kỳ
Đối với chỉ số CPI:
- Khi có một cú sốc đối với VNI-Index thì CPI có phản ứng tăng từ tháng thứ nhất đến tháng thứ hai Sau đó, giảm về tháng thứ ba và điều chỉnh về trạng thái cân bằng
ở tháng thứ tư và tiếp tục giảm cho đến chu kỳ cuối
- Khi có một cú sốc đối với tỷ giá hối đoái thì CPI có phản ứng tăng mạnh từ tháng thứ nhất (ở vị trí cân bằng) đến tháng thứ ba và sau đó điều chỉnh giảm đến chu kỳ cuối
- Khi có một cú sốc đối với tốc độ tăng trưởng cung tiền thì CPI có phản ứng tăng mạnh từ tháng thứ nhất (ở vị trí cân bằng) đến cuối chu kỳ
Đối với tỷ giá hối đoái:
- Khi có một cú sốc đối với chỉ số VNI-Index thì tỷ giá hối đoái ngay ở tháng thứ nhất đạt ở trạng thái âm và sau đó tăng đến tháng thứ ba Từ đó, điều chỉnh giảm đến tháng thứ tư và đến cuối chu kỳ đạt ở trạng thái cân bằng
- Khi có một cú sốc đối với CPI thì tỷ giá hối đoái gần như không có phản ứng tức thì từ tháng thứ nhất đến tháng thứ ba Từ đó, tăng nhẹ đến tháng thứ tư và điều chỉnh giảm đến cuối kỳ
- Khi có một cú sốc đối với tốc độ tăng trưởng cung tiền thì tỷ giá hối đoái tăng
từ tháng thứ nhất (ở trạng thái cân bằng) đến tháng thứ ba giảm nhẹ và điều chỉnh về trạng thái cân bằng ở thời kỳ cuối
Trang 8Đối với tốc độ tăng trưởng cung tiền thì:
- Khi có một cú sốc đối với chỉ số VNI-Index thì tốc độ tăng trưởng cung tiền ở trạng thái dương khi ở tháng thứ nhất và bắt đầu giảm mạnh đến tháng thứ hai Từ
đó, điều chỉnh tăng đến tháng thứ ba và sau đó đạt trạng thái cân bằng ở thời kỳ cuối
- Khi có một cú sốc đối với chỉ số CPI thì tốc độ tăng trưởng cung tiền bắt đầu tăng
từ tháng thứ nhất đến tháng thứ hai Sau đó, giảm đến tháng thứ ba và từ đó duy trì trạng thái cân bằng đến thời kỳ cuối
- Khi có một cú sốc đối với tỷ giá hối đoái thì tốc độ tăng trưởng cung tiền có phản ứng giảm từ tháng thứ nhất (ở vị trí cân bằng) đến tháng thứ hai và sau đó tăng nhẹ đến tháng thứ ba Từ đó điều chỉnh giảm nhẹ đến tháng thứ tư và tăng không đáng kể đến cuối kỳ
3.5 Phân rã phương sai VDF
Bảng 5: Bảng phân rã phương sai Variance Decomposition of DX1:
Variance Decomposition of X2:
Variance Decomposition of DX3:
Trang 9Variance Decomposition of DX4:
Từ kết quả phân tích phân rã phương sai trên cho thấy rằng:
- Chỉ số VNI-Index trong quá khứ 5 tháng giải thích được khoảng 93,36080% biến động của chỉ số VNI-Index hiện tại Bên cạnh đó, chỉ số CPI chỉ giải thích được khoảng 1,407405% biến động của VNI-Index, còn tỷ giá hối đối giải thích được 2,274155% biến động của VNI-Index, còn tốc độ tăng trưởng cung tiền giải thích được 2,957684% biến động của VNI-Index
- Chỉ số CPI trong quá khứ 5 tháng giải thích được khoảng 83,14865% biến động của chính nó ở hiện tại Bên cạnh đó, chỉ số VNI-Index chỉ giải thích được khoảng 8,8699968% biến động của CPI, còn tỷ giá hối đối giải thích được 8,140794% biến động của CPI, còn tốc độ tăng trưởng cung tiền giải thích được 5,537779% biến động của CPI
- Tỷ giá hối đoái trong quá khứ 5 tháng giải thích được khoảng 87,24102% biến động của tỷ giá hối đoái hiện tại Bên cạnh đó, chỉ số VNI-Index chỉ giải thích được khoảng 8,969998% biến động của tỷ giá hối đoái, còn CPI giải thích được 1,670079% biến động của tỷ giá hối đoái, còn tốc độ tăng trưởng cung tiền giải thích được 2,118899% biến động của tỷ giá hối đoái
- Tốc độ tăng trưởng cung tiền trong quá khứ 5 tháng giải thích được khoảng 68,51420% biến động của tốc độ tăng trưởng cung tiền hiện tại Bên cạnh đó, chỉ
số VNI-Index giải thích được khoảng 20,70102% biến động của tốc độ tăng trưởng cung tiền, còn CPI giải thích được 2,512516% biến động của tốc độ tăng trưởng cung tiền, còn tỷ giá hối đoái giải thích được 8,227224% biến động của tốc độ tăng trưởng cung tiền
Trang 104 KẾT LUẬN
Qua phân tích trên đây đã thấy được mối quan hệ của các nhân tố vĩ mô đối với giá cổ phiếu trên sàn HSX Trong ngắn hạn, tỷ giá hối đoái, tốc độ tăng trưởng cung tiền và chỉ số CPI và sự kết hợp của các nhân tố này chưa thực sự là nguyên nhân gây
ra biến động của chỉ số VNI-Index Tuy nhiên, sự kết hợp của tỷ giá hối đoái, chỉ số VNI-Index và CPI lại là nguyên nhân gây ra biến động của tốc độ tăng trưởng cung tiền Do hạn chế về số liệu nên trong nghiên cứu chỉ mới đưa vào 4 nhân tố để áp dụng phân tích mô hình Var Đồng thời, trong tương lai, nghiên cứu sẽ thực hiện kết hợp mô hình vectơ hiệu chỉnh sai số (VECM), góp phần mở rộng mối quan hệ các biến trong dài hạn
TÀI LIỆU THAM KHẢO
1 Al- Qenae, Rashid, Carmen Li and Bob (2002), The information content of earnings
on stock price: The Kuwait Stock Exchange Multinational Finance Journal,
6(3-4), p 197-221
2 Aurangzeb (2012), Factors affecting performance of stock market: Evidence from
South Asian countries International Journal of Academic Research in Business and Social Sciences, trang 1-15.
3 Friedman M and Schwartz A (1867-1960), A Monetary History of the United States Princeton University Press: 1963.
4 George Filis (2009), The relationship between stock market, CPI and industrial production in Greece and the impact of oil prices: Are any new findings emerging
from the examination of their cyclical components, using recent data International Conference on Applied Economics, p 164 - p176.
5 Hussainey, Khaled and Le Khanh Ngoc (2009), The impact of macroeconomic
indicators on Vietnamese stock prices Journal of Risk Finance, 10(4), p 321-332.
6 Leeb, S and Conrad, R.S (1996), Xác định thời điểm mua bán cổ phiếu (Trần
Tuấn Thạc dịch), NXB Thống Kê
7 Liu, Ming-Hua and Keshab Shrestha (2008), Analysis of the long-term relationship between macroeconomic variables and the Chinese stock market
using heteroscedastic cointegration Managerial Finance, 34, p 744-755.