Contents Preface xiii Acknowledgments xv Editorsxvii Contributorsxix Part I Instrumentation and Measurement Concepts... 1.1 Introduction Measurement is a process of gathering information
Trang 2Spatial, Mechanical, Thermal,
Trang 4CRC Press is an imprint of the
Taylor & Francis Group, an informa business
Boca Raton London New York
Spatial, Mechanical, Thermal,
Trang 5MATLAB® is a trademark of The MathWorks, Inc and is used with permission The MathWorks does not warrant the accuracy of the text or exercises in this book This book’s use or discussion of MATLAB® software or related products does not constitute endorsement or sponsorship by The MathWorks of a particular pedagogical approach or particular use of the MATLAB® software.
CRC Press
Taylor & Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742
© 2014 by Taylor & Francis Group, LLC
CRC Press is an imprint of Taylor & Francis Group, an Informa business
No claim to original U.S Government works
Version Date: 20130725
International Standard Book Number-13: 978-1-4398-4889-0 (eBook - PDF)
This book contains information obtained from authentic and highly regarded sources Reasonable efforts have been made to publish reliable data and information, but the author and publisher cannot assume responsibility for the valid- ity of all materials or the consequences of their use The authors and publishers have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained If any copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint.
Except as permitted under U.S Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or lized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopy- ing, microfilming, and recording, or in any information storage or retrieval system, without written permission from the publishers.
uti-For permission to photocopy or use material electronically from this work, please access www.copyright.com (http:// www.copyright.com/) or contact the Copyright Clearance Center, Inc (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400 CCC is a not-for-profit organization that provides licenses and registration for a variety of users For organizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged.
Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for
identification and explanation without intent to infringe.
Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com
and the CRC Press Web site at
http://www.crcpress.com
Trang 6Contents
Preface xiii Acknowledgments xv Editorsxvii Contributorsxix
Part I Instrumentation and Measurement Concepts
Trang 14Thehandbookcoversanextensiverangeoftopicsthatcomprisethesubjectofmeasurement,instru-Thechaptersincludedescriptiveinformationforprofessionals,students,andworkersinterestedinmeasurementTheyincludeequationstoassistengineersandscientistswhoseektodiscoverapplica-tionsandsolveproblemsthatariseinfieldsnotintheirspecialtyTheyalsoincludespecializedinforma-tionneededbyinformedspecialistswhoseektolearnadvancedapplicationsofthesubject,evaluativeopinions,andpossibleareasforfuturestudyThus,thehandbookservesthereferenceneedsofthebroadestgroupofusers—fromtheadvancedhigh-schoolsciencestudenttoindustrialanduniversityprofessionals
Organization
Inthisedition,thefirstvolumehas10parts,eachhavingseveralchapters,foratotalof96chapters
writtenbyexpertsintheirareasItconcentratesonconceptsininstrumentationandmeasurements,spatialvariablemeasurement,displacementmeasurement,mechanicalvariablemeasurement,acous-tics,flowand spotvelocity,thermalandtemperaturemeasurement,andradiationItreflectsrecenttrendsininstrumentationandmeasurementswiththeadditionofanewpartonwirelessinstrumenta-tionConceptsincontrolsystemsandhumanfactorsaregivenasaseparatepart
Thesecondvolumehas10parts,eachhavingseveralchapters,foratotalof96chapterswrittenbyexpertsintheirareasasinvolume1Itconcentratesonsensorsandsensortechnology,electricvariablemeasurement,electromagneticvariables,timeandfrequency,opticalmeasurement,chemicalvariables,
Trang 15xiv Preface
medical,biomedicalandhealth,andenvironmentalmeasurementSignalprocessing,anddisplaysandrecordersconstitutethelasttwopartsofthisvolume
Locating Your topic
Tofindouthowtomeasureagivenvariable,skimthetableofcontents,turntothatsection,andfindthechaptersthatdescribedifferentmethodsofmakingthemeasurementConsiderthealternativemethodsofmakingthemeasurementandeachoftheiradvantagesanddisadvantagesSelectamethod,sensor,andsignalprocessingmethodManychapterslistanumberofvendorstocontactformoreinformationYoucanalsovisithttp://wwwglobalspeccom/toobtainalistofvendors
For more detailed information, consult the index, since certain principles of measurement mayappearinmorethanonechapter
MATLAB®isaregisteredtrademarkofTheMathWorks,IncForproductinformation,pleasecontact:TheMathWorks,Inc
Trang 16Acknowledgments
Wewouldliketothankalltheauthorsfortheirvaluablecontributiontowardthistwo-volumesetbookWeappreciatethetimeandeffortdevotedbyallournewauthorsandthoseauthorswhowentanextramiletoreviseandupdatetheirchaptersWearegratefultotheCRCPressteamfortheirencouragementtopreparethissecondeditionThepublicationofthisbookwouldnothavebeenpossiblewithouttheirtirelessdedicationinputtingittogetherLastbutnotleast,wewouldliketothankallourreadersinselectingthisbookforadvancingtheirknowledgeandtechnicalskills
John.G Webster.and.Halit.Eren
Co-Editors
Trang 18Editors
John.G WebsterreceivedhisBEEfromCornellUniversity,Ithaca,NewYork,in1953,andhisMSEE
andPhDfromtheUniversityofRochester,Rochester,NewYork,in1965and1967,respectivelyHeisprofessoremeritusofbiomedicalengineeringattheUniversityofWisconsin–MadisonHeisahighlycitedresearcheratKingAbdulazizUniversity,Jeddah,SaudiArabiaInthefieldofmedicalinstrumentation, heteaches undergraduate and graduate courses and does research onintracranialpressuremonitors,ECGdryelectrodes,andtactilevibrators
DrWebsteristheauthorofTransducers.and.Sensors,.an.IEEE/EAB.Individual.Learning.Program (Piscataway,NJ:IEEE,1989)Heisthecoauthor,withBJacobson,ofMedicine.and.Clinical.Engineering (EnglewoodCliffs,NJ:Prentice-Hall,1977)and,withRPallas-Areny,ofSensors.and.Signal.Conditioning, Second Edition (NewYork:Wiley,2001), andAnalog Signal Conditioning (New York: Wiley, 1999) HeistheeditorofEncyclopedia.of.Medical.Devices.and.Instrumentation,SecondEdition(NewYork: Wiley,2006),Tactile.Sensors.for.Robotics.and.Medicine(NewYork:Wiley,1988),Electrical.Impedance Tomography(Bristol,UK:AdamHilger,1990),Teaching.Design.in.Electrical.Engineering(Piscataway, NJ:EducationalActivitiesBoard,IEEE,1990),Prevention.of.Pressure.Sores:.Engineering.and.Clinical Aspects(Bristol,UK:AdamHilger,1991),Design.of.Cardiac.Pacemakers(Piscataway,NJ:IEEEPress, 1995), Design of Pulse Oximeters (Bristol, UK: IOP Publishing, 1997), Medical Instrumentation: Application and Design, Fourth Edition (Hoboken NJ: Wiley, 2010), Encyclopedia of Electrical and Electronics.Engineering(NewYork,Wiley,1999),Minimally.Invasive.Medical.Technology(Bristol,UK: IOPPublishing,2001),andBioinstrumentation(HobokenNJ:Wiley,2004)Heisthecoeditor,withA MCook,ofClinical.Engineering:.Principles.and.Practices(EnglewoodCliffs,NJ:Prentice-Hall,1979) andTherapeutic.Medical.Devices:.Application.and.Design(EnglewoodCliffs,NJ:Prentice-Hall,1982), withWJTompkinsofDesign.of.Microcomputer-Based.Medical.Instrumentation(EnglewoodCliffs,NJ: Prentice-Hall,1981)andInterfacing.Sensors.to.the.IBM.PC(EnglewoodCliffs,NJ:PrenticeHall,1988), and,withAMCook,WJTompkins,andGCVanderheiden,ofElectronic.Devices.for.Rehabilitation
(London,UK:Chapman&Hall,1985)
DrWebsterhasbeenamemberoftheIEEE-EMBSAdministrativeCommitteeandtheNIHSurgeryandBioengineeringStudySectionHeisafellowoftheInstituteofElectricalandElectronicsEngineers,theInstrumentSocietyofAmerica,theAmericanInstituteofMedicalandBiologicalEngineering,theBiomedicalEngineeringSociety,andtheInstituteofPhysicsHeistherecipientoftheIEEEEMBSCareerAchievementAward
Halit.ErenreceivedhisBEngin1973,MEngin1975,andPhDin1978fromtheUniversityofSheffield,
UnitedKingdomHeobtainedanMBAfromCurtinUniversityin1999
Afterhisgraduation,DrErenworkedinEtibank(aminingandmetallurgycompanyinTurkey)asaninstrumentationengineerfortwoyearsHewasanassistantprofessoratHacettepeUniversityin1980–1981andMiddleEastTechnicalUniversityin1982HehasbeenatCurtinUniversitysince
Trang 19xviii Editors
1983, researching and teaching primarily in the areas of control systems, instrumentation, andengineeringmanagement
DrErenwasappointedasvisitingassociateprofessoratthePolytechnicUniversityinHongKongin2004andiscurrentlyavisitingprofessorattheUniversityofWisconsin,USAHeisaseniormemberofIEEE,takingrolesinRegion10activities,variouscommitteesfororganizingconferences,andasamem-berofeditorshipintransactionsDrErenhasover180publicationsinconferenceproceedings,books,
andtransactionsHeistheauthorofElectronic.Portable.Instruments—Design.and.Applications(Boca Raton,FL:CRCPress,2004)andWireless.Sensors.and.Instruments—Networks,.Design.and.Applications (BocaRaton,FL:CRCPress,2006)Hehascoedited,withBelaLiptak,Instruments.Engineers’.Handbook— Process.Software.and.Digital.Networks,Vol3,edn4(BocaRaton,FL:CRCPress,2011)Heisinvolved
inwritinganumberofbooksinthefieldofinstrumentationandmeasurementDrErenisactiveinresearchingandpublishingonintelligentsensors,wirelessinstrumentation,wirelesssensornetworks,automationandcontrolsystems,andverylargecontrolsystems
Trang 20Amit.Bandyopadhyay
DepartmentofCeramicScienceand
EngineeringRutgersUniversityPiscataway,NewJersey
Partha.P Banerjee
DepartmentofElectricalandComputer
EngineeringUniversityofAlabamaatHuntsvilleHuntsville,Alabama
William.H Bayles,.Jr.
TheFredericksCompanyHuntingtonValley,Pennsylvania
Ben.Benhabib
DepartmentofMechanicalandIndustrialEngineering
UniversityofTorontoToronto,Ontario,Canada
Vikram.Bhatia
VirginiaTechBlacksburg,Virginia
A Bonen
UniversityofTorontoToronto,Ontario,Canada
Contributors
Trang 21IonizingRadiationDivisionPhysicsLaboratory
NationalInstituteofStandardsand
TechnologyGaithersburg,Maryland
Brian.Culshaw
DepartmentofElectronicandElectrical
EngineeringUniversityofStrathclydeGlasgow,England
G Mark.Cushman
GoddardSpaceFlight CenterNationalAeronauticsandSpace
AdministrationGreenbelt,Maryland
Ronald.H Dieck
Pratt&Whitneyand
RonDieckAssociates,Inc
PalmBeachGardens,Florida
Thomas.E Diller
VirginiaTechBlacksburg,Virginia
Madhu.S Dixit
CentreforResearchinParticlePhysicsCarletonUniversity
Ottawa,Ontario,Canada
Trang 22DepartmentofElectronicEngineeringGunmaUniversity
Mauro.Giaconi
DepartmentofElectronicEngineeringUniversityofRome“TorVergata”
Ronald.T Green
SouthwestResearchInstituteSanAntonio,Texas
Steven.M Grimes
DepartmentofPhysicsandAstronomyOhioUniversity
Athens,Ohio
Reinhard.Haak
UniversityofErlangen–NuernbergErlangen,Germany
John.R Hansman,.Jr.
DepartmentofAeronauticsandAstronauticsMassachusettsInstituteofTechnologyCambridge,Massachusetts
Trang 23DepartmentofSensorandEWSystemsSwedishDefenceResearchAgencyLinköping,Sweden
Sam.S Khalilieh
DepartmentofElectricalEngineeringEarthTech
GrandRapids,Michigan
Andrei.Kholkine
RutgersUniversityPiscataway,NewJersey
John.A Kleppe
DepartmentofElectricalandBiomedicalEngineering
UniversityofNevada,RenoReno,Nevada
M Kostic
NorthernIllinoisUniversityDeKalb,Illinois
Trang 24Hans.Mes
CentreforResearchinParticlePhysicsCarletonUniversity
Ottawa,Ontario,Canada
Jaroslaw.Mikielewicz
InstituteofFluidFlowMachineryGdansk,Poland
Harold.M Miller
DataIndustrialCorporationMattapoisett,Massachusetts
Mark.A Miller
NavalResearchLaboratoryWashington,DistrictofColumbia
Roger.Morgan
SchoolofEngineeringLiverpoolJohnMooresUniversityLiverpool,England
Steven.A Murray
UniversityofSanDiegoSanDiego,California
Thomas.Newe
UniversityofLimerickLimerick,Ireland
J.V Nicholas
TemperatureStandardsSectionMeasurementStandardsLaboratoryof
New ZealandLowerHutt,NewZealand
Seiji.Nishifuji
DepartmentofElectricalandElectronic
EngineeringYamaguchiUniversityUbe,Japan
David.S Nyce
RevolutionSensorCompanyCary,NorthCarolina
Trang 25Italcertifer,Inc
andDepartmentofElectronicEngineeringUniversityofRome“TorVergata”
Rome,Italy
Per.Rasmussen
GRASSoundandVibrationVedback,Denmark
R.P Reed
ProteunServicesAlbuquerque,NewMexico
Herbert.M Runciman
PilkingtonOptronicsScotland,UnitedKingdom
Ricardo.E Saad
HarmonicsLightwavesSunnyvale,California
Ahmad.Safari
DepartmentofCeramicScienceandEngineeringRutgersUniversity
Piscataway,NewJersey
Adelio.Salsano
Italcertifer,Inc
andDepartmentofElectronicEngineeringUniversityofRome“TorVergata”
Rome,Italy
Robert.J Sandberg
DepartmentofMechanicalEngineeringUniversityofWisconsin–MadisonMadison,Wisconsin
Meyer.Sapoff
MSConsultantsPrinceton,NewJersey
Trang 26DepartmentofElectronicEngineeringGunmaUniversity
Kiryu,Japan
David.B Thiessen
CaliforniaInstituteofTechnologyPasadena,California
Richard.Thorn
SchoolofEngineeringUniversityofDerbyDerby,UnitedKingdom
Hans-Peter.Vaterlaus
DepartmentofInstrumentRittmeyerLtd
Zug,Switzerland
James.H Vignos
TheFoxboroCompanyFoxboro,Massachusetts
London,England
Anbo.Wang
BradleyDepartmentofElectricalEngineeringVirginiaTech
Trang 27Bernhard.Günther.Zagar
DepartmentofElectricalEngineeringTechnicalUniversityofGraz
Graz,Austria
Trang 28I Instrumentation
and Measurement
Concepts
. 1 Measurements,.Instrumentation,.and.Sensors Halit.Eren 1-1
Introduction • Measurements • 13 Instruments • AnalogandDigital
Instruments • SensorsandTransducers • InstrumentationandNetworks • Software
SupportforSensorsandInstruments • ApplicationExamples • Bibliography • Partial ListofVendorsandSuppliers
. 2 Characteristics.of.Instrumentation John.R Hansman,.Jr 2-1
SimpleInstrumentModel • Bibliography
. 3 Operational.Modes.of.Instrumentation Richard.S Figliola 3-1
NullInstrument • DeflectionInstrument • AnalogandDigitalSensors • Analog
andDigitalReadoutInstruments • InputImpedance • DefiningTerms • Further
UncertaintyModel • CalculationofExpandedUncertainty • Summary • Defining
Terms • References • FurtherInformation
. 6 Development.of.Standards Halit.Eren 6-1
Introduction • StandardOrganizations • DevelopmentofStandards • Obtainingand UsingStandards • ExamplesofStandards • SoftwareStandards • Bibliography
. 7 Measurement.Standards DeWayne.B Sharp 7-1
HistoricalPerspective • WhatAreStandards? • ConceptualBasisof
Measurements • NeedforStandards • TypesofStandards • Numbers,Dimensions,
andUnits • MultiplicationFactors • ConversionsofUnits • ExamplesofDefining
Terms •Bibliography
Trang 29I-2 Instrumentation and Measurement Concepts
. 8 Calibrations.in.Instrumentation.and.Measurements Halit.Eren 8-1
Introduction • ErrorsandUncertaintiesinCalibrations • Benefits
ofCalibrations • CalibrationProcedureandPersonnel • Calibration
Methods • LaboratoriesandInstitutions • CalibrationSoftwareSupport • Costof
Calibrations • TrendsinCalibrations • CalibrationExamples • Bibliography • Partial ListofCalibrationServiceandSoftwareProviders
. 9 Intelligent.Sensors.and.Instruments Halit.Eren 9-1
Introduction • IntelligentSensors • TheIEEE1451Standard • Communications
ofIntelligentSensors • Plug-and-PlayCapability • ApplicationsandExamples
ofIntelligentSensors • IntelligentInstruments • ExamplesofIntelligent
Instruments • References • Bibliography • PartialListofManufacturers/Suppliers
. 10 Virtual.Instruments David.Potter.and.Halit.Eren 10-1
Introduction • VirtualInstrumentArchitecture • Virtual InstrumentSoftware •
SupervisoryControlandDataAcquisition • Conclusions • Bibliography • PartialList
Introduction • ProblemsandSolutionsofDynamicCalibrations • Evaluation
ofDynamicCharacteristicsofForceSensors • ImpulseResponse • Oscillation
Response • Conclusions • References
Trang 301.1 Introduction
Measurement is a process of gathering information from a physical world and comparing thisinformation with agreed standards As highlighted in this chapter and discussed in detail inthis book,measurementsareessentialactivitiesforobservingandtestingscientificandtechnologi-calinvestigations
Measurementsarecarriedoutbyusinginstruments,whicharedesignedandmanufacturedtofulfillspecifictasksSensorsareusedastheprimaryelementsininstrumentstorespondtothephysical variable under investigation In this book, a diverse range of sensors and instrumentsarediscussed;theadvancesandtherecentdevelopmentsinmeasurements,instrumentation,and
sensorsareintroducedintheproceedingsectionsandchapters
cessunderinvestigationTheseinstrumentsareconnectedtogetherusingwired,optical,orwirelessnetworksThedetailsofthesupportinghardwareandsoftwaretechnologiesbehindthesenetworksarediscussedextensively
Inmanyapplications,manysensorsandinstrumentsareusedtocollectinformationaboutthepro-1
Measurements, Instrumentation,
and Sensors
11 Introduction 1-1 12 Measurements 1-2 13 Instruments 1-2
DesignofInstruments • TestingandUseof Instruments • ResponseandDrift • AccuracyandErrors • Error
Halit Eren
Curtin University
Trang 311-2 Instrumentation and Measurement Concepts
1.2 Measurements
Ifthebehaviorofthephysicalvariableisknown,itsperformancecanbemonitoredandassessedbymeansofsuitablemethodsofsensing,signalconditioning,andterminationTheapplicationsofinstru-mentsrangefromlaboratoryconditionstoarduousenvironmentssuchasinsidenuclearreactorsorremotelocationssuchassatellitesystemsandspaceships
Thesensor-outputsignalsofthemajorityofmoderninstrumentsareinelectricformThisisduetoelectricsignalsbeingeasytoprocess,display,store,andtransmitOnceconvertedtoelectricforms,the
relationbetweenthesensorsignalsandthephysicalvariationscanbeexpressedintheformoftransfer functionsThetransferfunctionisamathematicalmodelbetweenthesensorsignalandthephysical
variableInacontinuoussystem,thetransferfunctionmaybelinearornonlinearAlinearrelationshipmaybeexpressedbythefollowingequation:
• Imperfectionsinelectricandmechanicalcomponents(eg,hightolerancesandnoiseoroffsetvoltages)
• Changesincomponentperformances(eg,shiftingains,changesinchemistry,aging,anddriftsinoffsets)
• Externalandambientinfluences(eg,temperature,pressure,andhumidity)
• Inherentphysicalfundamentallaws(eg,thermalandotherelectricnoises,Brownianmotioninmaterials,andradiation)
mationaboutthemeasurementsanddrawconclusionsDataanalysismayincludestatisticalmethods,curvefitting,selectingordiscardingsubsetsofdata,ormanyothertechniquesForexample,atypicaldataanalysistoolisthedatamining,whichaimstodiscoverunforeseenpatternshiddeninthedataThereisanextensiverangeofsoftwareavailablefortheanalysis(eg,MATLAB®)tosuitspecificneedsofinformationobtainedfromexperimentalortestresultsFurtherinformationonmeasurementsandanalysiscanbefoundthroughoutthisbook
Oncethemeasurementsaremade,variousformsofdataanalysismaybeusedtoextractusefulinfor-1.3 Instruments
Instruments are man-made devices for determining the value of the quantity/variable They aredesignedtomaintainprescribedrelationshipsbetweentheparametersbeingmeasuredandthephysi-calvariablesunderinvestigationInstrumentscanbedesignedandconstructedtobeanalog,digital,orhybrid
Theconstructionofaninstrumentcanbebrokenintosmallerelements,asillustratedinFigure11Typically,aninstrumentwillhaveasensorortransducerstage,asignal-conditioningstage,andanout-putorterminationstageAllinstrumentshavesomeorallofthesefunctionalblocks
Trang 32Measurements, Instrumentation, and Sensors
AdiverserangeofsensorsandtransducersmaybeavailabletomeetthemeasurementrequirementsofaphysicalsystemThesensorscanbecategorizedinanumberofwaysdependingontheenergyinputandoutput,inputvariables,sensingelements,andelectricorphysicalprinciples
Inrecentyears,therapidgrowthoftheintegratedcircuit(IC)electronicsandtheavailabilityofcost-effectiveprocessorshaveledtoanimpressiveprogressininstrumentationandmeasurementsinallfieldsThiscoupledwiththeimprovementofmathematicalmethods,theextensiveapplica-tionsofdigitaltechniques,andtheadditionofnewapplicationareasenabledmoderninstruments
toexceltonewheightsasdiscussedindetailinthistwo-volumeMeasurements,.Instrumentation, and.Sensors.Handbook
1.3.1 Design of Instruments
encesofpeopleaboutthephysicalprocessorfromstructuredunderstandingoftheprocessInanycase,ideasconceivedaboutaninstrumentaretranslatedintohardwareandsoftwarethatcanperformwellwithintheexpectedstandardsandeasilybeacceptedbytheendusers
Instrumentsaredesignedonthebasisofexistingknowledge,whichisgainedeitherfromtheexperi-Usually, the design of instruments requires many multidisciplinary activities In the wake of a
rapidlychangingtechnology,instrumentsareupgradedoftentomeetthedemandsofthemarketplaceDependingonthecomplexityoftheproposedinstrument,itmaytakemanyyearstoproduceaninstru-mentforarelativelyshortcommerciallifetimeInthedesignandproductionstages,engineersmustconsiderfactorssuchassimplicity,appearance,easeandflexibilityofuse,maintenancerequirements,productioncosts,leadtimetoproduct,andpositioningstrategyinthemarketplace
Thedesignprocessofaninstrumentmayfollowwell-orderedproceduresfromideastomarketingofthefinalproductsTheprocessmaybebrokendownintosmallertaskssuchasidentifyingspecifica-tions,developingpossiblesolutionsforthesespecifications,modeling,prototyping,installingandtest-ing,makingmodifications,manufacturing,planningmarketinganddistribution,evaluatingcustomerfeedback,andmakingdesignandtechnologicalimprovementsForexample,manydifferentspecifica-tionsmaybeconsideredforparticularproduct,whichmayincludebutarenotlimitedtooperationalrequirements,functionality,technologicallimitations,quality,installation,maintenance,documenta-tion,servicing,andacceptancelevelusagebycustomers
1.3.2 testing and Use of Instruments
Aftertheinstrumentisdesignedandprototyped,variousevaluationtestsmaybeconductedThesetestsmaybemadeunderreferenceconditionsorundersimulatedenvironmentalconditionsSomeexamplesofreferenceconditiontestsareaccuracy,responsetime,drift,andwarm-uptimeSimulatedenviron-mentaltestsmaybecompulsory,beingregulatedbygovernmentsandotherauthoritiesSomesimulatedenvironmenttestsincludeclimatictest,droptest,dusttest,insulation-resistancetest,vibrationtest,electromagneticcompatibilitytests,andsafetyandhealthhazardtestsManyofthesearestrictlyregu-latedbynationalandinternationalstandards
Formaximumefficiency,anappropriateinstrumentforthemeasurementmustbeselectedUsersshouldbefullyawareoftheirapplicationrequirements,sinceinstrumentsthatdonotfittheirpur-poseswilldeliverfalsedataresultinginwastedtimeandeffortForaparticularapplication,usersmust
Sensor and/or transducer
Physical
Transmission or display
Excitation
Signal
Output
FIGURE.1.1 Constructionstructureofatypicalinstrument
Trang 331-4 Instrumentation and Measurement Concepts
carefully study the documents about all the candidates and make comparisons among all optionsWhile selectingtheinstrument,usersmustevaluatemanyfactorssuchasaccuracy,frequencyresponse,electric and physical loading effects, sensitivity, response time, calibration intervals, power supplyneeds,spareparts,technology,andmaintenancerequirementsTheymustensurecompatibilitywiththeexistingequipment
Whenselectingandimplementingofinstruments,qualitybecomesanimportantissuefrombothquantitative and qualitative perspectives The quality of an instrument may be viewed differentlydependingonthepeopleinvolvedForexample,qualityintheeyesofdesignermaybeaninstrumentdesignedonsoundphysicalprinciples,whereasfromtheusers’pointofview,itmaybereliability,main-tainability,cost,andavailability
1.3.3 response and Drift
InstrumentsrespondtophysicalphenomenonbysensingandgeneratingsignalsDependingonthetypeofinstrumentusedandthephysicalphenomenon,thesignalsmaybeeithersloworfasttochangeandmayalsocontaintransientsTheresponseoftheinstrumentstothesignalscanbeanalyzedinanumberofwaysbyestablishingstaticanddynamicperformancecharacteristicsAlthoughthestaticperformancesarerelativelysimple,thedynamicperformancesmaybecomplexMoreinformationonthiscanbefoundinChapters4,11,and12
1.3.4 accuracy and Errors
TheperformanceofaninstrumentdependsonitsstaticanddynamiccharacteristicsTheperformance
maybeindicatedbyitsaccuracy,whichmaybedescribedastheclosenessofmeasuredvaluestothereal
valuesofthevariableThetotalresponseisacombinationofdynamicandstaticresponsesIfthesignalsgeneratedbythephysicalvariablearechangingrapidly,thenthedynamicpropertiesoftheinstrumentbecomeimportantForslow-varyingsystems,thedynamicerrorsmaybeneglectedFurtherinforma-tiononaccuracycanbefoundinChapter5
Theperformanceofaninstrumentmayalsobedecidedbyotherfactors,suchasthemagnitudesof
errors;therepeatability,whichindicatestheclosenessofsetsofmeasurementsmadeintheshortterm; andthereproducibilityoftheinstrumentThereproducibilityistheclosenessofsetsofmeasurements
whenrepeatedinsimilarconditionsoveralongperiodoftime
The ideal or perfect instrument would have perfect sensitivity, reliability, and repeatabilitywithout any spread of values and would be within the applicable standards However, in manycases,therewillbeimpreciseandinaccurateresultsbecauseofinternalandexternalfactorsThe
departure from the expected perfection is called the error Often, sensitivity analyses are
con-ductedtoevaluatetheeffectofindividualcomponentsthatarecausingtheseerrorsSensitivitytotheaffectingparametercanbeobtainedbyvaryingthatoneparameterandkeepingtheothers
constantThiscanbedonepracticallybyusingthedevelopedinstrumentsormathematicallybymeansofappropriate models
Whendeterminingtheperformanceofaninstrument,itisessentialtoappreciatehowerrorsariseTheremaybemanysourcesoferrors;therefore,itisimportanttoidentifythesesourcesanddrawupanerrorbudgetIntheerrorbudget,theremaybemanyfactors,suchas(1)imperfectionsinelectricandmechanicalcomponents(eg,hightolerancesandnoiseoroffsetvoltages),(2)changesincomponentperformances(eg,shiftingains,changesinchemistry,aging,anddriftsinoffsets),(3) external and ambient influences (eg, temperature, pressure, and humidity), and (4) inherentphysicalfundamentallaws(eg,thermalandotherelectricnoises,Brownianmotioninmaterials,andradiation)
Ininstrumentationsystems,errorscanbebroadlyclassifiedassystematic,random,orgrosserrorsForfurtherinformation,readerscanrefertoChapters2and4
Trang 34Measurements, Instrumentation, and Sensors
1.3.5 Error reduction
ControllingerrorsisanessentialpartofmeasurementsandinstrumentationVarioustechniquesareavailabletoachievethisobjectiveTheerrorcontrolbeginsinthedesignstagesbychoosingtheappro-priatecomponents,filtering,andbandwidthselection;byreducingthenoise;andbyeliminatingtheerrorsgeneratedbytheindividualsubunitsofthecompletesystemInagooddesign,theerrorsofthepreviousgroupmaybecompensatedadequatelybythefollowinggroups
TheaccuracyofinstrumentscanbeincreasedbypostmeasurementcorrectionsVariouscalibrationmethodsmaybeemployedtoalterparametersslightlytogivecorrectresultsInmanycases,calibrationgraphs,mathematicalequations,tables,theexperiencesoftheoperators,andthelikeareusedtoreducemeasurementerrorsInrecentyears,withtheapplicationofdigitaltechniquesandintelligentinstru-ments, error corrections are made automatically by thecomputers or the devices themselvesMoreinformationisavailableinChapters8and9
Inmanyinstrumentationsystems,theapplicationofcompensationstrategyisusedtoincreasestaticanddynamicperformancesInthecaseofstaticcharacteristics,compensationscanbemadebymanymethods,includingintroducingopposingnonlinearelementsintothesystem,usingisolationandzeroenvironmen-talsensitivity,opposingcompensatingenvironmentalinputs,usingdifferentialsystems,andemployingfeedbacksystemsOntheotherhand,dynamiccompensationcanbeachievedbyapplyingthesetech-niquesaswellasbyreducingharmonics,usingfilters,adjustingbandwidth,usingfeedbackcompensationtechniques,andthelikeFurtherinformationondynamicerrormeasurementscanbefoundinChapter12
1.3.6 Calibration of Instruments
ThecalibrationofallinstrumentsisessentialforcheckingtheirperformancesagainstknownstandardsThisprovidesconsistencyinreadingsandreduceserrors,thusvalidatingthemeasurementsuniversallyAfteraninstrumentiscalibrated,futureoperationisdeemedtobeerrorboundforagivenperiodoftimeforsimilaroperationalconditionsThecalibrationprocedureinvolvescomparisonoftheinstru-mentagainstprimaryorsecondarystandardsInsomecases,itmaybesufficienttocalibrateadeviceagainstanotheronewithaknownaccuracy
Many nations andorganizations maintainlaboratories withtheprimary functions ofcalibratinginstrumentsandfieldmeasuringsystemsthatareusedineverydayoperationsExamplesoftheselabo-ratoriesareNationalAssociationofTestingAuthorities(NATA)ofAustraliaandtheBritishCalibrationServices(BCS)DetailedinformationoncalibrationisavailableinChapter8
CalibrationsmaybemadeunderstaticordynamicconditionsAtypicalcalibrationprocedureofacomplexprocessinvolvingmanyinstrumentsisillustratedinFigure12Inanidealsituation,for
Element or system under calibration
Parameter 1 Standard instrument 1 Standard instrument 2Parameter 2 Standard instrument n Parameter n
Output 1 Standard instrument 1
Calibrated instrument 1
Output 2 Standard instrument 2 Calibrated instrument 2
Output k Standard instrument k Calibrated instrument k
FIGURE.1.2 InstrumentsneedtobefrequentlycalibratedsequentiallyforallaffectinginputsCalibrationsare
madeunderstaticordynamicconditionsbyvaryingasingleinputandobservingthecorrespondingoutputwhile keepingalltheotherinputsconstantuntilallinputsarecovered
Trang 351-6 Instrumentation and Measurement Concepts
aninstrumentthatresponsetoamultitudeofphysicalvariables,acommonlyemployedmethodisbykeepingalltheinputsconstantexceptoneTheinputisvariedinincrementsinincreasinganddecreasingdirectionsoveraspecifiedrangeTheobservedoutputthenbecomesafunctionofthatsingleinputThecalibrationiscontinuedinasimilarmanneruntilallotherinputsarecoveredForbetterresults,thisproceduremayberepeatedbyvaryingthesequencesofinputs,thusdevel-opingafamilyofrelationshipsbetweentheinputsandtheoutputsAsaresultofthesecalibrationreadings,theinputandoutputrelationusuallydemonstratesstatisticalcharacteristicsFromthesecharacteristics,appropriatecalibrationcurvescanbeobtained,andotherstatisticaltechniquescanbeapplied
1.4 analog and Digital Instruments
InstrumentscanbeanalogordigitaloracombinationofthetwoNowadays,mostinstrumentsareproducedtobedigitalbecauseoftheadvantagestheyofferHowever,thefrontendofmajorityofinstrumentsisstillanalog;thatis,mostofthesensorsandtransducersgenerateanalogsignalsThesignalsinitiallyareconditionedbyanalogcircuitsbeforeconvertingintodigitalformforfurthersig-nalprocessingItisimportanttomentionthatnowadays,digitalinstrumentsoperatingpurelyondigitalprinciplesarebeingdevelopedForinstance,today’ssmartsensorscontainthecompletesignalconditioncircuitsinasinglechipintegratedwiththesensoritselfTheoutputofsmartsensorscanbeinterfaceddirectlywithotherdigitaldevicesMoreinformationonsmartsensorscanbefoundinChapter9
1.4.1 analog Instruments
mits,displays,andstoresdatainanalogformThesignalconditioningisusuallymadebyintegratingmanyfunctionalblockssuchasbridges,amplifiers,filters,oscillators,modulators,offsetsandlevelcon-verters,andbuffers,asillustratedinFigure13Generally,intheinitialstages,thesignalsproducedbythesensorsandtransducersareconditionedmainlybyanalogelectronics,eveniftheyareconfiguredasdigitalinstrumentslater
AnaloginstrumentsarecharacterizedbycontinuoussignalsApurelyanalogsystemmeasures,trans-Inanaloginstruments,thechangesinamplitudes,phases,orfrequenciesoracombinationofthethreeconveytheusefulinformationinresponsetophysicalvariablesThesesignalscanbedeterministicornondeterministicAsinthecasewithallsignal-bearingsystems,thereareusefulsignalsthatrespondtothephysicalphenomenaandunwantedsignalresultingfromvariousformsofnoiserequiringexten-
sivefilteringandothersignalprocessingasexplainedinthechaptersinElectrical,.Optical,.Chemical, and.Biomedical.Measurement
minedIfthesignalvariesinaprobabilisticmanner,itsfuturecanbedeterminedonlybystatisticalmethodsThemathematicalandpracticaltreatmentofanaloganddigitalsignals,havingforeseen,sto-chastic,andnondeterministicproperties,isaverylengthysubject,andavastbodyofinformationcanbefoundintheliterature;therefore,theywillnotbetreatedhere
Analogsignalscanalsobenondeterministic;thatis,thefuturestateofthesignalcannotbedeter-Sensor and/or transducer
Output display
Physical
variable circuitInput amplifierPre- Filters andamplifiers Transmission
FIGURE.1.3
Analoginstrumentsmeasure,transmit,display,andstoredatainanalogformThesignalcondition-inginvolvessuchcomponentsasbridges,amplifiers,filters,oscillators,modulators,offsetsandlevelconverters, buffers,andsoon
Trang 36Measurements, Instrumentation, and Sensors
1.4.2 Digital Instruments
Inmoderninstruments,theoriginaldataacquiredfromthephysicalvariablesareusuallyinanalogformThisanalogsignalisconvertedtodigitalbeforebeingpassedontotheotherpartsofthesystemForconver-sionpurposes,analog-to-digital(A/D)convertersareusedtogetherwithappropriatesample-and-holdandmultiplexingdevicesThetypicalcomponentsofadigitalinstrumentareillustratedinFigure14ThedigitalsystemsareparticularlyusefulinperformingmathematicaloperationsandstoringandtransmittingdataA/Dconversioninvolvesthreestages:sampling,quantization,andencodingTheNyquistsamplingtheoremmustbeobservedduringsampling;thatis,“thenumberofsamplespersecondmustbeatleasttwicethehighestfrequencypresentinthecontinuoussignal”Asaruleofthumb,dependingonthesignificanceofthehighfrequencies,thesamplingmustbeabout5to10timesthehighestfrequencyofthesignalThenextstageisthequantization,whichdeterminestheresolutionofthesampledsignalsThe quantizationerrordecreasesasthenumberofbitsincreasesIntheencodingstage,thequantizedvaluesareconvertedtobinarynumberstobeprocesseddigitallyOnceindigitalform,thedatacanfurtherbeprocessedbyemployingvarioustechniquessuchasFFTanalysis,digitalfiltering,sequentialorlogicaldecisionmaking,correlationmethods,spectrumanalysis,andmore
1.5 Sensors and transducers
AsensorisadevicethatrespondstoachangingphenomenonAtransducerisadevicethattransfersenergyfromoneformtoanother
Sensorsandtransducerscanbecategorizedinanumberofwaysdependingonfactorssuchas theenergyinputandoutput,inputvariables,sensingelements,andelectricorphysicalprinciplesFromthe energyinputandoutputpointofview,therearethreetypes:themodifiers,theself-generators,andthemodulators
Inmodifiers,aparticularformofenergyismodifiedratherthanconverted;therefore,thesameformofenergyexistsinboththeinputandtheoutputstagesInself-generators,electricsignalsareproducedfromnonelectricinputswithouttheapplicationofexternalenergyTypicalexamplesarepiezoelectrictransducersandphotovoltaiccellsModulators,ontheotherhand,produceelectricoutputsfromnon-electricinputs,buttheyrequireanexternalsourceofenergyStraingagesaretypicalexamplesofsuchdevicesSomeexamplesofsensorsandmeasurementsarelistedasfollows:
Analog signal conditioner Multiplexer
D/A converter
FIGURE.1.4 Digitalinstrumentshavemoresignal-processingcomponentsthananalogcounterpartsHowever,
theyhavetheadvantageofdatahandling,storing,displaying,andtransmitting
Trang 371-8 Instrumentation and Measurement Concepts
• Time and frequency, discussed in Part IV of Electrical, Optical, Chemical, and Biomedical Measurement
ThepresenttrendinsensortechnologyhasbeenshiftedtowardICsensorsintheformofmicrosys-ICdevicesrefertothedimensionsofdevicesinmicrometer(10−6m)ranges,whereasnanotechnologyreferstothedimensionsofdevicesinnanometer(10−9m)rangesThemicrosystemstechnology(MST)
tems(MEMS)AnothersubsetofMSTisthemicroelectro-optical.systems(MEOMs)andsystems-on-chip
iswellestablishedandsimplyknownastheMSTAsubsetofMSTisthemicroelectromechanical.sys-sionsintheorderoffewmicrometers
(SOC)devicesMostofthesensorsmanufacturedbyMEMsandMEOMsare3Ddeviceswithdimen-sivelyfortemperature,pressure,andradiationmeasurements,aswellasmechanical,chemical,envi-ronmental, biomedical, biological variables, and implantable sensors, and many others A typicalexampleisillustratedinFigure15,anddetailedinformationonsuchdevicescanbefoundinPart Iof
Forexample,single-chipmicrosensorsandmicroinstrumentsarebeingdevelopedandusedexten-Electrical,.Optical,.Chemical,.and.Biomedical.MeasurementThisparticularsingle-chipimplementation
of microinstrumentation system is based on complementary metal–oxide–semiconductors (CMOS)andothertechnologiesItincorporatesvoltage,current,andcapacitive-sensorinterface;atemperaturesensor;a10-channel12bitA/Dconverter;andan8bitmicrocontrollerwitha 16bithardwaremultiplieranda40bitaccumulatorThisdeviceoperateson3Vpowersupplydrawing16mAwhenfullypoweredor850μAatstandby
Capacitive sensor interface
Filters 12 bitA/D
FIGURE.1.5 Blockdiagramofatypicalmicro-instrument
Trang 38Measurements, Instrumentation, and Sensors
conductorsandtheirassociatedtechnologiesInthemanufacturingprocess,theuseofothermaterialsandthedepositionofthickandthinfilmsareoftenrequiredtogivethesensingmaterialsusefulproper-tiesotherwisetheywouldnothaveForexample,piezoelectricmaterialfilmsappliedtosiliconwafersprovidepiezoelectricpropertiesThereareseveralmethodsofdepositingthinandthickfilmsonsub-stratesorsemiconductorwafersSomeofthemethodsarespincasting,vacuumdeposition,sputtering,electroplating,screenprinting,etc
Modernmicrosensorsandmicroinstrumentsarefabricatedbymakingfulluseofpropertiesofsemi-1.5.1 Smart Sensors
etersintoelectricsignalsTheyrequireextensiveexternalcircuitsandcomponentsforsignalprocessing
Aconventionalsensormeasuresphysical,biological,orchemicalparametersandconvertstheseparam-
anddisplayThetermsmart.sensorwasadoptedinthemid-1980stodifferentiateanewclassofsen-sorsfromtheconventionalonesSmartsensorshaveintelligenceofsomeformandcanconvertarawsensorsignalintoalevelthatmakesthemmuchmoreconvenienttouseTheyprovidevalue-addedfunctions,thusincreasingthequalityofinformationratherthanjustpassingtherawsignalTheycanperformfunctionssuchasself-identification,self-testing,lookuptables,calibrationcurvesaswellasabilitytocommunicatewithotherdevicesThesefunctionsareconductedbytheintegrationofsensorswithmicrocontrollersormicroprocessororlogiccircuitsinthesamechipUnderstandably,themicro-processorcontainsRAMandROMandcanconvenientlybeprogrammedexternallySmartsensorsalsoincludesignalamplification,conditioning,processing,andA/Dconversions
niquesprogrammedandheldonboardthechipThesesensorsarecapableofassimilatingalargequan-tityofdata;hence,theyarecapableoftakingautonomousandappropriateactionstoachievegoalsinanydynamicallychangingenvironmentTheyareadaptableinanticipatingeventsandcomplexitiesoftheprocess;therefore,sensing,learning,andself-configurationsarethekeyelementsIntelligentsen-sorsappearinthemarketplaceaspressuresensorsandaccelerometers,biosensors,chemicalsensors,opticalsensors,magneticsensors,andsoonIntelligentvisionsystemsandparallelprocessors–basedsensorsaretypicalexamplesofsuchdevices
Avarietyofsmartsensorsaremanufacturedwiththeneuralnetworkandotherintelligencetech-1.5.2 Wireless and autonomous Sensors and Instruments
Sudden growth in the wireless communication technology has prompted the expansion of wirelessindustrybyorderofmagnitudesThisislargelysupportedbyimprovementindigitalandRFcircuitfab-ricationmethods,advancesinsignal-processingtheoryandapplications,andemergenceofnewlarge-scalewireless-relatedICsandothersupportingdevicesParticularly,thenewICtechnologymakesradioequipmentsmaller,cheaper,andmorereliableInparalleltoindustrialexpansion,consumeracceptanceandneedforproductspermitwidespreaddeploymentofthewirelesscommunicationsystemsTrendswillcontinueatanevengreaterpaceinthecomingyears
WirelesstechnologyisusedextensivelyinmodernsensorsandinstrumentationAtypicalwirelesssensorcontainssensingelements,signal-processingcircuits,andwirelesscommunicationcomponentsinthesamechipSeveralminiaturizationtechniquesareavailableforwirelesssensors,includingSOC,MEMS,andASICsInawirelesssensor,therearefivemaincomponentsthatneedtobeintegratedforacompletesystem;thesecomponentsaresensor,signal-processingcircuitry,radio,battery,andpackageRadio,sensors,andsignal-processingcircuitrycanbereducedinsizethroughhybridcircuits,MEMS,ormixed-signalASICdesignHowever,thepowersupplycomponentsmustbedealtwithseparatelyas
explainedinChapter90ofthisbookandChapter13ofElectrical,.Optical,.Chemical,.and.Biomedical Measurement
bledigitalhardware,memoryandstorage,input/outputandcommunicationcomponents,andothers,for
Trang 39Wirelessinstrumentsconsistoffivemaincomponents—sensorsandsignalconditioners,programma-1-10 Instrumentation and Measurement Concepts
example,displays,keypads,andpowersuppliesAtypicalwirelessinstrumentisillustratedinFigure16Instrumentsdifferfromeachotherbythewaythattheyhandle,transmit,anddisplayinformationFurtherinformationcanbefoundinPartIX,whichisdedicatedtowirelesstechnologyforinstrumentsandsensorsAutonomoussensorsareself-poweredmeasurementdevicesthatarecapableofcommunicatingwire-lessly They serve as the nodes in distributed data acquisitionsystems and wireless sensor networks(WSN)findingapplicationssuchasinhealthcare,aerospace,andenvironmentalmonitoringToincreasetheirautonomy,autonomoussensorsseektoreducetheiraveragepowerconsumptionbyworkinginlow
powermodeswheneverpossibleTheyspendmostofthetimeinsleep(standby)modeandonlywake up
toperformspecificactions—namely,measurement,processing,andtransmission/receptionofdataAutonomous sensors are composed of sensors, signal conditioners, processors, and transceiversSensorsconvertasignalfromaphysicalorchemicalquantitytoacorrespondingsignalintheelectricdomainOften,commercialtransceiversareusedforwirelesscommunicationTheytransmitinthefree-licensedISMbandsandcanuseaproprietaryorstandard(eg,IEEE802154)protocolFurtherinformationonautonomoussensorscanbefoundinChapter90
1.6 Instrumentation and Networks
Networkingofhardwareandsoftwareresourcesisessentialtobringmultiplesensorsandinstrumentstogetherforexchangeofinformation,collaborativeoperations,andsharingoffunctionsofequipmentanddevicesNetworksaremadebythecollectionofdevices,themediumthatlinksthesedevices,and
thesoftwarethatsupportsthenetworkingoftheentiresystemAsystemismadefromagroupofinter-relatedpartswiththefocusofestablishinganinterrelationshipbetweenthemtoimproveefficiency,tofacilitateintegrationoftheapplication,andtosharetheresources
worked Many processes require measurements of hundreds and perhaps thousands of parametersemployingmanyinstrumentsTheresultingarrangementforperformingtheoverallmeasurementin
Duetorecentprogressincommunicationstechnology,sensorsandinstrumentscaneasilybenet-acomplexprocessesiscalledthemeasurement.systemInmeasurementsystems,instrumentsoperate
municatedbetweentheinstrumentsthemselvesandthecontrollersorbetweeninstrumentsandotherdigitaldevicessuchasrecorders,displayunits,printers,routers,basestations,orhostcomputerConnectingdevicestogethertoformnetworksisnotanewconcept,andithasbeenoperationalformanyyearsinadiverserangeofapplicationsIntheearliernetworks,almostallthecommunicatingdeviceswereconnectedbywires;hence,theywerelargelyfixedinspaceThedevicesinmodernnetworks,asdiscussedinthisbook,canbeconfiguredbyusingwirelesscommunicationtechnologyandrelatedsoftware;hence,theycanhavemobilityinspacewhilestillmaintainingfeasiblenetworksTherefore,
autonomouslybutinacoordinatedmannerInformationgeneratedbyeachinstrumentmaybecom-modernnetworkscanbeviewedas(1)wired.networksinwhichthecommunicationdevicesareconnected bywires,hencelargelyfixedinspace,(2)wireless.networksinwhichdevicescommunicatewirelessly,
Sensors and transducers
Physical
variables
Transmission and/or display
Microprocessor and software
Multiplexers and A/D converters
RF transceiver
RF transceiver
Computer or microprocessor system
FIGURE.1.6 Componentsofawirelessinstrument
Trang 40Measurements, Instrumentation, and Sensors
hencecanmoveinspace,and(3)hybrid.networksinwhichbothwiredandwirelesstechniquesare
usedincombinationAtthemoment,mobilenetworksbasedonwirelesstechniquesprovideprimarilyvoice-basedservices,buttheyareincreasinglyhandlingdataandotherformsofinformationWirelessnetworkscanmatchsimilarfunctionsasfixednetworksplustheyoffermanyadvantagessuchasthereductionincostforinitialsetupandmaintenance
DevicesneednetworksoftwaretoissuetherequestsandresponsesthatallowthemcommunicatewitheachothersuccessfullyAcommunicationprocessbetweentwodevicesisillustratedinFigure17Inthiscase,communicationistakingplaceinsimplexform;deviceAissendinginformationtodeviceB
ing.systems(NOSs)NOSscontroltheaccesstonetworkrecoursesExamplesofcommonNOSsusedin
Inmanynetworks,communicatingdevicesinvokealayerofcodes,whichiscallednetwork.operat-computersareWindowsNET,WindowsXP,Novell’sNetWare,etc
MostnetworksoftwarepackagescomewithmodulesforloggingonandoffthenetworkLoggingonandloggingoffnetworkmodulesmayincludeconsiderationssuchaspasswordsecurity,validationofuseraccesstospecificfilesandsoftware,automaticlog-onfeatureforsomedevices,helpmenus,anderrormessagesMore information on instrument networks can be found in Part IX of this book and Part I of
Electrical,.Optical,.Chemical,.and.Biomedical.Measurement
1.7 Software Support for Sensors and Instruments
Thesoftwareisatermfordescribingtheroleofprograms,procedures,anddocumentationinprogram-tionsystemItcanbedividedintothreemajorgroups:(1)systemsoftware,(2)programmingsoftware,and(3)applicationsoftwareAllaredevelopedusingprogramminglanguages,scriptinglanguages,machinelanguagesorassemblycodes,orFPGAconfigurationsSomeexamplesofprogramminglanguagesareCorC++,Java,andBasic