Số nghiệm của phương trình trên là: A.. Bất phương trình sau.[r]
Trang 1Trường THPT Chõu Văn Liờm ĐỀ KIỂM TRA MễN TOÁN - KHỐI 12
Họ tờn: Lớp: Thời gian: 15 phỳt Đề 1
TL
Cõu 1 Bất phương trỡnh sau
x x
cú nghiệm là:
Cõu 2 Cho phương trỡnh 25x 4.5x 32 0 Số nghiệm của phương trỡnh trờn là:
Cõu 3 phương trỡnh (2x 5)(log2 3) 0
x
cú 2 nghiệm x x1; 2(với x1<x2) Khi đú giỏ trị của M x13x2 là:
Cõu 4 Cho phương tŕnh
2
1 5
5
Nếu đặt tlog2x ;(x>0) thỡ ta được phương trỡnh:
A 16t2 24t 8 0 B 16t224t 8 0 C 8t224t 8 0 D t2 24t 8 0
Cõu 5 Giỏ trị của biểu thức P 22016 log 3 2
Cõu 6 Tính: K =
10 2 2 10 2
15 2
2 , ta đợc
Cõu 7 Cho phương tŕnh 25x 6.5x 5 0 Nếu đặt t = 5x với t > 0 thỡ ta được phương trỡnh:
A t2 6t 5 0 B 5t 5 0 C 5t2 6t 5 0 D 2t2 6t 5 0
Cõu 8 Tập nghiệm của phương trỡnh : log2xlog4x3 là :
Cõu 9 Phương trỡnh sau log3 x log2 x log log2 x 3xcú nghiệm x1 < x2 thỡ x2-x1 là:
Cõu 10 Đạo hàm cấp hai của hàm số f(x)= f x( )x e. x tại x 1 là :
A
e
e
Cõu 11 Bất phương trỡnh sau 15 15
log (3x 5) log ( x1)
cú nghiệm là:
A
1 x 5
5 x 3
Cõu 12 Nghiệm của phương trỡnh 2x 5 là
Cõu 13 Nghiệm của phương trỡnh 9x- 4.3x - 45=0
là
Trang 2Cõu 14 Phương trỡnh
2
log x +log (x+4)=4
cú hai nghiệm x ,x1 2 Khi đú tớch 2 nghiệm bằng :
A 4 2 4
B 4 4 2
Cõu 15 Cho phương tŕnh log22x log 3 x 3 0
Nếu đặt tlog3x x;( 0) thỡ ta được phương trỡnh:
A t2 2t 3 0 B 2t2 2t 3 0 C t2 3t 3 0 D
2 1
3 0 2
t t
Họ tờn: Lớp: Thời gian: 15 phỳt Đề 2
TL
Cõu 1 Phương trỡnh sau log3 x log2 x log log2 x 3xcú nghiệm x1 < x2 thỡ x2-x1 là:
Cõu 2 Bất phương trỡnh sau 15 15
log (3x 5) log ( x1)
cú nghiệm là:
A
1 x 5
5 x
Cõu 3 Cho phương tŕnh
2
1 5
5
Nếu đặt tlog2x ;(x>0) thỡ ta được phương trỡnh:
A 16t224t 8 0 B t2 24t 8 0 C 16t2 24t 8 0 D 8t224t 8 0
Cõu 4 Tính: K =
10 2 2 10 2
15 2
2 , ta đợc
Cõu 5 Cho phương tŕnh log22x log 3 x 3 0
Nếu đặt tlog3x x;( 0) thỡ ta được phương trỡnh:
A
2 1
3 0 2
t t
B t2 2t 3 0 C 2t2 2t 3 0 D t2 3t 3 0
Cõu 6 Giỏ trị của biểu thức P 22016 log 3 2
Cõu 7 Tập nghiệm của phương trỡnh : log2xlog4x3 là :
Cõu 8 Cho phương trỡnh 25x 4.5x 32 0 Số nghiệm của phương trỡnh trờn là:
Cõu 9 Bất phương trỡnh sau
x x
cú nghiệm là:
Cõu 10 phương trỡnh (2x 5)(log2x 3) 0 cú 2 nghiệm x x1; 2(với x1<x2) Khi đú giỏ trị của M x13x2 là:
Trang 3Cõu 11 Phương trỡnh
2
log x +log (x+4)=4
cú hai nghiệm x ,x1 2 Khi đú tớch 2 nghiệm bằng :
C 4 4 2
D 4 4 2
Cõu 12 Đạo hàm cấp hai của hàm số f(x)= f x( )x e. x tại x 1 là :
Cõu 13 Nghiệm của phương trỡnh 9x- 4.3x - 45=0
là
Cõu 14 Cho phương tŕnh 25x 6.5x 5 0 Nếu đặt t = 5x với t > 0 thỡ ta được phương trỡnh:
A t2 6t 5 0 B 2t2 6t 5 0 C 5t 5 0 D 5t2 6t 5 0
Cõu 15 Nghiệm của phương trỡnh 2x 5 là
Họ tờn: Lớp: Thời gian: 15 phỳt Đề 3
TL
Cõu 1 Bất phương trỡnh sau 15 15
log (3x 5) log ( x1)
cú nghiệm là:
A 5 x 3
5 x
5
1 x
Cõu 2 Cho phương tŕnh
2
1 5
5
Nếu đặt tlog2x ;(x>0) thỡ ta được phương trỡnh:
A 8t224t 8 0 B 16t2 24t 8 0 C t2 24t 8 0 D 16t224t 8 0
Cõu 3 phương trỡnh (2x 5)(log2 3) 0
x
cú 2 nghiệm x x1; 2(với x1<x2) Khi đú giỏ trị của M x13x2 là:
Cõu 4 Bất phương trỡnh sau
x x
cú nghiệm là:
Cõu 5 Đạo hàm cấp hai của hàm số f(x)= f x( )x e. x tại x 1 là :
Cõu 6 Tập nghiệm của phương trỡnh : log2xlog4x3 là :
Cõu 7 Tính: K =
10 2 2 10 2
15 2
2 , ta đợc
Cõu 8 Cho phương trỡnh 25x 4.5x 32 0 Số nghiệm của phương trỡnh trờn là:
Trang 4Câu 9 Cho phương tŕnh log22x log 3 x 3 0
Nếu đặt tlog3x x;( 0) thì ta được phương trình:
A 2t2 2t 3 0 B t2 3t 3 0 C t2 2t 3 0 D
2 1
3 0 2
t t
Câu 10 Phương trình sau log3 x log2 x log log2 x 3xcó nghiệm x1 < x2 thì x2-x1 là:
Câu 11 Nghiệm của phương trình 2x 5 là
2
log x +log (x+4)=4
có hai nghiệm x ,x1 2 Khi đó tích 2 nghiệm bằng :
C 4 4 2
D 4 4 2
Câu 13 Giá trị của biểu thức P 22016 log 3 2
Câu 14 Nghiệm của phương trình 9x- 4.3x - 45=0
là
Câu 15 Cho phương tŕnh 25x 6.5x 5 0 Nếu đặt t = 5x với t > 0 thì ta được phương trình:
A 5t 5 0 B t2 6t 5 0 C 5t2 6t 5 0 D 2t2 6t 5 0
Họ tên: Lớp: Thời gian: 15 phút Đề 4
TL
Câu 1 Nghiệm của phương trình 9x- 4.3x- 45=0
là
Câu 2 Tập nghiệm của phương trình : log2xlog4x3 là :
Câu 3 Cho phương tŕnh log22x log 3 x 3 0
Nếu đặt tlog3x x;( 0) thì ta được phương trình:
A t2 2t 3 0 B t2 3t 3 0 C
2 1
3 0 2
t t
D 2t2 2t 3 0
Câu 4 Đạo hàm cấp hai của hàm số f(x)= f x( )x e. x tại x 1 là :
2
log x +log (x+4)=4
có hai nghiệm x ,x1 2 Khi đó tích 2 nghiệm bằng :
A 4 2 4
D 4 4 2
Câu 6 Cho phương trình 25x 4.5x 32 0 Số nghiệm của phương trình trên là:
Câu 7 Cho phương tŕnh 25x 6.5x 5 0 Nếu đặt t = 5x với t > 0 thì phương tŕnh tương đương với phương trình nào:
A t2 6t 5 0 B 5t 5 0 C 2t2 6t 5 0 D 5t2 6t 5 0
Trang 5Cõu 8 Cho phương tŕnh
2
1 5
5
Nếu đặt tlog2x ;(x>0) thỡ ta được phương trỡnh:
A t2 24t 8 0 B 8t224t 8 0 C 16t224t 8 0 D 16t2 24t 8 0
Cõu 9 Giỏ trị của biểu thức P 22016 log 3 2
Cõu 10 Phương trỡnh sau log3 x log2 x log log2 x 3xcú nghiệm x1 < x2 thỡ x2-x1 là:
Cõu 11 Nghiệm của phương trỡnh 2x 5 là
Cõu 12 Bất phương trỡnh sau
x x
cú nghiệm là:
Cõu 13 Bất phương trỡnh sau 15 15
log (3x 5) log ( x1)
cú nghiệm là:
A
5
x
5
1 x
3
Cõu 14 Tính: K =
10 2 2 10 2
15 2
2 , ta đợc
D 220 2 Cõu 15 phương trỡnh (2x 5)(log2x 3) 0 cú 2 nghiệm x x1; 2(với x1<x2) Khi đú giỏ trị của M x13x2 là:
10 D 10 C 10 C 10 B
11 C 11 B 11 C 11 C
12 A 12 C 12 A 12 A
13 A 13 B 13 A 13 D
14 D 14 A 14 A 14 B
15 A 15 A 15 B 15 B