1. Trang chủ
  2. » Giáo Dục - Đào Tạo

ĐỀ THI THỬ ĐẠI HỌC MÔN TOÁN SỐ 46 NĂM HỌC 2013 - 2014

4 381 11
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Đề thi thử đại học môn toán số 46 năm học 2013 - 2014
Người hướng dẫn Thầy Huy
Chuyên ngành Toán số
Thể loại Đề thi thử
Năm xuất bản 2013-2014
Định dạng
Số trang 4
Dung lượng 225,56 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

www.facebook.com/hocthemtoan

Trang 1

Thầy Huy: 0968 64 65 97

ĐỀ THI THỬ ĐẠI HỌC MÔN TOÁN SỐ 46

NĂM HỌC 2013 - 2014

Thời gian làm bài: 180 phút

PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7,0 điểm)

Câu I (2,0 điểm) Cho hàm số 

2

x y

x (1)

1 Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số (1)

2 Viết phương trình tiếp tuyến của (C), biết tiếp tuyến đó cắt trục hoành, trục tung lần lượt tại hai điểm phân biệt A, B sao cho tam giác OAB cân tại gốc tọa độ O

Câu II (2,0 điểm) 1 Giải phương trình: 2 2 3

x

2 Tính tích phân:

2 0

3sin cos 2sin osx

dx

x c

Câu III ( 1,0 điểm) Giải hệ phương trình 2 0

Câu IV (1,0 điểm) Cho hình hộp đứng ABCD.A'B'C'D', cạnh AB = AD = 2, AA' = 3,

góc BAD = 600 Gọi M, N lần lượt là trung điểm các cạnh AD, AB Chứng minh A'C vuông góc với mặt phẳng (B'D'MN) Tính thể tích khối chóp A'B'D'MN

Câu V (1,0 điểm ) Cho x, y là hai số thực thỏa mãn điều kiện: 2x22y2xy1 Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức: P = 4 4 2 2

7(xy )  4x y

PHẦN RIÊNG (3,0 điểm): Thí sinh chỉ được làm một trong hai phần (phần A hoặc B)

A Theo chương trình Chuẩn

Câu VI.a (2,0 điểm)

1.Tìm m để đường thẳng (d): 2xmy  1 2  0 cắt đường tròn (C): 2 2

(có tâm I ) tại hai điểm phân biệt A, B sao cho diện tích tam giác IAB lớn nhất Tính diện tích đó 2.Từ các chữ số 1, 2, 3, 4, 5, 6 có thể lập được bao nhiêu số tự nhiên có sáu chữ số và thỏa mãn điều kiện: sáu chữ số của mỗi số là khác nhau và trong mỗi số đó tổng của ba chữ số đầu nhỏ hơn tổng của ba chữ số cuối một đơn vị

Câu VII.a (1,0 điểm) Trong không gian với hệ tọa độ Oxyz, viết phương trình mặt phẳng đi qua điểm M( 3; 1; -2 ), song song với trục Ox và vuông góc với mặt phẳng x - 2y + 3z - 4 = 0

B Theo chương trình Nâng cao

Câu VI.b (2,0 điểm)

1.Trong mặt phẳng, với hệ tọa độ Oxy cho hai đường thẳng d1: 2x - y + 5 = 0, d2: 3x + 6y - 1 = 0

và điểm M( 2;-1) Viết phương trình đường thẳng d đi qua M và tạo với hai đường thẳng d1, d2

một tam giác cân có đỉnh là giao điểm của d1 và d2

2.Với n là số nguyên dương, chứng minh rằng :

n

Câu VII.b (1,0 điểm) Trong không gian với hệ tọa độ Oxyz, viết phương trình mặt phẳng đi qua giao tuyến của hai mặt phẳng: 3x - y + z - 2 = 0 và x + 4y - 5 = 0, đồng thời vuông góc với mặt phẳng: 2x - z +7 = 0

Trang 2

HƯỚNG DẪN CHẤM MÔN ĐỀ 46 Câu 1: 1, - Tập xác định 3

\ 2

DR  

- Sự biến thiên + Chiều biến thiên ' 1 2 0,

(2 3)

x

 Hàm số nghịch biến trên mỗi khoảng ; 3 à 3;

+ Cực trị: Hàm số không có cực trị

+ Giới hạn và tiệm cận: lim lim 1

2

x y x

    tiệm cận ngang y = 1

2

3 3 ( ) ( ) 2 2 lim , lim x x y            tiệm cận đứng x = 3 2  + Bảng biến thiên

x -  -3

2 

y - - '

y

1 2 +

- 1

2 1

2 - Đồ thị: Giao với Ox tại ( -2; 0),

Giao với Oy tại (0; 2 3) -2 3

2 O x

Câu 1: 2, Gọi tọa độ tiếp điểm của tiếp tuyến với đồ thị (C) là: M ( x0; y0) Ta có hệ số góc của

tiếp tuyến k = y'(x0) = 2

0

1 (2x 3)

 Do tam giác OAB vuông cân tại O nên k = ± 1

0

1

(2x 3)

 = ± 1 ( loại +1) x0 = -1 hoặc x0 = -2

-Với x0 = -1  y 0 = 1  PTTT: y = - (x + 1) + 1  y = -x ( loại vì qua O )

- Với x0= -2  y 0 = 0  PTTT: y = - (x + 2) + 0  y = -x - 2

Câu 2 : 1, Ta có:

x

, 7

Câu 2: 2,

2

J

2 3

y

Trang 3

Đặt t = 2sinx + cosx, dt = (2cosx - sinx )dx Đổi cận: Khi x = 0 thì t = 1, khi x =

2

thì t = 2 Khi đó:J =

2

1

2

1

dt

t t

2

Câu 3: Đk:

1 1 2

x y

(1) x  y y xy 0  ( xy)( xy)  y( xy)  0

0

( loại do đk) Với x 2 y  0 x 4y Thay vào PT (2) ta có PT:

1

5

2

y y



Với y = 1/2  x = 2 Với y = 5/2  x = 10

Câu 4: a- Ta có: A'B'C' đều ( cạnh bằng 2 )B'D'A'C' (1)

Lại có: AA' B'D' ( 2) Từ (1) và (2)  B'D'(ACC'A')  B'D' A'C (3)

-Giả sử A'C cắt O'J tại H ( hình vẽ )  H là giao điểm của A'C với mp(B'D'MN)

- Xét hình chữ nhật ACC'A' có

A'C' =2AA'A'O'OA là hình vuông Từ đó chứng minh được A'I O'J hay A'C  O'J ( 4)

Từ (3) và (4)  A'C  mp(B'D'MN) đpcm

b-Tứ giác B'D'MN là hình thang cân có đường cao là O'J Ta có: B'N = 2 2

Tính được O'J = 15

2

B D MN

SB DMN O J  (5)

A'O'I vuông tại O' có A'O' = 3, O'I = 3

2 Từ đó tính được

Từ đó: ' ' ' 1 ' ' ' 3

A B D MN B D MN

5

xy

Bài toán trở thành: Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức 33 2 7 7

P=-4 t 2t4 trên đoạn [- ; ]1 1

Câu 6a: 1, Ta có: Tâm I( 1; -2), bán kính R = 3 Đường thẳng d cắt đường tròn tại hai điểm phân

2

2

m

m

_

A '

_

_

B' '

_ C'

_

C

_ B

D'

H

N

O'

I

O

J

M

Trang 4

S = dt IAB = 1 sin 13.3.sin

2IA IB AIB 2 S lớn nhất khi sin  1 900 Lúc đó khoảng cách h từ I tới đường thẳng d là 2 3 2

AB R

Giải Pt :

2

2

m

m

Câu 6a : 2, Gọi số cần tìm là: a a a a a a1, 2, 3, 4, 5, 6 (a1 ≠ 0)

Theo đề ra ta có:

10 11

 

Có ba tổ hợp tổng bằng 10 là: ( 1, 3, 6) ; (1,4,5); (2,3 ,5)

Trong mỗi tổ hợp: - Hoán vị ba chữ số đầu : có 3! Cách

- Hoán vị của ba chữ số cuối: có 3! Cách

suy ra có 3!.3! = 36 (số)

Vậy với ba tổ hợp có 3.36 = 108 (số )

Câu 7a : Gọi () mặt phẳng cần lập , do () //Ox và () : x - 2y + 3z - 4 = 0 nên

 

( chọn )

Vậy phương trình của mặt phẳng () là: 0( x - 3 ) - 3( y - 1 ) - 2( z + 2 ) = 0  3y + 2z + 1 = 0

Câu 6b: 1, Pt đường các phân giác l1, l2 của góc tạo bởi d1và d2 là:

1

2

Đường thẳng (d) qua M tạo với d1, d2 một tam giác cân có đỉnh là giao của d1, d2 khi và chỉ khi hoặc (d) song song với (l1) hoặc (d) song song với (l2)

TH1: (d) // (l1), suy ra (d) có PT: 3(x-2)-9(y+1)=0 x-3y-5=0

TH2: (d) // (l2), suy ra (d) có PT: 9(x-2)+3(y+1)=0 3x+y-5=0

Câu 6b: 2, Xét khai triển  

0

1

n

n k

Lấy tích phân hai vế của (1) ta có:

Từ đó dẫn tới :

n

  (Đpcm)

Câu 7b : Gọi () là mặt phẳng cần lập

Chọn M ( 1; 1; 0 ), N ( 5; 0; -13 ) là các điểm chung của hai mặt phẳng đã cho

mp: 2x - z + 7 = 0 có vtpt n  (2; 0; 1)

 

Vậy phương trình mp() là: 1( x - 1 ) - 22( y - 1 ) + ( z - 0 ) = 0  x - 22y + z + 21 = 0

Ngày đăng: 30/12/2013, 01:31

TỪ KHÓA LIÊN QUAN

🧩 Sản phẩm bạn có thể quan tâm

w