1. Trang chủ
  2. » Kinh Doanh - Tiếp Thị

Slide Tín hiệu và Hệ thống – Lesson 5 System exercises – Hoàng Gia Hưng – UET

11 27 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 11
Dung lượng 263,82 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Last lesson review ❑ Time domain representation of DT LTI systems ➢ Difference equation: characteristic polynomial, eigenvalues, characteristic modes, zero input response, zero state res[r]

Trang 1

ELT2035 Signals & Systems

Hoang Gia Hung Faculty of Electronics and Telecommunications University of Engineering and Technology, VNU Hanoi

Lesson 5: System exercises

Trang 2

Last lesson review

❑ Time domain representation of DT LTI systems

➢ Difference equation: characteristic polynomial, eigenvalues,

characteristic modes, zero input response, zero state response, natural response, forced response.

➢ Impulse response: convolution sum and properties

➢ Relationship between impulse response with LTI system properties

➢ Block diagram representation: system reduction

➢ State space representation: state variable, state space, state equations and output equation

❑ Today lesson: system exercises.

Trang 3

Exercise 1

a Consider a CT system whose input x(t) and output y(t) are related

by 𝑦 𝑡 = ׬𝜏=0𝑡+1𝑥 𝜏 𝑑𝜏 for t>0 Is the system memoryless? stable?

causal?

b Consider a DT system whose input and output are related by

𝑦 𝑛 = 3𝑥 𝑛 − 2 − 0.5𝑥 𝑛 + 𝑥 𝑛 + 1 Is the system memoryless? stable? causal?

c Consider 𝑦 𝑡 = cos 𝜔𝑐𝑡 𝑥(𝑡) Is the system memoryless? linear? time-invariant?

d Consider 𝑦 𝑛 = 2𝑛 + 1 𝑥 𝑛 Is the system memoryless? linear? time-invariant?

SOLUTION

a Dynamic, stable, noncausal

b Dynamic, stable, noncausal

c Memoryless, linear, time varying

d Memoryless, linear, time varying

Trang 4

Exercise 2

a Compute the impulse response of a system described by 𝑦 𝑛 =

2𝑥 𝑛 − 1 − 4𝑥[𝑛 − 3]

b Find the impulse response of a system specified by the equation

𝐷2 + 4𝐷 + 3 𝑦 𝑡 = 𝐷 + 5 𝑥(𝑡)

SOLUTION

a ℎ 𝑛 = 2𝛿 𝑛 − 1 − 4𝛿 𝑛 − 3 ⟹ ℎ[𝑛] = ቐ

2, 𝑛 = 1

−4, 𝑛 = 3

0, 𝑛 ∉ 1,3

b Characteristic equation: 𝜆2 + 4𝜆 + 3 = 0 ⟹ 𝜆1 = −1, 𝜆2 = −3

𝑦𝑛 𝑡 = 𝑐1𝑒−𝑡 + 𝑐2𝑒−3𝑡 Set 𝑦𝑛 0 = 0 and ሶ𝑦𝑛 0 = 1, we obtain 𝑐1 = 1

2, 𝑐2 = − 1

2 ⟹ 𝑦𝑛 𝑡 =

1

2 𝑒−𝑡 − 𝑒−3𝑡 Since bn=0, thus

ℎ 𝑡 = 𝑃 𝐷 𝑦𝑛 𝑡 𝑢 𝑡 = 𝐷 + 5 𝑦𝑛 𝑡 𝑢(𝑡)

Hence ℎ 𝑡 = 2𝑒−𝑡 − 𝑒−3𝑡 𝑢(𝑡)

Trang 5

Exercise 3

If 𝑓 𝑡 ∗ 𝑔 𝑡 = 𝑐(𝑡), then show that 𝑓 𝑎𝑡 ∗ 𝑔 𝑎𝑡 = 1

𝑎 𝑐(𝑎𝑡) with 𝑎 ≠ 0

SOLUTION

By definition:

𝑓 𝑎𝑡 ∗ 𝑔 𝑎𝑡 = ׬−∞∞ 𝑓 𝑎𝜏 𝑔 𝑎 𝑡 − 𝜏 𝑑𝜏 = ׬−∞∞ 𝑓 𝑎𝜏 𝑔(𝑎𝑡 − 𝑎𝜏)𝑑𝜏 (1) Perform the variable change: 𝑥 = 𝑎𝜏 ⟹ 𝑑𝑥 = 𝑎𝑑𝜏, (1) becomes

𝑓 𝑎𝑡 ∗ 𝑔(𝑎𝑡) =

1

𝑎න−∞

𝑓(𝑥)𝑔(𝑎𝑡 − 𝑥)𝑑𝑥 , 𝑎 > 0 1

𝑎න∞

−∞

𝑓 𝑥 𝑔 𝑎𝑡 − 𝑥 𝑑𝑥 , 𝑎 < 0

Hence 𝑓 𝑎𝑡 ∗ 𝑔(𝑎𝑡) = 1

𝑎 𝑐(𝑎𝑡), 𝑎 ≠ 0

Note: This is the time-scaling property of convolution: if both signals are

time-scaled by a, their convolution is also time-scaled by a (and multiplied

by 1

𝑎 )

Trang 6

Exercise 4

Find [sin 𝑡 𝑢(𝑡)] ∗ 𝑢(𝑡)

SOLUTION

By definition:

[sin 𝑡 𝑢(𝑡)] ∗ 𝑢(𝑡) = ׬−∞𝑡 sin 𝜏 𝑢 𝜏 𝑢 𝑡 − 𝜏 𝑑𝜏 (1) Since 𝑢 𝜏 = 0 ∀𝜏 < 0, (1) becomes

[sin 𝑡 𝑢(𝑡)] ∗ 𝑢(𝑡) = ׬0𝑡sin 𝜏 𝑢 𝜏 𝑢 𝑡 − 𝜏 𝑑𝜏 𝑢(𝑡) (2) Because 𝑢 𝜏 𝑢 𝑡 − 𝜏 = 1 ∀𝜏 ∈ [0, 𝑡], (2) becomes

[sin 𝑡 𝑢(𝑡)] ∗ 𝑢(𝑡) = ׬0𝑡sin 𝜏 𝑑𝜏 𝑢(𝑡) = 1 − cos 𝑡 𝑢(𝑡)

Trang 7

Exercise 5

Find 𝑓 𝑘 ∗ 𝑔[𝑘], with 𝑓 𝑘 , 𝑔[𝑘] are depicted below

SOLUTION

Trang 8

Exercise 6

SOLUTION

Choose the state variables as: 𝑞1(𝑡)

𝑞2(𝑡) =

𝑦 (𝑡)

𝑑

𝑑𝑡𝑦 (𝑡) , we have:

𝑑

𝑑𝑡𝑞1 𝑡 = 𝑞2 𝑡

𝑑

𝑑𝑡𝑞2 𝑡 = −26𝑞1 𝑡 − 9𝑞2 𝑡 + 24𝑥 𝑡

Hence, the state space representation of the system is:

ሶ𝒒 𝑡 = 0 1

−26 −9 𝒒 𝑡 +

0

24 𝑥 𝑡

𝑦 𝑡 = 1 0 𝒒 𝑡 + 0 𝑥(𝑡)

Find a state-space representation for the system:

𝑑2

𝑑𝑡2𝑦 𝑡 + 9 𝑑

𝑑𝑡𝑦 𝑡 + 26𝑦(𝑡) = 24𝑥(𝑡)

Trang 9

Exercise 7

SOLUTION

Trang 10

Exercise 8

SOLUTION

➢ The description with state variable 𝑞1 𝑡 , 𝑞2 𝑡 is 𝑨 = 𝛼1 0

0 𝛼2 , 𝒃 =

𝑏1

𝑏2 , 𝒄 =

𝑐1 𝑐2 , 𝐷 = [0].

➢ Similarity transformation 𝑻 = 1 −1

2 0 ⟹ 𝑻

−1 = 0 1 2Τ

−1 1 2 Τ .

➢ The new state variable description is: 𝑨′ = 𝑻𝑨𝑻−1 = 𝛼2

𝛼1−𝛼2 2

0 𝛼1 , 𝒃

′ = 𝑻𝒃 =

𝑏1 − 𝑏2

2𝑏1 , 𝒄′ = 𝒄𝑻−1 = −𝑐2

𝑐1+𝑐2

2 , 𝐷′ = 𝐷 = [0]

Consider the system in the given

block diagram If we define new

states as 𝑞1′ 𝑡 = 𝑞1 𝑡 − 𝑞2 𝑡 and

𝑞2′ 𝑡 = 2𝑞1 𝑡 , find the new state

variable description and draw its

corresponding block diagram

Trang 11

Exercise 8 (cont.)

SOLUTION (cont.)

➢ The corresponding block diagram is

𝛼2

𝛼1 0.5(𝛼1 − 𝛼2)

Ngày đăng: 02/10/2021, 07:47

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

🧩 Sản phẩm bạn có thể quan tâm

w