1. Trang chủ
  2. » Kỹ Thuật - Công Nghệ

Tài liệu Hệ thống điều khiển mờ - Thiết kế và phân tích P13 pptx

17 371 0
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Multiobjective control via dynamic parallel distributed compensation
Tác giả Kazuo Tanaka, Hua O. Wang
Chuyên ngành Fuzzy Control Systems
Thể loại Chapter
Năm xuất bản 2001
Định dạng
Số trang 17
Dung lượng 161,27 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

ISBNs: 0-471-32324-1 Hardback ; 0-471-22459-6 Electronic CHAPTER 13 MULTIOBJECTIVE CONTROL VIA DYNAMIC PARALLEL DISTRIBUTED COMPENSATION dynamic parallel distributed compensation DPDC..

Trang 1

Kazuo Tanaka, Hua O Wang Copyright 䊚 2001 John Wiley & Sons, Inc.

ISBNs: 0-471-32324-1 Hardback ; 0-471-22459-6 Electronic

CHAPTER 13

MULTIOBJECTIVE CONTROL

VIA DYNAMIC PARALLEL

DISTRIBUTED COMPENSATION

dynamic parallel distributed compensation DPDC It is often the case in the practice of control engineering that a number of design objectives have to be achieved concurrently The associated synthesis problems are formulated as

linear matrix inequality LMI problems, that is, the parameters of the DPDC controllers are obtained from a set of LMI conditions The approach in this chapter can also be applied to hybrid or switching systems

We present the performance-oriented controller synthesis of DPDCs to incorporate a number of practical design objectives such as disturbance attenuation, passivity, and output constraint Performance specifications

con-troller synthesis procedures are formulated as LMI problems In the case

of meeting multiple design objectives, we only need to group these LMI conditions together and find a feasible solution to the augmented LMI

problem 15

q

As discussed in Chapter 12, in general, the choice of a particular DPDC parameterization will be influenced by the structure of the T-S subsystems

In this chapter, we will only discuss DPDC in the quadratic parameteri-zation form It is easy to extend the results in this chapter to the cubic

259

Trang 2

parameterization case Recall the quadratic parameterization is represented as

x s hŽp h Žp A x q. h B y, Ž13.1.

r

i

u s Ýh iŽp C x q D y,. c c c Ž13.2.

is1

or equivalently that

A cŽp s Ý Ý h iŽp h. jŽp A ,. c B cŽp s Ýh iŽp B ,. c

13.3

r

i

C cŽp s Ýh iŽp C ,. c D cŽp s D . c

is1

variables

This section presents LMI conditions which can be used to design DPDC controllers which satisfy a variety of useful performance criteria The presen-tation is divided into two subsections In the first subsection, we assume only

a linear parameter-dependent controller structure and derive a collection of parameter-dependent conditions expressed in inequalities Each condition corresponds to a different performance criterion In the second subsection,

we restrict our consideration to a DPDC controller structure This restriction allows us to convert the parameter-dependent inequalities to parameter-free LMIs which can be solved numerically

13.1.1 Starting from Design Specifications

equations

x Ž t s A Žp x Ž t q B Ž p w t , Ž

13.4

z t s CŽ c lŽp x. c lŽ t q D c lŽp w t , Ž

Ž

the system states or some exogenous input variables

Trang 3

L Gain Performance 2

Definition 2 14 : For a casual NLTI nonlinear time-invariant operator G: e

w g L2 ᑬ ™ z g L ᑬ2 with G 0 s 0, G is L2 stable if w g L2 ᑬ

␥ G 0 if and only if

z tŽ dt Fw tŽ dt Ž13.5.

The well-known Bounded Real Lemma is given below 25

LEMMA 1 For system G: A c l p , B c l p , C c l p , D c l p , the L2 gain will

be less than ␥ ) 0 if there exists a matrix P s P T ) 0 such that

T

L ŽA c lŽp , P . PB c lŽp. C c lŽp.

B c lŽp. P y␥ I D c lŽp.

C c lŽp. D c lŽp. y␥ I

General Quadratic Constraint

Definition 3 15 : For a casual NLTI,G: w ™ z with G 0 s 0 Given fixed

Ž

w t need to satisfy the following constraint:

X

z tŽ U W z tŽ

T

H0 žw tŽ / žW T V/ žw tŽ /

Remark 41 15 : Many performance specifications such as L gain, passiv-2

ity, and sector constraint can be incorporated into this general quadratic

L ŽA c lŽp , P . PB c lŽp q C. c l T W

žB c lŽp P q W C. c l D W q W D q V c l c l /

T T

C c lŽp.

Trang 4

X

d x c lŽ t L ŽA c lŽp , P . PB c lŽp. x c lŽ t

X

z tŽ U W z tŽ

Inequality 13.7 will result by integrating both sides of 13.9

Applying the Schur complement to 13.8 , we get the following lemma:

LEMMA 2 For system G: A c l p , B c l p , C c l p , D c l p , the general

quadratic constraint 13.7 will be satisfied if there exists a matrix P s P ) 0

such that

L ŽA c lŽp , P . PB c lŽp q C. c lŽp W. C c lŽp S.

B c lŽp P q W C. c l W D q D W q V c l c l D c lŽp S. - 0 13.10Ž

S C c lŽp. S D c lŽp. y⌺

Generalized H Performance 2

Definition 4 15 : A causal NLTI G: w ™ z with G 0 s 0 is said to have

L ŽA c lŽp , P . PB c lŽp.

T

Then drdt V x c l t -␨ w t w t We will suppose D p s 0 In this c l

case, if the equation

P C T c lŽp.

Trang 5

Ž Ž Ž Ž

LEMMA 3 For system G: A c l p , B c l p , C c l p , 0 , the generalized H per-2

T

formance will be less than ␨ if there exists a matrix P s P ) 0 such that 13.12

and 13.13 are feasible.

Constraint on System Output

Definition 5 24 : A casual NLTI G: x s A˙c l c l p x c l and z s C c l p x c l

satisfies an exponential constraint on the output if

y␣ T

Ž

equation

L ŽA , P q 2 c l . ␣P - 0 Ž13.15.

Furthermore, if the equations

P Px c lŽ 0

X

and

P C T c lŽp.

hold, then the inequality

zt z tŽ -␨ xX Ž t Px Ž t -␨ ey 2␣ t xX Ž 0 Px Ž 0 -␨2ey 2␣ t

will also be satisfied Combining these results, we have the following lemma:

LEMMA 4 For the system G: x s A˙c l c l p x c l and z s C c l p x , the expo- c l

nential constraint z T F␨ e ,᭙T G 0, will be satisfied if there exists a

T

matrix P s P ) 0 such that 13.15 , 13.16 , and 13.17 are feasible.

Constraints on Control Input

Definition 6 24 : A casual NLTI G: x s A˙c l c l p x c l and u s K p x c l with

Ž

input if

y␣ T

Similar to the discussion for exponential constraint on the system output, we have the following lemma:

Trang 6

Ž Ž

LEMMA 5 For system G: x s A˙c l c l p x c l and u s K p x , the exponential c l

constraint u T F␨ e ,᭙T G 0, will be satisfied if there exists a matrix T

P s P ) 0 such that 13.15 , 13.16 , and

T

P K pŽ

13.1.2 Performance-Oriented Controller Synthesis

In this subsection, we consider T-S models which are represented by a set of fuzzy rules in the following form:

Dynamic Part

Rule i

IF p t is M1 i1 ⭈⭈⭈ and p t is M , l i l

THEN˙x t s A x t q B u t q B w t i i w

Output Part

Rule i

IF p t is M1 i1 ⭈⭈⭈ and p t is M , l i l

THEN

y t s C x t q DŽ i Ž w i w t ,Ž

z t s CŽ z i x t q DŽ z i u t q DŽ z w i w t Ž

Ž

performance variables of the control systems

We can simplify the expressions of the T-S model as

r

i

x s hŽp. A x q B u q B w , Ž13.20.

is1 r

z s Ýh iŽp ŽC x q D u q D w , z z z w Ž13.21.

is1 r

i

y s Ýh iŽp ŽC x q D w i w Ž13.22.

Trang 7

Ž Ž

DPDC controller 13.1 and 13.2 have the form

r r

x s hŽp h Žp. A x q B w , Ž13.23.

is1 js1

r r

z s c l Ý Ý h iŽp h. jŽp ŽC x q D w , c l c l c l Ž13.24.

is1 js1

where

A q B D C i i c j B C i c B q B D D w i c w

A s c l ž B C c i j A i j c /, B s c l B D c i w j ,

C s c l z z c j z c , D s D c l z wqD D D z c w

Now, we are ready to apply the results in Section 13.1.1 to 13.23 and

Ž13.24

L Gain Performance We begin by applying a congruence transformation 2

on 13.6 using the matrix

,

 0 0 I0

where the closed-loop system is defined as in 13.23 and 13.24 By utilizing

the notation in the quadratic parametrization discussed in Chapter 12, 13.6 becomes

r r

is1 js1

where

E11i j E12i j E13i j E14i j

Ž 12. 22 23 Ž 42.

Ž 13 Ž 23 Ž 43.

Ž 14. 42 43

Trang 8

E s11 L ŽA , Q i 11.qB iCjB iCj/ , E s A q B12 i i DC q j Ai j,

T

E s B q B13 w i DD , w E s C Q q D14 ž z 11 zCj/ ,

T

E s22 L ŽA , P i 11.qBi C q j Ž Bi C j. , E s P B q23 11 w Bi D , w

E i jsC iqD i

DD jqD i

Condition 13.25 is equivalent to

r r

h Žp h Žp E q E Ž - 0 Ž13.26.

is1 js1

The inequality 13.26 will hold true according to Theorem 45 if there exist

We will express the resulting theorem using the notation in the previous section:

THEOREM 51 Gi®en a T-S model of the form 13.20 ᎐ 13.22 with DPDC

controller 13.1 and 13.2 , the L gain performance will be less than2 ␥ if the

LMI conditions 12.16 , 13.27 , and 12.85 are feasible with LMI ®ariables Q ,11

P , T ,11 i j Ai j, Bi, Ci, and D:

where

i j

E s11 L ŽA , Q i 11.qL ŽA , Q j 11.qB iCjB iCj/ qB jCiB jCi/ ,

T

i j

E s A q A q B12 i j i DC q B j j DC q 2 i Ai j ,

E s B q B q B13 w w i DD q B w j DD , w

T

E s C Q q C Q q D14 ž z 11 z 11 zCjqD zCi/ ,

E s22 L ŽA , P i 11.qL ŽA , P j 11.qBi C q j Bj C q i ž Bi C j/ qž Bj C i/ ,

Trang 9

i j i j j i

E s P B q P B q23 11 w 11 w Bi D q w Bj D , w

E s C q C q D42 z z z DC q D j z DC , i

E s D43 z DD q D w z DD q D w z wqD z w

The resulting dynamic controller is gi®en by 12.87 ᎐ 12.90 where P , P , Q ,11 12 11

and Q12 satisfy the constraint P Q q P Q11 11 12 T12sI

General Quadratic Performance Similarly, we get the following theorem

by applying a congruence transform on 13.10 using the matrix

 0 0 I0

Ž13.1 and 13.2 , the generalized quadratic constraint 13.7 will be satisfied ifŽ Ž

the LMI conditions 12.16 , 12.85 , and 13.28 are feasible with LMI ®ariables

Q , P , T ,11 11 i j Ai j, Bi, Ci and D

E11 E12 E13 E14

T

 i j T i j T i j T i j 0

where

i j

E s11 L ŽA , Q i 11.qL ŽA , Q j 11.qB iCjB iCj/ qB jCiB jCi/ ,

T

i j

E s A q A q B12 i j i DC q B j j DC q 2 i Ai j ,

E s B q B q B13 w w i DD q B w j DD w

T

C Q q D z 11 zCjqC Q q D z 11 zCi/ W ,

T

E s C Q q C Q q D14 ž z 11 z 11 zCjqD zCi/ S,

Trang 10

T T

E s22 L ŽA , P i 11.qL ŽA , P j 11.qBi C q j Bj C q i ž Bi C j/ qž Bj C i/ ,

E s P B q P B q23 11 w 11 w Bi D q w Bj D w

T

C q C q D z z z DC q D j z DC i/ W ,

T

E s C q C q D24 ž z z z DC q D j z DC i/ S,

E s 2V q W33 žD z wqD z wqD z DD q D w z DD w/

T

D z wqD z wqD z DD q D w z DD w/ W ,

T

E s D34 ž z wqD z wqD z DD q D w z DD w/ S,

i j

E s y244 ⌺

The controller is gi®en by 12.87 ᎐ 12.90

Generalized H Performance If we apply a congruence transform on both 2

,

we get the following theorem:

THEOREM 53 For a T-S model 13.20 ᎐ 13.22 with PDC controller 13.1

and 13.2 , the generalized H2 performance will be less than ␨ if the LMI

conditions 12.16 , 12.85 , 13.20 , 13.30 , and 13.31 are feasible with LMI

®ariables Q , P , T , S ,11 11 i j i j Ai j, Bi, Ci, and D for all i F j:

T

 qD zCjqD zCi.0

T

) S ,

j

2␨ I

13.29

Trang 11

S11 S1r

E11 E12 E13 T

 ŽE13i j. ŽE23i j. E33i j 0

where

i j

E s11 L ŽA , Q i 11.qL ŽA , Q j 11.qB iCjB iCj/ qB jCiB jCi/ ,

T

i j

E s A q A q B12 i j i DC q B j j DC q 2 i Ai j ,

E s B q B q B13 w w i DD q B w j DD , w

E s22 L ŽA , P i 11.qL ŽA , P j 11.qBi C q j Bj C q i ž Bi C j/ qž Bj C i/ ,

E s P B q P B q23 11 w 11 w Bi D q w Bj D , w

i j

E s y233 ␨ I,

and

D z wqD z wqD z DD q D w z DD s 0, w ᭙i F j. Ž13.32.

The controller is gi®en by 12.87 ᎐ 12.90

Constraints on the Outputs Applying a congruence transform on 13.15

,

we get the following theorem

THEOREM 54 Consider a T-S model 13.20 ᎐ 13.22 suppose D z ws0,

D s 0 and B s 0 with DPDC controller 13.1 and 13.2 Suppose the w w

initial state is gi®en by x 0 x 0 c ⬘; then z t - ␨ e for all t G 0 if the

LMI conditions 13.33 ᎐ 13.35 and 12.85 and 13.31 are feasible with LMI

®ariables Q , P , P , T , S ,11 11 12 i j i j Ai j, Bi, Ci and D:

E11 E12

 ŽE12. E220

Trang 12

T

i j

E s11 L ŽA , Q i 11.qL ŽA , Q j 11.qB iCjB iCj/

T

T

i j

E s A q A q B12 i j i DC q B j j DC q i Ai j q2␣I,

E s22 L ŽA , P i 11.qL ŽA , P j 11.qBi C q j Bj C i

Ž

P x 011

X

Ž

x 0 P11

X

13.34

T

T

C q C q D z z z DC j

) S

j

2␨ I

qD CqD C 0  j 0

13.35

The controller is gi®en by 12.87 ᎐ 12.90

Constraints on the Inputs Applying a congruence transform on 13.15

,

we get the following theorem:

Trang 13

Ž Ž Ž i

THEOREM 55 Consider a T-S model 13.20 ᎐ 13.22 suppose D z ws0,

D s 0, and B s 0 with PDC controller 13.1 and 13.2 Suppose the initial w w

state is gi®en by x 0 x 0 ; then u t c -␨ e for all t G 0 if the LMI

conditions 13.33 , 13.34 , 13.36 , and 12.85 are feasible with LMI ®ariables

Q , P , T ,11 11 i j Ai j, Bi, Ci, and D

T

T

I P11 ž DC i/

The controller is gi®en by 12.87 ᎐ 12.90

To illustrate the DPDC approach, consider the problem of balancing an inverted pendulum on a cart Recall the equations of motion for the

lum 26 :

x s x ,

g sin xŽ 1.yamlx22sin 2Ž x r2 y a cos x1 Ž 1.u

˙2 4lr3 y aml cosx1.

and x is the angular velocity; g s 9.8 mrs2 2 is the gravity constant, m is

a s 1r m q M We choose m s 2.0 kg, M s 8.0 kg, 2 l s 1.0 m in this

study

The control objective is to balance the inverted pendulum for the

represent the system 13.37 by a Takagi-Sugeno fuzzy model Notice that

two-rule fuzzy model as shown in Chapter 2

Model Rule 1

IF x is about 0,1

THEN˙x s A x q B u.

Trang 14

Model Rule 2

IF x is about1 "␲r2 x - ␲r2 ,1

THEN˙x s A x q B u.2 2

Here,

y

Membership functions for Rules 1 and 2 are shown in Figure 13.1

Now we apply the DPDC design to the pendulum system Assume that

only x is measurable, that is, y s Cx s 11 0 x We employ the following

DPDC controller:

x s hŽy h Žy A x q. h B y,

2

i

u s Ýh iŽy C x q D y.. c c c

is1

Fig 13.1 Membership functions of the fuzzy model.

Trang 15

Employing Theorem 47, we obtain the following control parameters for the DPDC controller:

11

12 21

22

5.0666

1

20.8530 3.4824

2

12.5320

C s 388.9291 c 113.6926 ,

C s 794.6242 c 247.5543 ,

D s 4.4624 c

Figure 13.2 illustrates the closed-loop system response with the DPDC

mance-oriented DPDC designs have also been carried out according to the principles of Section 13.1

Fig 13.2 Angle response using the DPDC controller.

Trang 16

If variable p comes from the output of the system, the dynamic feedback

controller will become a dynamic output feedback controller which is essen-tial for practical applications when only the system output is available The framework used in this chapter can also be applied to generate nonlinear controllers for uncertain systems One of the basic tools for robustness analysis of such uncertain systems is the small-gain theorem which

sufficiently small, we can guarantee the robust stability The results in this chapter are also applicable to hybrid and switching systems

BIBLIOGRAPHY

1 J Li, D Niemann, H O Wang, and K Tanaka, ‘‘Multiobjective Dynamic Feedback Control of Takagi-Sugeno Model via LMIs,’’Proc 4th Joint Conference

of Information Sciences, Vol 1, Durham, Oct 1998, pp 159᎐162.

2 J Li, D Niemann, H O Wang, and K Tanaka, ‘‘Parallel Distributed Compensa-tion for Takagi-Sugeno Fuzzy Models: Multiobjective Controller Design,’’ Proc.

1999 American Control Conference, San Diego, June 1999, pp 1832᎐1836.

3 D Niemann, J Li, H O Wang, and K Tanaka, ‘‘Parallel Distributed Compensa-tion for Takagi-Sugeno Fuzzy Models: New Stability CondiCompensa-tions and Dynamic

ŽIFAC World Congress, Beijing, July 1999, pp 207 ᎐212.

4 J Li, H O Wang, D Niemann, and K Tanaka, ‘‘Synthesis of Gain-Scheduled Controller for a Class of LPV Systems,’’Proc 38th IEEE Conference on Decision and Control, Phoenix, Dec 1999, pp 2314᎐2319.

5 J Li, H O Wang, D Niemann, and K Tanaka, ‘‘Dynamic Parallel Distributed

Sci., Vol 123, pp 201᎐221 2000

6 P Apkarian, P Gahinet, and G Becker, ‘‘Self-Scheduled H Control of Linear

Parameter Varying Systems: A Design Example,’’Automatica, Vol 31, No 9, pp.

1251 ᎐1261 1995

7 S G Cao, N W Rees, and G Feng, ‘‘Fuzzy Control of Nonlinear Continuous-Time Systems,’’ in Proc 35th IEEE Conf Decision and Control, New York, 1996,

pp 592 ᎐597.

8 G Chen and H Ying, ‘‘Stability Analysis of Nonlinear Fuzzy PI Control Systems,’’

in Proc of the 3rd Int Conf on Industrial Fuzzy Control and Intelligent Systems,

Kobe, Japan, 1993, pp 128᎐133.

Control,’’Int J Robust Nonlinear Control, Vol 4, No 4, pp 421᎐428 1994

10 M Johansson and A Rantzer, ‘‘On the Computation of Piecewise Quadratic Lyapunov Function,’’ in Proc of the 36th IEEE Conf Decision and Control, San

Diego, CA, 1997, pp 3515 ᎐3520.

11 R Langari and M Tomizuka, ‘‘Stability of Fuzzy Linguistic Control Systems,’’

in Proceedings of the 29th IEEE Conf Decision and Control, Honolulu, HI, 1990,

pp 35 ᎐42.

Ngày đăng: 24/12/2013, 12:17

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

🧩 Sản phẩm bạn có thể quan tâm

w