NHÂNVÀ VÀCHIA CHIASỐ SỐPHỨC PHỨCDƯỚI DƯỚIDẠNG DẠNGLƯỢNG LƯỢNGGIÁC GIÁC 2.2.NHÂN.. CÔNGTHỨC THỨCMOA-VRƠ MOA-VRƠVÀ VÀỨNG ỨNGDỤNG DỤNG 3.3.CÔNG..[r]
Trang 22 NHÂN VÀ CHIA SỐ PHỨC DƯỚI DẠNG LƯỢNG GIÁC
3 CÔNG THỨC MOA-VRƠ VÀ ỨNG DỤNG
Trang 3Hãy nêu dạng của
số phức z? Biểu diễn hình học số phức z trên mp phức là gì?
Acgumen của số phức z = a + bi
(z khác 0) là số đo (radian) của
góc lượng giác tia đầu Ox, tia cuối
OM, với M(a;b) và O là gốc tọa độ M z( )
y
x
b
z = a + bi
Acgumen
của số phức z
Trang 4a/ Acgumen của số phức z khác 0.
VD1 : Tìm một acgumen của số
sau: 1; -2; 3i; -2i; 1 + i 4
2
-2
E( 1+i ) A( 1 ) B( -2 )
C( 3i )
D( -2i )
y
x O
4
2
-2
E( 1+i )
A( 1 ) B( -2 )
C( 3i )
D( -2i )
y
x O
Trang 5Kí hiệu : r là môđun của z
là acgumen của z
r
M z ( )
y
x
b
H
K
Xét số phức z = a +bi
Hãy tính a,b theo r và
Dạng lượng giác của số phức:
cos sin , 0
Trang 6b/ Dạng lượng giác của số phức
Dạng lượng giác của số phức: z r cos isin ,r 0
Trong đó: r là môđun của z
là acgumen của z
r
M z ( )
y
x
b
H
K Chú ý: Dạng z = a + bi đgl dạng đại số
của số phức zMuốn viết dạng lượng giác của z cần tìm gì?
Trang 7b/ Dạng lượng giác của số phức
Dạng lượng giác của số phức: z r cos isin ,r 0
Trong đó: r là môđun của z
là acgumen của z
VD 2: Tìm dạng lượng giác
của các số phức:
a/ z = 1 b/ z = -2 c/ z = 3i
d/ z = -2i e/ z = 1+i
4
2
-2
E( 1+i ) A( 1 ) B( -2 )
C( 3i )
D( -2i )
y
x O
Trang 8Dạng đại số của số phức: z = a + bi (a, b là các số thực)
b/ Dạng lượng giác của số phức
Dạng lượng giác của số phức: z r cos isin ,r 0
VD 3: Hãy viết số phức sau ở dạng đại số:
:
Trang 9
' ? '
?
z z z z
Nếu
thì
Trang 10
' ' cos ' sin ' , ' '
cos ' sin ' , 0
z r
z r
Nếu
thì
1
i
i
VD 4: Hãy viết số phức sau ở dạng lượng giác
ĐỊNH
LÍ
Trang 11M z ( )
y
x
b
3/
4
'
'
'
z
r
z
r r r
+ Acgumen của số phức z = a + bi
+ Dạng lượng giác của số phức z
(cách tìm dạng LG)
+ Dạng đại số của số phức z
+ Nhân, chia số phức dưới dạng LG
Bài tập về nhà: bài 27, 28 SGK Trang 205
2/ z = a +bi
1/
co
( ính ,
0
)
in