1. Trang chủ
  2. » Giáo Dục - Đào Tạo

MỘT SỐ BÀI TOÁN VỀ HỆ PHƯƠNG TRÌNH

13 28 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 13
Dung lượng 242,13 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Với giá trị nào của n thì hệ vô nghiệm... Chứng tỏ hệ phương trình có nghiệm với mọi giá trị của m.. Tìm m để phương trình có nghiệm x0,y0 sao cho x0 đạt giá trị lớn nhất.. Tìm giá trị c

Trang 1

MỘT SỐ BÀI TOÁN VỀ HỆ PHƯƠNG TRÌNH –

THCS THÁI THỊNH

I - Hệ hai phương trình bậc nhất hai ẩn:

Dạng 1: Giải hệ phương trình cơ bản và đưa được về dạng cơ bản

Bài 1.Giải hệ phương trình :

x y

b)

 6 3

1 2 7

y x

y x

0 2

3

y x

y x

d)

 7 3

8 2

y x

y x

1

x y

x y

 

1 3

1 3 2 2

y x

y x

x y

x y

 

x y

x y

 

x y

x y

  

k) 3 2 11

x y

x y

x y

x y

 

x y

x y

 

x y

x y

  

10 0

x y

x y

   

x y

x y

x y

x y

 

3x 2y 4

o)

2x y 5

 

4x 2y 3 r)

6x 3y 5

2x 3y 5 v)

4x 6y 10

3x 4y 2 0 j)

5x 2y 14

Bài 2.Giải hệ phương trình :

x y

x y

  

  

2) 0,3 0, 5 3

1, 5 2 1,5

x y

  

4) 2 3 11

x y

5)

3

x y

6)

2

1 5

x y

x y

 

7)

x y

 

8) 0, 2 0,1 0,3

x y

 

9)

0, 2 1, 7 18,1

3, 2 20, 6

x y

 

10)

5 1,5 4,5

x y

x y

x y

  

14 5

x y

x y

14) 2,3 0,8 5

x y y

x y

x y

 

6

x y

x y

 

Trang 2

17) 3 2 13

x y

x y

  

x y

x y

 

x y

x y

x y

x y

x y

x y

 

22) 1,3 4, 2 12 0,5 2,5 5,5

23) 1, 7 2 3,8 2,1 5 0, 4

x y

x y

10 11 31

  

x y

x y

  

26) 0,35 4 2, 6

0, 75 6 9

x y

x y

  

27) 3,3 4, 2 1

15 21 0,5

x y

x y

x y

x y

  

  

x y

x y

 

x y

x y

 

Bài 3 Giải hệ phương trình

3x 2 2y 3 6xy

1)

4x 5 y 5 4xy

2x-3 2y 4 4x y 3 54 2)

x 1 3y 3 3y x 1 12

 2y-5x y 27

3)

x 1 6y 5x

y

7x 5y-2

8

x 3y 4)

6x-3y 10

5 5x 6y

 

 

5)

6)

7)

2 2

8)

3 7 2 5 2 1 3

9)

4

1

10)

1

s

t

3x 2 2y 3 6xy

11)

4x 5 y 5 4xy

2x-3 2y 4 4x y 3 54 12)

x 1 3y 3 3y x 1 12

 2y-5x y 27

13)

x 1 6y 5x

y

7x 5y-2

8

x 3y 14)

6x-3y 10

5 5x 6y

 

 

Dạng 2: Giải hệ bằng phương pháp đặt ẩn phụ

Trang 3

Bài 4 Giải hệ phương trình bằng đặt ẩn phụ:

3

x 2y y 2x

1)

1

x 2y y 2x

x 1 3y

7

x 1 y 2 3)

4

x 1 y 2

  

  

3x 2

4

x 1 y 4 2)

2x 5

9

x 1 y 4

  

  

x 1 3y

7

x 1 y 2

3)

4

x 1 y 2

  

  

2

2

2 x 2x y 1 0 4)

3 x 2x 2 y 1 7 0

    

5 x 1 3 y 2 7

5)

2 4x 8x 4 5 y 4y 4 13.

    

     

1 2 6)

5 2

x y

x y

2 7)

1, 7

x x y

x x y

7

8)

4

Bài 5 Giải hệ phương trình:

a)

2

5 0

x y

  

b)

 0 1

3 3

xy

xy y x

c)

 8

16

2 2

y x

y x

Bài 6 Giải hệ phương trình:

1,

xy y y

xy y y

2,

1 1

3 2 2

2 2

1 1 1

x y

y

7

5

2 2

xy y x

xy y x

4,

y y

x

x

y

x

2 2

2

2

1

5,

2

6,

0 4 4

3 2 5

2

2 2

xy y

y xy x

7,

3

1

x y x y

x y x y

8,

( ) 12 ( ) 30

xy x y

yz y z

zx z x

 

 

9,

1 1

3 2 2

2 2

1 1 1

x y

y x

Trang 4

10,

2

2

x y

x y

xy

xy

   

11,

7 28 7

x xy y

y yz z

z xz x

y x

x y

13,

2

2

1

3 1

3

x x

x x

14,

7 21

x xy y

x x y y

3 2

y x

16,

3 3

2 2

8

2 2

2 2

15 3

x y x y

x y x y

18,

2 2

4 0

    

19,

x yx

y xy

2 2

3 3

1 3

x y xy

21,

22, 22 2

2 3 2

x y

3 5 34

x y

x y

  

24,

3 2 22

7 5 10

x y

x y

  

Dạng 3: Xác định giá trị của tham số để hệ có nghiệm thoả mãn điều kiện cho trước

Bài 6 Tìm m để hệ phương trình vô nghiệm ? Có vô số nghiệm ?

m y x

y x

2 2 2

2 4 4

Bài 7 Cho hệ phương trình :

a y x

a y

x

2

3 3 2

1.Tìm a biết y=1

2.Tìm a để : x2 + y2 =17

Bài 8: Cho hệ phương trình :

3 1

1 2

mx y

x y

  

 

(I)

Trang 5

1 Giải hệ phương trình (1) khi 3

2

m  

2 Tìm m để hệ phương trình (1) có nghiệm 2

2

x y

 

 

Bài 9: Cho hệ phương trình 2

x m y

 1.Giải hệ với m = 1

2 Tìm giá trị của m để hệ có nghiệm

Bài 10 Cho hệ phương trình:

1

x my

  

  

(m là tham số) 1.Giải hệ với m = -2

2.Tìm các giá trị của m để hệ có nghiệm duy nhất (x;y) thoả mãn y = x2

Bài 11 Cho hệ phương trình

( 1) 3 1

x y m

  

 a) Giải hệ phương trình với m = 2

b)Tìm m để hệ có nghiệm duy nhất (x;y) mà S = x2 + y2 đạt giá trị nhỏ

nhất

Bài 12 Cho hệ phương trình:

a y ax

y x a

2

4 1

(a là tham số)

1 Giải hệ khi a=1

2 Chứng minh rằng với mọi giá trị của a, hệ luôn có nghiệm duy nhất (x;y) sao cho x + y ≥ 2

Bài 13 Cho hệ phương trình(ẩn là x, y ):

a y x

a ny x

3

7 2

2 19

1 Giải hệ với n = 1

2 Với giá trị nào của n thì hệ vô nghiệm

Trang 6

Bài 14 Cho hệ phương trình:

1 2

1

2

z xy

z y x

(ở đó x, y, z là ẩn)

1 Trong các nghiệm (x0; y0; z0) của hệ phương trình, hãy tìm tất cả những nghiệm có z0 = - 1

2 Giải hệ phương trình trên

Bài 15 Cho hệ phương trình:

2 2

1 2

m y mx

1 Chứng tỏ hệ phương trình có nghiệm với mọi giá trị của m

2 Gọi (x0;y0) là nghiệm của phương trình, chứng minh với mọi giá trị của

m luôn có: x0

2

+ y0

2

= 1

Bài 16 Cho hệ phương trình:

0 1

1 2 1

2

y x y

x m y x

y x

1 Tìm m để phương trình có nghiệm (x0,y0) sao cho x0 đạt giá trị lớn nhất Tìm nghiệm ấy?

2 Giải hệ phương trình khi m = 0

Bài 17 Cho hệ phương trình :

 2

5 3 2

y x

a y x

Gọi nghiệm của hệ là ( x , y ) , tìm giá trị của a để biểu thức P = x2 + y2 đạt giá trị nhỏ nhất

Bài 18 Cho hệ phương trình:

1 2

2

y ax

ay x

(x, y là ẩn, a là tham số)

1 Giải hệ phương trình trên

2 Tìm số nguyên a lớn nhất để hệ phương trình có nghiệm (x0,y0) thoả mãn bất đẳng thức P = x0y0 < 0

Trang 7

Bài 19 Cho hệ phương trình:

1

2

2

a xy

y x

trong đó x, y là ẩn, a là số cho trước

1 Giải hệ phương trình đã cho với a=2011

2 Tìm giá trị của a để hệ phương trình đã cho có nghiệm

Bài 20 Cho hệ phương trình:

 

24 12 1

12 1 3

y x m

y m x

1 Giải hệ phương trình

2 Tìm m để hệ phương trình có một nghiệm (x; y) sao cho x < y

Bài 21 Cho hệ phương trình:

80 50 ) 4 (

16 ) 4 ( 2

y x n

y n x

1 Giải hệ phương trình

2 Tìm n để hệ phương trình có một nghiệm (x; y) sao cho x + y > 1

Bài 22 Cho hệ phương trình:

2

2 1 1

a xy

a y x

a) Giải hệ phương trình với a = 1

b)Tìm a để hệ có nghiệm duy nhất

Bài 23 Cho hệ phương trình :

1 3

5 2

y mx

y mx

a) Giải hệ phương trình khi m = 1

b) Giải và biện luận hệ phương trình theo tham số m

c)Tìm m để hệ phương trình có một nghiệm (x; y) sao cho x – y = 2

Bài 23 Cho hệ phương trình :

6 4

3

y mx

my x

a)Giải hệ khi m = 3

Trang 8

b)Tìm m để hệ phương trình có một nghiệm (x; y) sao cho x > 1 , y > 0

Bài 25 Cho hệ phương trình

n y x

ny mx

2

5

a)Giải hệ khi m = n = 1

b)Tìm m , n để hệ phương trình có một nghiệm (x; y) sao cho

 1 3

3

y x

Bài 26.Cho hệ phương trình :

2

y x

m my x

a) Giải hệ khi m = 1

b) Giải và biện luận hệ phương trình

Bài 27 Cho hệ phương trình :

1 3

5 2

y mx

y mx

a) Giải hệ phương trình với m = 1

b) Giải biện luận hệ phương trình theo tham số m

c) Tìm m để hệ phương trình có một nghiệm (x; y) sao cho x2 + y2 = 1

Bài 28 Cho hệ phương trình

 5 3

3

my x

y mx

a) Giải hệ phương trình khi m = 1

b) Tìm m để hệ phương trình có một nghiệm (x; y) sao cho 1

3

) 1 ( 7

m

m y x

Bài 29.Cho hệ phương trình

 1 2

7

2

y x

y x a

a) Giải hệ phương trình khi a = 1

b) Gọi nghiệm của hệ phương trình là ( x , y) Tìm các giá trị của a để x + y = 2

Bài 30 Cho hệ phơng trình :

Trang 9

2

y x

m my x

a) Giải hệ khi m = 1

b) Giải và biện luận hệ phương trình

Bài 31 Cho hệ phương trình :

1 3

5 2

y mx

y mx

a) Giải hệ phương trình với m = 1

b) Giải biện luận hệ phương trình theo tham số m

c) Tìm m để hệ phương trình có một nghiệm (x; y) sao cho x2 + y2 = 1

Bài 32 Cho hệ phương trình

 1 2

7

2

y x

y x a

a) Giải hệ phương trình khi a = 1

b) Gọi nghiệm của hệ phương trình là ( x , y) Tìm các giá trị của a để x + y = 2

Bài 33 Cho hệ phương trình :

1 3

5 2

y mx

y mx

a) Giải hệ phương trình khi m = 1

b) Giải và biện luận hệ phương trình theo tham số m

c) Tìm m để x – y = 2

Bài34 Cho hệ phương trình :

6 4

3

y mx

my x

a) Giải hệ khi m = 3

b) Tìm m để hệ phương trình có một nghiệm (x; y) sao cho x > 1 , y > 0

II - Một số hệ bậc hai đơn giản:

Dạng 1: Hệ đối xứng loại I

Ví dụ: Giải hệ phương trình

28 y x 3 y x

11 xy y x

2 2

Bài tập tương tự:

Giải các hệ phương trình sau:

Trang 10

2 2

2 2

x y x y 8

1)

x y xy 7

    

x xy y 4 2)

x xy y 2

  

xy x y 19 3)

x y xy 84

  

x 3xy y 1

4)

3x xy 3y 13

x 1 y 1 8 5)

x x 1 y y 1 xy 17

x 1 y 1 10 6)

x y xy 1 3

2 2

x xy y 2 3 2

7)

    

 

2

x xy y 19 x y 8)

x xy y 7 x y

2

2 2

9)

5 x y 5xy

x y y x 30 10)

x x y y 35

Dạng 2: Hệ đối xứng loại II

Ví dụ: Giải hệ phương trình

x

2 1 y

2y 1 x 3 3

Bài tập tương tự:

Giải các hệ phương trình sau:

2

2

1)

 

x y 2 y 2)

 

3 3

3)

2

2

4)

5)

y

x 3y 4

x 6)

x

y 3x 4

y

2x

7)

2y

3 3

8)

3x 7y y

3y 7x x 10) x 3y y

y 3x x 9)

3 3 2

2

Dạng 3: Hệ bậc hai giải bằng phương pháp thế hoặc cộng đại số

Giải các hệ phương trình sau:

2

1)

x y

x xy

12 2)

8

x xy y

xy x y

2 2

3)

xy x x

x xy y x

4)

4

x y xy

xy y x

5)

x y

  

7)

x y

y x

Trang 11

2 0

8)

x y

x y

  

9)

x y xy

x y xy y

6)

x y

10)

11)

12)

13)

14)

15)

III - Bài tập tổng hợp:

Bài 1: Cho hệ phương trình:

1

my x

m y x

( m là tham số )

1, Giải hệ phương trình với m = - 2

2, Tìm các giá trị của m để hệ có nghiệm duy nhất (x; y) thoả mãn: y = x2

Bài 2: Cho hệ phương trình:

m y x

y

( m là tham số )

1, Giải hệ phương trình với m = 3

2, Tìm các giá trị của m để hệ có nghiệm duy nhất (x; y) thoả mãn: 2y = x

Bài 3: Cho hệ phương trình:

m y x

m y x

2

3 3

2

( m là tham số )

1, Tìm m biết y = 1

2, Tìm các giá trị của m để hệ có nghiệm duy nhất (x; y) thoả mãn: x2 + y2 = 17

3, Tìm các giá trị của m để hệ có nghiệm duy nhất (x; y) Khi đó tìm giá trị lớn

nhất của biểu thức P = x.y

Bài 4: Cho hệ phương trình:

1 2

2

y mx

my x

( m là tham số )

1, Giải hệ phương trình với m = 2

2, Tìm các giá trị nguyên của m để hệ có nghiệm duy nhất (x; y) thoả mãn: x > 0

và y > 0

Bài 5: Cho hệ phương trình:

m y x

my

( m là tham số )

1, Giải hệ phương trình với m = - 2

Trang 12

2, Tìm các giá trị của m để hệ có nghiệm duy nhất (x; y) thoả mãn: y = x2

Bài 6: Cho hệ phương trình:

 4

8 4

y mx

my x

( m là tham số )

1, Giải hệ phương trình với m = -1

2, Tìm các giá trị của m để hệ có nghiệm duy nhất (x; y) thoả mãn: x + y = 2

Bài 7: Cho hệ phương trình:

6 1 2

2

y m x

my x

( m là tham số )

1, Giải hệ phương trình với m = 1

2, Tìm các giá trị của m để hệ có nghiệm

Bài 8: Cho hệ phương trình:

1

y mx

m y x

 

 2

1 ( m là tham số )

1, Giải hệ phương trình với m = 1

2, Tìm các giá trị của m để hai đường thẳng có phương trình (1) và (2) cắt nhau tại một điểm trên Parabol y = - 2x2

Bài 9: Cho hệ phương trình:

334 3 2

1

y x

y mx

( m là tham số )

1, Giải hệ phương trình với m = 1

2, Tìm các giá trị của m để hệ vô nghiệm

Bài 10: Cho hệ phương trình:

4

4

y x

m y x

( m là tham số )

1, Giải hệ phương trình với m = 1

2, Tìm các giá trị của m để hệ có nghiệm duy nhất (x; y) thoả mãn: y = x2

3, Tìm các giá trị của m để hai đường thẳng thuộc hệ cắt nhau tại điểm M (x; y) sao cho điểm M cách gốc toạ độ O một khoảng là OM  5

Bài 11: Cho hệ phương trình:

1 2

1 2

y mx

my x

( m là tham số )

1, Giải hệ phương trình với m = - 3

2, Tìm các giá trị của m để hệ có nghiệm duy nhất (x; y) thoả mãn:

2

1

2 2

 y x

Trang 13

Bài 12: Cho hệ phương trình:

m y x

my x

2

1 2

( m là tham số )

1, Giải hệ phương trình với m = -3

2, Tìm các giá trị của m để hệ có nghiệm duy nhất (x; y) thoả mãn: x + y =

2

1

Bài 13: Cho hệ phương trình:

m y x

my

( m là tham số )

1, Giải hệ phương trình với m = - 3

2, Tìm các giá trị của m để hệ có nghiệm duy nhất (x; y) thoả mãn: x2 + y2 = 17

Bài 14: Cho hệ phương trình:

2

3

2

m y mx

m my x

( m là tham số )

1, Giải hệ phương trình với m = - 1

2, Tìm các giá trị của m để hệ có nghiệm duy nhất (x; y) thoả mãn: x2- 2x- y > 0

Bài 15: Cho hệ phương trình:

1 2

2

a y x

a y ax

( với a là tham số )

1, Giải hệ phương trình khi a = - 2

2, Tìm giá trị của a để hệ có nghiêm duy nhất (x; y) thoả mãn: x - y = 1

Bài 16: Cho hệ phương trình:

6 4

3

y ax

ay x

( với a là tham số )

1, Giải hệ phương trình khi a = - 3

2, Tìm giá trị của a để hệ có nghiêm duy nhất (x; y)

Bài 17: Cho hệ phương trình:

 1

1

y x

y kx

( với k là tham số )

1, Tìm các giá trị của k để hệ nhận x = -1 ; y = 0 là nghiệm

2, Tìm giá trị của k để hệ có nghiêm duy nhất (x; y)

Ngày đăng: 23/08/2021, 16:22

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

🧩 Sản phẩm bạn có thể quan tâm

w