1. Trang chủ
  2. » Kỹ Thuật - Công Nghệ

Tài liệu FIGS-B doc

7 135 0
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Floating-point Numbers
Trường học University of Science and Technology
Chuyên ngành Computer Science
Thể loại Tài liệu
Thành phố Hanoi
Định dạng
Số trang 7
Dung lượng 16,01 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

The real number line can be divided into seven regions... The approximate lower and upper bounds of ex-pressible unnormalized floating-point decimal numbers... Examples of normalized fl

Trang 1

B FLOATING-POINT NUMBERS

1

Trang 2

Negative

overflow

2 Expressible negative numbers

3 Negative underflow

4 Zero

5 Positive underflow

6 Expressible positive numbers

7 Positive overflow

Figure B-1 The real number line can be divided into seven regions.

Trang 3

Digits in fraction Digits in exponent Lower bound Upper bound

2222222222222222222222222222222222222222222222222222222222222222

2222222222222222222222222222222222222222222222222222222222222222

1099

2222222222222222222222222222222222222222222222222222222222222222

2222222222222222222222222222222222222222222222222222222222222222

109999

2222222222222222222222222222222222222222222222222222222222222222

2222222222222222222222222222222222222222222222222222222222222222

1099

2222222222222222222222222222222222222222222222222222222222222222

2222222222222222222222222222222222222222222222222222222222222222

109999

2222222222222222222222222222222222222222222222222222222222222222

2222222222222222222222222222222222222222222222222222222222222222

1099

2222222222222222222222222222222222222222222222222222222222222222

2222222222222222222222222222222222222222222222222222222222222222

109999

2222222222222222222222222222222222222222222222222222222222222222

2222222222222222222222222222222222222222222222222222222222222222

10999

2222222222222222222222222222222222222222222222222222222222222222

Figure B-2 The approximate lower and upper bounds of

ex-pressible (unnormalized) floating-point decimal numbers.

Trang 4

2–2

Unnormalized:

Sign

+

Excess 64 exponent is

84 – 64 = 20

Fraction is 1 × 2–12+ 1 × 2–13

+1 × 2–15+ 1 × 2–16

Normalized:

Example 1: Exponentiation to the base 2

= 2 20 (1 × 2 –12 + 1 × 2 –13 + 1 × 2 –15 + 1 × 2–16) = 432

= 29 (1 × 2–1+ 1 × 2–2+ 1 × 2–4 + 1 × 2–5) = 432

= 16 5 (1 × 16 –3 + B × 16 –4 ) = 432

To normalize, shift the fraction left 11 bits and subtract 11 from the exponent.

Sign

+

Excess 64 exponent is

73 – 64 = 9

Fraction is 1 × 2 –1 + 1 × 2 –2

+1 × 2 –4 + 1 × 2 –5

Sign

+

Excess 64 exponent is

69 – 64 = 5

Fraction is 1 × 16–3 + B × 16–4

2–3

2–4

2–5

2–6

2–7

2–8

2–9

2–10

2–11

2–12

2–13

2–14

2–15

2–16

0

0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1

1

0 1 0 0 1 0 0 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0

Normalized: = 163 (1 × 16–1+ B × 16–2) = 432

To normalize, shift the fraction left 2 hexadecimal digits, and subtract 2 from the exponent.

Sign

+

Excess 64 exponent is

67 – 64 = 3

Fraction is 1 × 16 –1 + B × 16 –2

0

0 1 0 0 0 0 1 1 0 0 1 1 0 1 1 0 0 0 0 0 0 0 0

Example 2: Exponentiation to the base 16

Unnormalized: 0 1 0 0 0 1 0 1 0 0 0

16–1

0 0 0

16–2

0 0 1

16–3

1 0 1

16–4

.

.

.

.

Figure B-3 Examples of normalized floating-point numbers.

Trang 5

Bits 1

Bits 1

Sign

Sign

Fraction

Fraction

Exponent

(a)

(b)

Exponent

Figure B-4 IEEE floating-point formats (a) Single precision (b) Double precision.

Trang 6

Item Single precision Double precision

22222222222222222222222222222222222222222222222222222222222222222222222

22222222222222222222222222222222222222222222222222222222222222222222222

22222222222222222222222222222222222222222222222222222222222222222222222

22222222222222222222222222222222222222222222222222222222222222222222222

22222222222222222222222222222222222222222222222222222222222222222222222

22222222222222222222222222222222222222222222222222222222222222222222222

22222222222222222222222222222222222222222222222222222222222222222222222

22222222222222222222222222222222222222222222222222222222222222222222222

22222222222222222222222222222222222222222222222222222222222222222222222

22222222222222222222222222222222222222222222222222222222222222222222222

22222222222222222222222222222222222222222222222222222222222222222222222

Figure B-5 Characteristics of IEEE floating-point numbers.

Trang 7

Denormalized

Zero

Sign bit

Infinity

Not a number

Any bit pattern Any nonzero bit pattern

Any nonzero bit pattern

0

0 0

0 < Exp < Max

1 1 1…1

±

±

±

±

±

Figure B-6 IEEE numerical types.

Ngày đăng: 22/12/2013, 10:15

w