Characteristic curves: CE Input and output characteristic curves of CE configuration cuu duong than cong... Characteristic curves: CB Input and output characteristic curves of CB con
Trang 1CHAPTER 2:
BIPOLAR JUNCION TRANSISTOR
DR PHAM NGUYEN THANH LOAN
cuu duong than cong com
Trang 3Structure and operation of BJT
BJT :Bipolar Junction Transistor
2 kinds of BJT: NPN & PNP
3 terminals: E, B và C
E: Emitter; B: Base, C: Collector
Base located in the middle:
thinner than E & C; and lower dope
BJT structure
3
cuu duong than cong com
Trang 4 Junction BE in forward bias : electrons (e) move from E region
to B region to create the current I E
(diffusion current; flow of majority carriers)
Junction BC in reverse bias : e that moved from E to B then move from B to C to create the current I C (drift current, flow of minority carriers)
The combination of some electrons with holes in B region creates the current I B
So: I E = I C + I B
Bias condition for 2 junctions: J BE & J BC
4
Structure and operation of BJT
cuu duong than cong com
Trang 5Structure and operation of BJT
cuu duong than cong com
Trang 8C B
EC
C E
BC
Output Input
Configuration
cuu duong than cong com
Trang 10CE configuration – small signal
Z i = U be /I b ≈ βI b r e /I b ≈ βr e (~ n100Ω – nKΩ)
Z o = r o ∞ (ignore in r e model)
A v = - R L /r e (r o ∞)
A i = I c /I b = β
Characteristics + Z i , Z o average + A v , A i high
10
cuu duong than cong com
Trang 11Characteristic curves: CE
Input and output characteristic curves of CE configuration
cuu duong than cong com
Trang 12Characteristic curves: CE
0<V CE <0.7V: Junction BE starts moving to forward bias I C increases gradually
Trang 15Characteristic curves: CB
Input and output characteristic curves of CB configuration
cuu duong than cong com
Trang 18Cutoff and saturation
Trang 20DC bias
A transistor must be properly biased in order to operate as
an amplifier
DC bias can be considered as supply power to BJT so that
NPN: V E < V B < V C (J E : in Forward; J C : in Reverse bias)
Trang 21 Question: How many amplifier circuits can be designed?
22
cuu duong than cong com
Trang 223 types of baising
Base bias
23
Collector feedback bias
Voltage divider bias
cuu duong than cong com
Trang 23Example of DC bias
24
Q1 What are the amplifier configuration of these circuits?
Q2 What kind of DC bias? And then draw DC equivalent circuit
cuu duong than cong com
Trang 24 Consider the analysis for only EC configuration (similar analysis can be obtained for BC and CC)
25
Base bias
cuu duong than cong com
Trang 26Voltage divider bias
Method 1: Thevenin equivalent circuit:
* Group R1, R2 and Vcc can be considered as follows:
Trang 27Collector-feedback bias
BE loop:
(1) V cc - I c ‘ R C – I B R B – U BE – I E R E =0 (2) I C = β *I B ; I E I C
(3) Kirchoof cho dòng tại C: I C = I B + I c ‘
I c ‘ = I C - I B = (β-1)I B (1)+(2)+(3)
Trang 2829
Analyze the following circuit and then determine its
Q-point and DC loadline
cuu duong than cong com
Trang 2930
Analyze the following circuit and then determine its
Q-point and DC loadline
cuu duong than cong com
Trang 30Analysis by method 1
cuu duong than cong com
Trang 34AC analysis (Small signal analysis)
35
cuu duong than cong com
Trang 35Small signal analysis
Small signal analysis:
Small signal refers to AC signal with small amplitude that take up
a relatively small percentage of an amplifier’s operation range (compared to DC power supply)
The operation region on amplifier should be in linear
BJT model for small signal analysis
Represent the BJT by an equivalent circuit that allows to visualize and analyze the operation of BJT as an amplifier
36
cuu duong than cong com
Trang 36Example of CE configuration
37
Output and input signal is out of phase
Output signal is amplified
cuu duong than cong com
Trang 37Gain and impedances
38
cuu duong than cong com
Trang 38AC equivalent circuit
1 Setting all DC sources to zero
2 Replacing all capacitors by a
short-circuit equivalent (wire)
3 Regrouping all elements
(resistors) in parallel (introduced
by step 1 and 2)
4 Redrawing the network in a
more convenient and logical form
39
cuu duong than cong com
Trang 39 Using graphical determination method
Using equivalent circuits
Trang 40 Q-point and DC load-line
Quiescent point (Q-point) is fixed on the output characteristic curve and corresponding to a fixed collector-to-emitter voltage (V CE )
DC load-line is used to describe the DC operation of BJT, a straight line from saturation point (I C =I Cmax , y-axe) to cutoff point
Trang 41AC analysis methods
Graphical determination
Input and output characteristic curves of EC config.
cuu duong than cong com
Trang 42AC load line determination
43
AC load line (Slope_AC: 1/(Rc //Rtai)
DC load line (slope= 1/Rc)
AC loadline is steeper than DC loadline
Graphically: ON = OQ + QN where QN = I C-Q / Slope _AC = IQ*(Rc//Rtai)
A straight line through Q_point and N : AC load line
cuu duong than cong com
Trang 43 Q_point deplacement when R c , V cc , I B vary respectively
AC analysis methods
Graphical determination
Variation of R C Variation of V CC Variation of I B
cuu duong than cong com
Trang 46 Impact of Q point on AC output
signal
Q closed to cutoff BJT is closed to
OFF operation, with a very small AC
input amplitude output voltage is
distorsed (is cut) at upper-part
Q closed to saturation BJT is
closed to saturation operation, with a
very small AC input amplitude
output volage is distorsed (is cut) at
Trang 47AC analysis
analyzed DC and AC separately (using superposition theorem)
Using graphical determination method
Using equivalent circuits
Trang 48Two-port model
49
Most used for small signal analysis
Characterized by 2 input terminals and 2 output terminals (4
-terminals model)
The common terminal is used for input and output
cuu duong than cong com
Trang 49Remind: AC equivalent circuit
1 Setting all DC sources to zero
2 Replacing all capacitors by a
short-circuit equivalent (wire)
3 Regrouping all elements
(resistors) in parallel (introduced
by step 1 and 2)
4 Redrawing the network in a
more convenient and logical
Trang 50 Equivalent circuit
after step 1 and 2
Remind: AC equivalent circuit
?????????
?????????
Equivalent circuit
after step 3 and 4
cuu duong than cong com
Trang 51AC analysis
analyzed DC and AC separately (using superposition theorem)
Using graphical determination method
Using equivalent circuits
Trang 52 Index e (or b, c) illustrated
for CE topology (or CB, CC)
Trang 53h 22 (h o ) 25μA/V 0,5μA/V 25μA/V
cuu duong than cong com
Trang 56 BJT is modeled by a diode and current source
Input : BE junction is characterized by a diode in Forward bias
Output: dependent current source where controlled current is input current that is expressed by I c = βI b
Trang 58c
e b
e
c
Refer to T model as learnt in Electronics Devices Course
Determine Rin & Iout =f(Iin) to obtain r e model
Input: ib, vb Output: ic, vc Rin = vb/ib = βr e
Trang 61EC configuration with fixed biasing
T model (learnt in Electronics Devices Courses)
cuu duong than cong com
Trang 62EC configuration with fixed biasing
Trang 63EC configuration with fixed biasing
65
cuu duong than cong com
Trang 64EC configuration with voltage divider
66
cuu duong than cong com
Trang 65EC configuration with voltage divider
67
cuu duong than cong com
Trang 67EC configuration with voltage divider
69
cuu duong than cong com
Trang 68EC configuration with feedback biasing
70
cuu duong than cong com
Trang 69EC configuration with feedback biasing
cuu duong than cong com
Trang 70EC configuration with feedback biasing
cuu duong than cong com
Trang 73BC: small signal model
cuu duong than cong com
Trang 75Analyze CC cuu duong than cong com
Trang 76CC configuration with fixed biasing
78
cuu duong than cong com
Trang 77CC configuration with fixed biasing
79
cuu duong than cong com
Trang 78CC configuration with fixed biasing
Analyze output impedance
80
cuu duong than cong com
Trang 79V o
81
CC configuration with fixed biasing
cuu duong than cong com
Trang 80CC configuration with fixed biasing
cuu duong than cong com
Trang 81Example: Determine Ai, Av, Zi, Zo?
83
cuu duong than cong com
Trang 82Example: Determine Ai, Av, Zi, Zo?
cuu duong than cong com
Trang 83Example: Determine Ai, Av, Zi, Zo?
cuu duong than cong com
Trang 84Example: Determine Ai, Av, Zi, Zo?
cuu duong than cong com
Trang 85Example: Determine Ai, Av, Zi, Zo?
cuu duong than cong com
Trang 86Impact of temperature and other effects
88
cuu duong than cong com
Trang 87Ảnh hưởng của các yếu tố
kỹ thuật đến hoạt động thiết bị
• Ảnh hưởng của cấu trúc BJT:
– Vật liệu chế tạo: Ge, Si
– Mức độ pha tạp
• Ảnh hưởng của tần số làm việc
• Ảnh hưởng của thời gian sử dụng
• Ảnh hưởng của độ ổn định nguồn
• Ảnh hưởng của nhiệt độ
89
cuu duong than cong com
Trang 88Các ảnh hưởng khác
• Ảnh hưởng của tần số làm việc
– Xét trong phần đáp ứng tần số
• Ảnh hưởng của thời gian sử dụng
• Ảnh hưởng của độ ổn định nguồn
– Gây méo tín hiệu ra
• Ảnh hưởng của cấu trúc BJT:
– Vật liệu chế tạo: Ge, Si V be , β,nhiệt độ…
Trang 89Ảnh hưởng của nhiệt độ
Nhiệt độ ảnh hưởng nhiều đến các tham số thiết bị
Khi nhiệt độ tăng:
chất lượng tín hiệu ra giảm
Đối với BJT chế tạo từ Si, β ch ịu ảnh hưởng nhiều của
nhiệt độ
91
cuu duong than cong com
Trang 91Hệ số ổn định
S(I co )=ΔI c /ΔI cbo – ảnh hưởng nhiều đến BJT dùng
Germani
S(U be )=ΔI c /ΔU be – ảnh hưởng ít
S(β)= ΔI c /Δβ – ảnh hưởng nhiều đến BJT dùng Silic
Trang 93Ổn định bằng hồi tiếp âm điện áp
95
cuu duong than cong com
Trang 94Ổn định bằng hồi tiếp âm điện áp
96
cuu duong than cong com
Trang 95Ổn định bằng hồi tiếp âm điện áp
97
cuu duong than cong com
Trang 96Ổn định bằng hồi tiếp âm điện áp
Trang 97Sơ đồ CE dùng tụ ngắn mạch R E
99
cuu duong than cong com
Trang 98Thiết kế mạch phân cực có R E ổn định nhiệt
Điện áp rơi trên điện trở emittor
Trang 99Thiết kế mạch phân cực phân áp
Điện áp rơi trên điện trở emittor
cỡ ¼ đến 1/10 điện áp nguồn cung cấp
10R 2 < βR E
101
cuu duong than cong com
Trang 101Tóm Tắt (p 383, sách của tác giả Boylstad)
103
cuu duong than cong com
Trang 102cuu duong than cong com
Trang 103cuu duong than cong com