Cách viết câu hỏi trắc nghiệm khách quan từ câu hỏi truyền thống - Chủ đề: Phương trình đường thẳng trong không gian nhằm giúp học sinh hệ thống kiến thức cơ bản về hình học không gian tọa độ và hiển thị đầy đủ về bài toán một cách trực tiếp bằng hình vẽ giúp học sinh từ đó có thể suy nghĩ ra hướng đi của bài toán. Mời các bạn cùng tham khảo.
Trang 1KHOA TOÁN
CÁCH VIẾT CÂU HỎI TRẮC NGHIỆM KHÁCH QUAN
TỪ CÂU HỎI TRUYỀN THỐNG Chủ đề: Phương trình đường thẳng trong không gian
Sinh viên : Nguyễn Khoa Minh
Giáo viên : Nguyễn Đăng Minh Phúc
Huế, 4/2017
Trang 2CÁCH VIẾT CÂU HỎI TRẮC NGHIỆM KHÁCH QUAN
TỪ CÂU HỎI TRUYỀN THỐNG Chủ đề: Phương trình đường thẳng trong không gian
Bài 1: Lập phương trình chính tắc của đường thẳng đi qua điểm A 0;1;1 vuông
2
2 0 :
1 0
x y z
d
x
Bài giải:
Nhiệm vụ đầu tiên của học sinh là sử dụng các thông tin được biết thể hiện thành hình vẽ Bước này liên qua đến các kiến thức cơ bản về hình học không gian tọa độ
và hiển thị đầy đủ về bài toán một cách trực tiếp bằng hình vẽ giúp học sinh từ đó
có thể suy nghĩ ra hướng đi của bài toán Giả sử rằng học sinh có kiến thức này và khả năng sẽ vẽ một hình như sau:
A
d
P
Q (d1 )
(d2 )
Trang 3Gọi d là đường thẳng cần tìm Do d đi qua A và vuông góc với d1 nên
d nằm trong mặt phẳng P qua A và vuông góc với d1
d qua A và cắt d nên d nằm trong mặt phẳng Q xác định bởi A và 2
2
d
Do đó d là giao tuyến của hai mặt phẳng P và Q
Dựa theo hình vẽ thì ta có được đường thẳng d là giao tuyến của hai mặt phẳng
P và Q nên muốn lập phương trình chính tắc của đường thẳng d, học sinh cần
tìm phương trình của mặt phẳng P và Q
trình mặt phẳng P có dạng: 3x y z d 0 Và nhờ mặt phẳng P đi qua điểm
0;1;1
A nên ta tìm được số d: 0 1 1 d 0 d 2 Vậy ta được phương trình
mặt phẳng P là 3x y z 2 0
Như vậy, ta đã có được phương trình mặt phẳng P nên việc còn lại là cần tìm
phương trình mặt phẳng Q Do Q qua 2 : 2 0
1 0
x y z d
Q thuộc chùm mặt phẳng x y z 2 x 1 0 Vì vậy, ta có:
Q qua 2 : 2 0
1 0
x y z d
x nên phương trình mặt phẳng Q có dạng:
Q qua A 0;1;1 nên 0 1 1 2 m 0 m 2
Và do d là giao tuyến của hai mặt phẳng P và Q nên phương trình đường
0
x y z
Trang 4của đường thẳng d nên ta cần tìm vectơ chỉ phương của đường thẳng d Ta có vectơ chỉ phương của đường thẳng d bằng tích có hướng của hai vectơ pháp tuyến của mặt phẳng P và Q vì d là giao tuyến của hai mặt phẳng P và Q
Vậy d có vectơ chỉ phương 1;1;2 qua A 0;1;1 nên d có phương trình
x y z
Rõ ràng nếu học sinh thất bại ngay ở bước đầu tiên là không biết cách biểu diễn bài toán thành hình vẽ thì không giải quyết được bài toán trên Và câu hỏi tự luận không thể cho ta biết điều gì về khả năng của học sinh về các khía cạnh khác của câu hỏi, do đó chúng ta sẽ sử dụng các câu hỏi trắc nghiệm có liên quan như sau:
Câu 1: Cho đường thẳng d vuông góc với đường thẳng 1 : 1 2
1 0
x y z d
x Nhận xét nào sau đây là đúng?
A Đường thẳng d d, 1 cùng nằm trong một mặt phẳng
B Đường thẳng d d, 2 cùng nằm trong một mặt phẳng
C Đường thẳng d d d, ,1 2 cùng nằm trong một mặt phẳng
D Cả A, B đều đúng
*Phương án nhiễu: Nếu học sinh chưa nắm kỹ kiến thức cơ bản dẫn đến biểu diễn
bài toán bằng hình vẽ bị sai hoặc sau khi vẽ hình mà không quan sát cẩn thận thì khi
đó học sinh sẽ nhầm lẫn là d d, 1 cùng nằm trong mặt phẳng P và d d, 2 cùng nằm
trong mặt phẳng Q nên học sinh sẽ chọn câu D
Trong khi đó, mặt phẳng P chỉ chứa đường thẳng d và vuông góc với đường
thẳng d1 nên câu A là một đáp án sai Vì vậy, đáp án đúng là B
Bước thứ hai của bài toán là cần định hướng đi của bài toán, ở phần này học sinh phải nắm được các dạng phương trình của một đường thẳng trong không gian, từ đó dựa trên hình vẽ mà xác định dạng phương trình cần viết và đi tìm những dữ kiện cần thiết Ta có thể xây dựng một câu hỏi để kiểm tra khả năng đó:
Trang 5Câu 2: Phương trình nào sau đây không phải là phương trình đường thẳng trong
không gian?
2 0
x y
1 3
4
x t
y t z
Bước thứ cuối cùng của bài toán là tìm các dữ kiện cần thiết và viết phương trình
đường thẳng d Từ đó, ta có phương trình chính tắc của đường thẳng d Như vậy
chúng ta có thể viết những câu hỏi trắc nghiệm khách quan đến kỹ năng của học sinh
Câu 3: Phương trình của mặt phẳng P đi qua điểm A 0;1;1 và vuông góc với
Câu 4: Xác định tham số m n để mặt phẳng , 5x my 4z n 0 thuộc chùm mặt
Bài 2: Tìm phương trình hình chiếu vuông góc của đường thẳng:
lên mặt phẳng x 2y 3z 4 0
Bài giải:
Tương tự Bài 1, nhiệm vụ đầu tiên của học sinh là sử dụng các thông tin được biết thể hiện thành hình vẽ Bước này liên qua đến các kiến thức cơ bản về hình học không gian tọa độ và hiển thị đầy đủ về bài toán một cách trực tiếp bằng hình vẽ và
Trang 6ở qua hình vẽ để giải quyết bài toán này thì học sinh cần vẽ thêm Giả sử rằng học sinh có kiến thức này và khả năng sẽ vẽ một hình như sau:
Gọi mặt phẳng P x: 2y 3z 4 0
Gọi Q là mặt phẳng hợp bởi hai đường thẳng d và AH
Như vậy, ở đây chúng ta viết phương trình đường thẳng d là hợp của hai mặt phẳng P và Q nên học sinh cần tìm phương trình của mặt phẳng P và Q Phương trình mặt phẳng P thì theo giả thuyết đã có nên việc cần làm là tìm phương trình mặt phẳng Q Để tìm được phương trình mặt phẳng Q thì cần biết vectơ pháp tuyến và một điểm nằm trong mặt phẳng đó Ta có điểm A Q nên chỉ cần
tìm vectơ pháp tuyến của Q Vì vậy, ta kẻ AH P , do đó Q có cặp vectơ chỉ
phương của AH và d 3;4;1 và suy ra được phương trình tham số, phương trình
tổng quát của mặt phẳng Q
AH P AH nhận vectơ pháp tuyến chỉ phương n 1;2;3 của P làm
vectơ chỉ phương
Q
(d')
P
H A
(d)
Trang 7Điểm A trên d có tọa độ A 2; 2;1
Q là mặt phẳng qua A 2; 2;1 nhận cặp vectơ chỉ phương d 3;4;1 và 1;2;3
n
Phương trình tham số của mặt phẳng Q là:
1 2
1 2
1 2
2 3 1
1 3 3
'
d là giao tuyến của hai mặt phẳng P và Q nên phương trình tổng quát của
'
d là: 5 4 19 0
Ngoài cách 1 ở trên, chúng ta còn cách 2 viết phương trình mặt phẳng Q Từ
đó, học sinh suy ra được phương trình hình chiếu 'd của d
Q nhận cặp vectơ d 3;4;1 và n 1;2;3 làm cặp vectơ chỉ phương nên Q
có pháp vectơ:
4 1 1 3 3 4
2 3 3 1 1 2
Phương trình mặt phẳng Q qua điểm A 2; 2;1 và có pháp vectơ q 5; 4;1 là:
Ở bài toán này, như Bài 1 nếu học sinh thất bại ngay ở bước đầu tiên là không biết cách biểu diễn bài toán thành hình vẽ thì không giải quyết được bài toán, và học sinh cần nắm được các dạng phương trình của đường thẳng, mặt phẳng và kết hợp với giả thuyết của bài toán để giải quyết vấn đề Tương tự Bài 1, chúng ta có thể viết những câu hỏi trắc nghiệm trắc nghiệm khách quan liên quan đến những khía cạnh được kiểm tra trong bài toán
Trang 8Câu 1: Để viết phương trình tham số hay phương trình chính tắc của đường thẳng,
chúng ta cần xác định
A 1 điểm M bất kỳ thuộc đường thẳng và 1 vectơ pháp tuyến của đường thẳng
đó
B 1 điểm M bất kỳ thuộc đường thẳng và 1 vectơ chỉ phương
C 2 điểm M và N bất kỳ thuộc đường thẳng
D 1 điểm M bất kỳ thuộc đường thẳng và phương trình của một đường thẳng
song song với đường thẳng đó
*Phương án nhiễu: Ở đây, học sinh thường biết để viết phương trình tham số hay
phương trình chính tắc của đường thẳng, chúng ta cần xác định 1 điểm M bất kỳ
thuộc đường thẳng và 1 vectơ chỉ phương của đường thẳng nên khi đó đa số học sinh sau khi đọc xong đề thì sẽ chọn ngay câu C nhưng không chú ý rằng đáp án ở câu C
bị thiếu “1 điểm M bất kỳ thuộc đường thẳng và 1 vectơ chỉ phương” – thiếu 1 vectơ chỉ phương của đường thẳng
Vì vậy, đáp án đúng của câu này sẽ là câu D
Câu 2: Trong các nhận xét sau đây thì nhận xét nào đúng?
A 1 đường thẳng có 1 phương trình tổng quát và 1 phương trình tham số
B 1 đường thẳng có vô số phương trình tổng quát và 1 phương trình chính tắc
C 1 đường thẳng có vô số phương trình tham số và 1 phương trình chính tắc
D 1 đường thẳng có vô số phương trình tổng quát và chính tắc
Câu 3: Phương trình nào sau đây không phải là phương trình mặt phẳng?
A
1 2
1 2
1 2
z t t
2
1 2
3 5
Trang 9
Câu 4: Phương trình tổng quát của mặt phẳng
1 2
1 2
1 2
là
Bài 3: Chứng minh rằng đường thẳng : 5 3 2 5 0
d
phẳng P : 4x 3y 7z 7 0
Bài giải:
Bài toán này không giống hai toán ở trên, chúng ta không cần thiết phải vẽ hình mới giải quyết được bài toán Ở đây, học sinh cần nắm vững các kiến thức về một đường thẳng nằm trong một mặt phẳng Do đó, xác định điều kiện để đường thẳng nằm trong một mặt phẳng Vậy để đường thẳng nằm trong một mặt phẳng thì ta cần chứng minh đường thẳng có hai điểm nằm trong mặt phẳng đó
Đầu tiên, học sinh cần chuyển phương trình đường thẳng
:
d
Vectơ chỉ phương a của đường thẳng là 3 2 , 2 5 5, 3 = 5;9;1
a
Trong phương trình đường thẳng : 5 3 2 5 0
d
Do đó phương trình tham số của đường thẳng d là
2 5
5 9
z t
Trang 10
Sau khi, học sinh đã có phương trình tham số của đường thẳng d là
2 5
5 9
z t
thì học sinh chọn 2 điểm A B bất kỳ thuộc đường thẳng d và sau đó xét 2 điểm , ,
A B thuộc mặt phẳng P hay không
Với t 0 ta có điểm A 2; 5;0 thuộc đường thẳng d
Với t 1 ta có điểm B 3;4;1 thuộc đường thẳng d
Thế A 2; 5;0 và B 3;4;1 vào phương trình mặt phẳng P ta được:
4.3 3.4 7.1 7 0
A P
Do đó đường thẳng d thuộc mặt phẳng P
Như vậy, học sinh đã biết được cách làm, thực hiện theo đúng quy trình và đi đến được kết quả của bài toán Tuy nhiên bài toán có một số kiến thức cơ bản yêu cầu học sinh cần chú ý mà chúng ta có thể viết thành các câu hỏi trắc nghiệm như sau:
Câu 1: Phương trình nào sau đây không phải là phương trình của đường thẳng
:
d
A
2 5
z t
d
C
3 5
1
d
Câu 2: Nhận xét nào sau đây là nhận xét sai?
A d P d có hai điểm nằm trong mặt phẳng
B A P Tọa độ điểm A thỏa phương trình mặt phẳng P
Trang 11C A d Tọa độ điểm A thỏa phương trình đường thẳng d
D A B, P AB P