1. Trang chủ
  2. » Giáo án - Bài giảng

NW369 đề THI GIỮA HK2 TOÁN 11 THPT CHUYÊN THÁI BÌNH 2020 2021 GV

25 8 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 25
Dung lượng 2,39 MB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Gọi H là hình chiếu vuông góc của S lên mặt phẳng ABC.. Xếp ngẫu nhiên 3 quyển sách toán và 3 quyển sách vật lý lên một kệ sách dài hai quyển sách đôi một khác nhau.. Cho hình chóp .S

Trang 1

Câu 1.

3 2lim

3

n n

 bằng

A 2 B

23

Câu 2. Cho cấp số nhân có 1

23,3

u  q

Tính u 5

A 5

2716

u 

1627

u 

1627

u 

2716

x y x

x 

C

13

x y x

B y x 4 2x2 1 C ysinx D y x 3 1

Câu 8. Có 10 cái bút khác nhau và 8 quyển sách giáo khoa khác nhau Một bạn học sinh cần chọn 1

cái bút và 1 quyển sách Hỏi bạn học sinh đó có bao nhiêu cách chọn?

 13

n

n u n

Trang 2

A ABCD // A B C D     B AA D D   // BCC B  

C BDD B  // ACC A   D ABB A  // CDD C  

Câu 11 Chọn mệnh đề đúng trong các mệnh đề sau

A Nếu limu n a thì limu na B Nếu limu  n

n

un

2 14

n

un

114

n n

u 

14

C P nn! D P nn

Câu 17. Công thức nào sau đây là đúng với cấp số cộng có số hạng đầu là u , công sai d , 1 n 2

Trang 3

A Góc SCB B Góc ASD C Góc SDA D Góc SCA

Câu 24. Giải sử ta có lim  

Câu 27. Cho tứ diện ABCD , giả sử M thuộc đoạn BC Một mặt phẳng   qua M , song song với

AB và CD Thiết diện của   và hình tứ diện ABCD là hình gì?

A Hình tam giác B Hình ngũ giác C Hình thang D Hình bình hành Câu 28. Cho hình lăng trụ ABC A B C Gọi , ' ' ' M N lần lượt là trung điểm của BB và ' CC ,  là giao'

tuyến của hai mặt phẳng AMN

2

x

x x

n  .

C

1lim k 0 (k 1)

Trang 4

A m  1 B m  2 C m  0 D 1.

Câu 33. Cho hình chóp S ABC có SA SB SC  và tam giác ABC vuông tại C Gọi H là hình chiếu

vuông góc của S lên mặt phẳng ABC

Mệnh đề nào sau đây đúng?

A H là trung điểm cạnh AC B H là trọng tâm ABC

C H là trực tâm ABCD H là trung điểm cạnh AB

Câu 34. Cho hình chóp SABCD có đáy ABCD là hình bình hành tâm O Gọi M N P theo thứ tự là, ,

trung điểm của SA SD và AB Mệnh đề nào sau đây đúng?,

A NMP // SBD. B NOMcắt OPM.

C MON // SBC. D PON  MNPNP

Câu 35. Người ta trồng 465 cây trong một khu vườn hình tam giác như sau: hàng thứ nhất có 1 cây,

hàng thứ hai có 2 cây, hàng thứ ba có 3 câu,… Số hàng cây trong khu vườn là

A 28 B 30 C 31 D 29

Câu 36. Một hộp chứa 4 viên bi trắng, 5 viên vi đỏ và 6 viên bi xanh (các viên bi đôi một khác nhau)

Lấy ngẫu nhiên từ hợp ra 4 viên bi Xác suất để 4 viên bi được chọn có đủ 3 màu và số bi đỏnhiều nhất là

A

1 2 1

4 5 6 4 15

C C C P

C C C P

C C C P

C C C P

Câu 38. Xếp ngẫu nhiên 3 quyển sách toán và 3 quyển sách vật lý lên một kệ sách dài (hai quyển sách

đôi một khác nhau) Xác suất để các quyển sách cùng 1 môn nằm cạnh nhau là

Trang 5

Câu 43. Tìm tất cả các giá trị thực của tham số m để phương trình m x 1 3 x 222x 3 0 vô

nghiệm

A m  B m  0 C m  1 D    m

Câu 44. Cho ;a b là hai số nguyên thỏa mãn 4 a b 40 và

3 0

dưới đây sai?

Câu 47. Cho hình chóp S ABC có đáy ABC là tam giác vuông tại A , AB AC a  , SBA SCA  90

Gọi H là hình chiếu vuông góc của S trên ABC

SHa 2 Tính côsin góc giữa haimặt phẳng SAB và SAC

Câu 50. Cho hình chóp S ABCD có đáy là hình vuông cạnh a , cạnh bên SA vuông góc với đáy và

SA a Gọi ,M N lần lượt là trung điểm của các cạnh BC và SD ,  là góc giữa đường thẳng

MN và mặt phẳng SAC Giá trị tan là

Trang 6

ĐÁP ÁN VÀ LỜI GIẢI CHI TIẾT

BẢNG ĐÁP ÁN

1.D 2.B 3.B 4.D 5.C 6.B 7.A 8.D 9.B 10.C

11.D 12.D 13.A 14.B 15.A 16.C 17.B 18.C 19.C 20.C

21.D 22.D 23.C 24.B 25.A 26.B 27.D 28.D 29.A 30.A

31.A 32.A 33.D 34.C 35.B 36.A 37.A 38.B 39.B 40.A

41.C 42.C 43.A 44.B 45.B 46.A 47.B 48.A 49.A 50.B

LỜI GIẢI CHI TIẾT Câu 1.

3 2lim

3

n n

 bằng

A 2 B

23

u  q

Tính u 5

A 5

2716

u 

1627

u 

1627

u 

2716

5 1

2 16 3

x y x

Trang 7

x 

B x  3 C

13

x y x

x y x

 không xác định tại x  nên hàm số 2

3 42

x y x

 sẽ gián đoạn tại x  2

Câu 8. Có 10 cái bút khác nhau và 8 quyển sách giáo khoa khác nhau Một bạn học sinh cần chọn 1

cái bút và 1 quyển sách Hỏi bạn học sinh đó có bao nhiêu cách chọn?

A 70 B 60 C 90 D 80

Lời giải

Chọn D

Để chọn 1 cái bút từ 10 cái bút khác nhau có 10 cách chọn

Để chọn 1 quyển sách từ 8 quyển sách khác nhau có 8 cách chọn

 Để chọn 1 cái bút và 1 quyển sách có 10.8 80 cách chọn

Trang 8

Câu 9. Trong các dãy số sau, dãy số nào là dãy số giảm?

 13

n

n u n

2

n u n

Câu 11 Chọn mệnh đề đúng trong các mệnh đề sau

A Nếu limu n a thì limu na B Nếu limu  n thì limu  n

C Nếu limu  n

thì limu   n D Nếu limu  thì lim n 0 u  n 0

Trang 9

un

2 14

n

un

114

n n

u 

14

n n

u  

Ta có:

1 1 2

114

1 44

n n n n

u u

với 2

14

n n

u  

là một cấp số nhân có công bội

14

 Vị trí tương đối giữa   và   là: song song, cắt nhau, trùng nhau

Câu 14. Cho hình chóp S ABCD có đáy ABCD là hình thoi tâm O , SAABCD

Trang 10

Hình chiếu vuông góc của SC trên ABCD

là AC , AC không vuông góc với AD nên SC không vuông góc với AD

Câu 15. Cho dãy số  u n

thoả mãn:

1

2n 1

n u

n n

C P nn! D P nn

Lời giải

Chọn C

Theo công thức tính hoán vị của n phần tử ta có P nn!

Câu 17. Công thức nào sau đây là đúng với cấp số cộng có số hạng đầu là u , công sai d , 1 n 2

Số hạng chứa x tương ứng với k thỏa mãn 1012  k 12 k 2

Vậy hệ số của x trog khai triển 12 2x x 210

Trang 11

C B

A Góc SCB B Góc ASD C Góc SDA D Góc SCA

GVSB:Đường Ngọc Lan; GVPB: Nguyễn Thành Luân

Lời giải Chọn C

Trang 12

B S

sai vì thiếu điều kiện b  0

Câu 25. Cho tứ giác ABCD , số vectơ khác vectơ-không có điểm đầu và điểm cuối là các đỉnh của tứ

Trang 13

A B

C S

Ta có SAABC

nên AB là hình chiếu vuông góc của SB lên ABC.

Suy ra góc giữa SB với ABC

là góc giữa SB và AB

Câu 27. Cho tứ diện ABCD , giả sử M thuộc đoạn BC Một mặt phẳng   qua M , song song với

AB và CD Thiết diện của   và hình tứ diện ABCD là hình gì?

A Hình tam giác B Hình ngũ giác C Hình thang D Hình bình hành.

Vậy thiết diện của   và hình tứ diện ABCD là hình bình hành MIHK

Câu 28. Cho hình lăng trụ ABC A B C Gọi , ' ' ' M N lần lượt là trung điểm của BB và ' CC ,  là giao'

tuyến của hai mặt phẳng AMN

Trang 14

 

Câu 29. Tính giới hạn 2

3 2lim

2

x

x x

n  .

C

1lim k 0 (k 1)

n   . D limu nc (u n  là hằng số).c

Lời giải

Chọn A

Dựa vào lí thuyết ta có: A sai vì limq n 0 q 1

Câu 31. Cho hình lăng trụ tam giác ABC A B C Đặt 1 1 1 AA1a AB b AC c BC d, ,  , 

Trang 15

Câu 33. Cho hình chóp S ABC có SA SB SC  và tam giác ABC vuông tại C Gọi H là hình chiếu

vuông góc của S lên mặt phẳng ABC

Mệnh đề nào sau đây đúng?

A H là trung điểm cạnh AC B H là trọng tâm ABC

C H là trực tâm ABCD H là trung điểm cạnh AB

Lời giải

Chọn D

H A

B

C S

Vì SA SB SC  nên HA HB HC 

Trang 16

Khi đó H là tâm đường tròn ngoại tiếp tam giác ABC

Mà tam giác ABC vuông tại C nên H là trung điểm cạnh AB

Câu 34. Cho hình chóp SABCD có đáy ABCD là hình bình hành tâm O Gọi M N P theo thứ tự là, ,

trung điểm của SA SD và AB Mệnh đề nào sau đây đúng?,

Câu 35. Người ta trồng 465 cây trong một khu vườn hình tam giác như sau: hàng thứ nhất có 1 cây,

hàng thứ hai có 2 cây, hàng thứ ba có 3 câu,… Số hàng cây trong khu vườn là

A 28 B 30 C 31 D 29

GVSB: Nguyễn Hương Giang; GVPB: Thanh Nha Nguyen

Lời giải Chọn B

Vậy số hàng cây trong khu vườn là 30 hàng

Câu 36. Một hộp chứa 4 viên bi trắng, 5 viên vi đỏ và 6 viên bi xanh (các viên bi đôi một khác nhau)

Lấy ngẫu nhiên từ hợp ra 4 viên bi Xác suất để 4 viên bi được chọn có đủ 3 màu và số bi đỏnhiều nhất là

Trang 17

A

1 2 1

4 5 6 4 15

C C C P

C C C P

C C C P

C C C P

Số phần tử của không gian mẫu là:   4

Câu 38. Xếp ngẫu nhiên 3 quyển sách toán và 3 quyển sách vật lý lên một kệ sách dài (hai quyển sách

đôi một khác nhau) Xác suất để các quyển sách cùng 1 môn nằm cạnh nhau là

Gọi A là biến cố các quyển sách cùng 1 môn nằm cạnh nhau

Số phần tử không gian mẫu ( ) 6! 720n    cách

Số phần biến cố A n A( )A324!A324! 288

Xác suất để các quyển sách cùng 1 môn nằm cạnh nhau là

288 2( )

Trang 18

u u

  

là cấp số nhân lùi vô hạn với

12

2021 2021!

1 1 ! 2021 !

k C

k  kkk

Trang 19

     

1 2022

.2022

2022 1 ! 2022 1 !

k C

Theo bài ra ta có:

13

3 10

9.3 9

13

x y

x y

x y

Câu 43. Tìm tất cả các giá trị thực của tham số m để phương trình m x 1 3 x 222x 3 0 vô

Trang 20

Từ bảng biến thiên ta có m   phương trình f x   luôn có nghiệm.m

vô nghiệm

Câu 44. Cho ;a b là hai số nguyên thỏa mãn 4 a b 40 và

3 0

dưới đây sai?

3 2

a b

a b

Câu 45. Cho hình chóp .S ABC có đáy là tam giác vuông tại B và SA vuông góc với mặt phẳng

ABC Gọi M N lần lượt là hình chiếu của A trên SB và SC Mệnh đề nào sau đây sai?,

A AMMN B ANSB C SA BCD AMSC

Lời giải

Chọn B

Trang 21

B

M N

Email: truonggiang25ls@gmail.com

Câu 46. Biết rằng với ,

a m b

m m m

m m

Trang 22

Theo giả thiết

99

716

16

a a

b b

Câu 47. Cho hình chóp S ABC có đáy ABC là tam giác vuông tại A , AB AC a  , SBA SCA  90

Gọi H là hình chiếu vuông góc của S trên ABC

SHa 2 Tính côsin góc giữa haimặt phẳng SAB

.Khi đó       SH

với HBt Ct là đỉnh thứ 4 của hình vuông ABHC

Khi đó SAB SAC, là hai tam giác vuông bằng nhau có SB SC a  3,SA2a

Gọi I là chân đường cao hạ từ đỉnh B của tam giác SAB ta có BISA CI, SA

Vậy góc giữa hai mặt phẳng SAB

a IBIC

Trang 24

Đồng nhất hai vế, ta được hệ phương trình

13

Câu 50. Cho hình chóp S ABCD có đáy là hình vuông cạnh a , cạnh bên SA vuông góc với đáy và

SA a Gọi ,M N lần lượt là trung điểm của các cạnh BC và SD ,  là góc giữa đường thẳng

MN và mặt phẳng SAC Giá trị tan là

I

H K N

M

D

A S

 Gọi K là giao điểm của MD và AC Gọi I là giao điểm của SK và MN

 Gọi H là hình chiếu vuông góc của M lên AC

Trang 25

1 2 5 1

Cách 2 của GVPB:

Gọi K là trung điểm SA , ta có tứ giác BMNK là hình bình hành, suy ra MN / /BK

Vậy MN SAC,   BK SAC,  

.Trong mp ABCD 

, gọi O AC BD Dễ dàng chứng minh được BOSAC

.Khi đó MN SAC,  BK SAC,   BK OK, BKO

32

Ngày đăng: 24/06/2021, 16:49

🧩 Sản phẩm bạn có thể quan tâm

w