1. Trang chủ
  2. » Cao đẳng - Đại học

Giải đề thi thử tốt nghiệp THPT Quảng Xương năm 2020 2021 môn Toán 38 câu đầu

7 19 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 7
Dung lượng 638,71 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Đường cong trong hình dưới là đồ thị của một hàm số trong bốn hàm số được liệt kê ở bốn phương án A, B, C, D dưới đây.. Trong các khẳng định sau, khẳng định nào đúng.[r]

Trang 1

SỞ GD & ĐT THANH HÓA

TRƯỜNG THPT QUẢNG XƯƠNG II ĐỀ THI THỬ TỐT NGHIỆP THPT NĂM HỌC 2020 - 2021

Bài thi: MÔN TOÁN

ĐỀ CHÍNH THỨC

(Đề gồm 6 trang, 50 câu trắc nghiệm)

Thời gian: 90 phút, không kể thời gian phát đề

Họ và tên thí sinh: SBD: Mã đề thi 121

Câu 1 Cho hàm số 2 1

1

x y x

+

=

− Tiệm cận ngang của đồ thị hàm số là

Câu 2 Với a là số thực dương tùy ý, 4 a7 bằng

A

7

4

1 28

4 7

a

Câu 3 Đồ thị của hàm số 3

2 1

x y x

=

− cắt trục hoành tại điểm có hoành độ bằng

Câu 4 Tổng phần thực và phần ảo của số phức liên hợp của z 2 3i là

Câu 5 Cho hàm số y= f x( ) xác định và liên tục trên khoảng (− + có bảng biến thiên như sau: ; ),

Hàm số đã cho nghịch biến trên khoảng nào dưới đây?

A (−; 4) B (2; + ) C (−; 2 ) D ( )2; 4

Câu 6 Cho cấp số nhân ( )u nu =1 2và công bội q = −3 Giá trị của u3 là:

Câu 7 Nghiệm dương của phương trình 2 1

7

7x + =1680 là

Câu 8 Cho hàm số f x( ) liên tục trên R thỏa mãn 6 ( )

0

7

f x dx =

6

1

f x dx = −

0

I = f x dx

Câu 9 Nghiệm của phương trình log2(x −3)=3 là:

A x = +3 3 2 B x =11 C x =12 D x = +3 3

Câu 10 Với x 0, đạo hàm của hàm số y=log2x

A

ln 2

x

.ln 2

x

Câu 11 Cho hàm số y= f x( )có bảng biến thiên như sau:

Trang 2

Mệnh đề nào dưới đây đúng?

A Hàm số đạt cực tiểu tại điểm x =0 B Hàm số đạt cực đại tại điểm y =2

C Hàm số đạt cực đại tại điểm x =0 D Hàm số đạt cực đại tại điểm x =1

Câu 12 Cho hàm số ( ) 3

f x = x + Trong các khẳng định sau, khẳng định nào đúng?

f x x=x +

d

f x x=x +C

f x x= x + x C+

f x x=x + x C+

Câu 13 Trên mặt phẳng tọa độ, cho số phức (1+i z) = −3 i , điểm biểu diễn số phức z là

A ( )3; 2 B (1; 2− ) C (2; 1− ) D (−1; 2)

Câu 14 Với a là số thực dương tùy ý, log 125a5( ) bằng

A ( )3

5

log a B 2 log a+ 5 C 3 log a− 5 D 3 log a+ 5

Câu 15 Đường cong trong hình dưới là đồ thị của một hàm số trong bốn hàm số được liệt kê ở bốn phương

án A, B, C, D dưới đây Hỏi hàm số đó là hàm số nào?

x y

-1

O

y

1 -1

1

A y= − +x4 2x2+ 1 B y= −2x4+4x2− 1

C y=x4−2x2− 1 D y= − +x4 4x2− 1

Câu 16 Cho hàm số ( ) 3

e x

f x = Trong các khẳng định sau, khẳng định nào đúng?

f x x= +C

d 3

x

f x x= +C

C ( ) e3 1

d

x

x

+

+

d 3e x

Câu 17 Tìm số phức z= +z1 z2

biết z1= +1 3i

, z2 = − −2 2i

A z= + 1 i B z= − 1 i C z= − + 1 i D z= − − 1 i

Câu 18 Một tổ gồm có 10 học sinh Số cách chọn ra hai bạn học sinh làm tổ trưởng và tổ phó là:

10

10

C

Câu 19 Cho hàm sốy= f x( )liên tục trên R và có bảng biến thiên như sau

Số đường tiệm cận đứng và ngang của đồ thị hàm số đã cho là

Trang 3

Câu 20 Giá trị của

2

0

sin xdx

A

2

Câu 21 Trong không gian Oxyz, cho hai điểm M(2; 4;1 ,) (N −2; 2; 3− ) Phương trình mặt cầu đường kính

MN là

A 2 ( ) (2 )2

C 2 ( ) (2 )2

Câu 22 Trong không gian với hệ tọa độ Oxyz, cho A(2;0;0), B(0;3; 4) Độ dài đoạn thẳng AB là:

A AB = 19 B AB = 29 C AB =3 3 D AB =2 7

Câu 23 Trong không gian với hệ toạ độ Oxyz, cho mặt phẳng ( )P x: +3y z− − =3 0 Mặt phẳng ( )P đi qua điểm nào dưới đây?

A (1;1;1 ) B (0;1; 2 − ) C (2; 1;3 − ) D (1;1;0 )

Câu 24 Cho số phức z= −2 3 i Môđun của số phức( )1 i z+ bằng

Câu 25 Cho khối chóp có thể tích bằng 3

32cm và diện tích đáy bằng 16cm Chiều cao của khối chóp đó là2

Câu 26 Có 30 chiếc thẻ được đánh số thứ tự từ 1 đến 30 Chọn ngẫu nhiên một chiếc thẻ Tính xác suất để chiếc thẻ được chọn mang số chia hết cho 3

A 2

1

1

3

10.

Câu 27 Cho khối nón có bán kính đáy bằng a và đường cao 2a Thể tích của khối nón đã cho bằng

A

3

2

a

3

3 2

a

3

2 3

a

Câu 28 Trong không gian với hệ tọa độ Oxyz, phương trình nào dưới đây là phương trình của đường thẳng

đi qua A(1; 0; 2) và vuông góc với mặt phẳng P x y: 3z 7 0?

3

x t

=

 = −

 =

B

1

1

3 2

y

= +

 = −

 = +

C

1

2 3

= +

 = −

 = +

D

1

2 3

y t

= +

 =

 = +

Câu 29 Một hình trụ có bán kính R =6cm và độ dài đường sinh l =4cm Tính diện tích toàn phần của hình trụ đó

A S tp =120cm2 B S tp =84cm2 C S tp =96cm2 D S tp =24cm2

Câu 30 Nếu

( )

2

1

3f x −2 dx=4

thì

( ) 2

1

d

f x x

bằng

Câu 31 Cho lăng trụ đứng ABC A B C    có đáy ABC là tam giác đều cạnh aAA =2a Gọi M là trung

điểm của CC (tham khảo hình bên dưới) Khoảng cách từ M đến mặt phẳng (A BC ) bằng

Trang 4

A 57a

a

2 5

a

2 57

a 5

5 .

Câu 32 Cho hình chóp S ABC có SA vuông góc với mặt phẳng ( ) 3

,

2

a ABC SA = , tam giác ABC vuông

tại A , cạnh AB=a BC, =2a (tham khảo hình bên dưới) Góc tạo bởi mặt phẳng (SBC và ) (ABC bằng )

Câu 33 Tập nghiệm của bất phương trình ( 2 )

3

log 2x +7x 2

2

T = − −  + 

9

; 1 2

T = − 

C 9; 1

2

T = − 

2

T = − −  + 

Câu 34 Thể tích của khối lập phương cạnh 2 bằng

Câu 35 Trong không gian Oxyz,vectơ nào dưới đây không phải là vectơ chỉ phương của đường thẳng

:

− ?

A u =2 (2;1; 2− ) B u = − −3 ( 4; 2; 4) C u =4 (1; 1; 0− ) D u = − −1 ( 2; 1; 2)

Câu 36 Hàm số 1 3 5 2

y x x x đạt giá trị lớn nhất và giá trị nhỏ nhất trên đoạn 1;3 lần lượt tại hai điểm x và 1 x2 Khi đó x1 x2 bằng

Câu 37 Hàm số nào sau đây nghịch biến trên R.

1

x

y

x

+

=

C y= − −x4 4x2+ 1 D y= − − + x3 x 1

Câu 38 Trong không gian với hệ tọa độ Oxyz, cho mặt cầu ( )S có phương trình:x2+y2+ −z2 2x−4y+4z − = Xác định tọa độ tâm I và bán kính R của mặt cầu7 0 ( )S

Trang 5

A I(1; 2; 2− ;) R = 4 B I(1; 2; 2− ;) R = 2.

C I − −( 1; 2; 2);R = 4 D I − −( 1; 2; 2);R =3.

Câu 39 Cho hàm số ( ) 2 3 3( 1)(2 6) 2 ( 3)

y f x

 , trong đó m n , R Tính tổng tất cả các

giá trị nguyên của tham số m để hàm số y= f x( ) có đúng ba điểm cực trị?

Câu 40 Trong không gian Oxyz, cho điểm A(1; 2; 1− , mặt phẳng ) ( )P :x+2y+2z+ = và đường thẳng 1 0

:

d − = + = −

− Đường thẳng  cắt d và mặt phẳng ( )P lần lượt tại MN sao cho

2AM +3AN = có phương trình là:0

A

3

6 2

5

= − +

 = −

 = − +

1 4 3

= − −

 = +

 = − −

7 4 5

= +

 = −

 = +

1

2 2 1

= +

 = −

 = − +

Câu 41 Cho hàm số y= f x( ) liên tục trên R và f( )x có đồ thị như hình vẽ bên dưới Xét hàm số

3 2

g x = f xxx Mệnh đề nào sau đây đúng?

A g( )2 g( )4 B g( )− 2 g( )0 C g( )− =4 g( )− 2 D g( )0 g( )2

Câu 42 Cho hàm số bậc bốn y= f x( ) có đồ thị như hình vẽ

( )

( )

1

y g x

f f x

− Chọn khẳng định đúng trong các khẳng định sau:

A Đồ thị hàm số y=g x( ) có 1 tiệm cận ngang và 1 tiệm cận đứng

B Đồ thị hàm số y=g x( ) có 1 tiệm cận ngang và 2 tiệm cận đứng

C Đồ thị hàm số y=g x( ) có 2 tiệm cận ngang và 1 tiệm cận đứng

D Đồ thị hàm số y=g x( ) có 2 tiệm cận ngang và 2 tiệm cận đứng

Trang 6

Câu 43 Bố An để dành cho An 11000 USD để học đại học trong ngân hàng theo hình thức lãi kép với lãi suất 0,73% một tháng Mỗi tháng sau khi ngân hàng tính lãi An đến rút 200USD để sinh sống và chi phí cho học tập Nếu mỗi tháng rút 200 USD thì sau 4 năm số tiền còn lại là bao nhiêu?

A 4148, 74USD B 408, 73 USD C 0 USD D 4184, 74 USD

Câu 44 Cho hàm số f x( ) thỏa mãn

2

3 0

xf x dx=xf xf(1) −3 Tính f(3)

Câu 45 Cho bất phương trình 2 1 ( )2 2 2 ( 2 )

5− −x −4 x+1 25x+ x+2 x − Số các nghiệm là số tự nhiên không lớn 1 hơn 2021 của bất phương trình trên là:

Câu 46 Cho hàm số ( ) log2 2 2

x x

+

  Tìm tất cả các giá trị thực của tham số m để bất phương trình

f x + x− −x + + f x+m + m−  − nghiệm đúng với mọi x  − 1;3

A m 3;+) B 15;

4

m 

+ 

4

+ 

Câu 47 Cho điểm M x y N a b( ; ), ( ; ) lần lượt biểu diễn cho số phức z z với 21, 2 a b+  Biết 0

2 5 2

MN

3 a b 3 a bln 2 2 1 3 a b

a b

  Tính giá trị của biểu thức T = + + −a b x 2y.

5

5

Câu 48 Trong không gian Oxyz, cho tam giác ABC có A(−1; 0; 2 ,) (B −4; 0; 2 ,− ) (C −5; 2;5) Gọi M là điểm thay đổi thuộc mặt cầu tâm B, bán kính R = 3 Giá trị nhỏ nhất của 5

3

MA+ MC là:

A 403

Câu 49 Xét tam giác ABC nhọn nội tiếp đường tròn (O R Gọi ; ) V V V lần lượt là thể tích của các khối 1, 2, 3

tròn xoay sinh ra khi quay tam giác OCA quanh trung trực của đoạn thẳng CA, quay tam giác OAB quanh trung trực của đoạn thẳng AB, quay tam giac OBC quanh trung trực của đoạn thẳng BC Khi biểu thức V1+ V2

đạt giá trị lớn nhất, tính V3 theo R

3

8

81

V =  R

3

32 81

V =  R

3

57 81

V =  R

3

2 3 9

V =  R

Câu 50 Cho hình lăng trụ đứng ABC A B C    có 0

120

BAC

 = , BC= , a AA =2a Gọi M là điểm thuộc đoạn CC sao cho 1

8

CM = CC Tính khoảng cách giữa hai đường thẳng BMAB, biết rằng chúng vuông góc với nhau

A 3 221

221

a

B 221 221

a

C 4 221 221

a

D 2 221

221

a

- HẾT -

Trang 7

BẢNG ĐÁP ÁN

Ngày đăng: 24/06/2021, 02:05

TỪ KHÓA LIÊN QUAN

🧩 Sản phẩm bạn có thể quan tâm

w