MỤC ĐÍCH YÊU CẦU:Học sinh nắm được: Các vị trí tương đối giữa đường thẳng và mặt phẳng, đặc biệt là vị trí song song giữa chúng Điều kiện để 1 đường thẳng song song với 1 mp Các tí[r]
Trang 1
Tên bài soạn:
BÀI TẬP ĐƯỜNG THẲNG SONG SONG VỚI MẶT PHẲNG
(2 tiết ) ( Hình học 11 )
A MỤC ĐÍCH YÊU CẦU:Học sinh nắm được:
Các vị trí tương đối giữa đường thẳng và mặt phẳng, đặc biệt là vị trí song song giữa chúng
Điều kiện để 1 đường thẳng song song với 1 mp
Các tính chất của đường thẳng song song với 1 mp và biết vận dụng chúng để xác định thiết diện của các hình
B CHUẨN BỊ:Đọc kĩ SGK + SGV
C TIẾN TRÌNH GIỜ DẠY:
I.Kiểm tra bài cũ:Định nghĩa 2 đường thẳng song song Phát biểu các tính
chất và định lí về giao tuyến của 3 mp
II.Bài mới:
H1? Cho a và (P) Có bao
nhiêu điểm chung giữa a
và (P)
H2? ĐN đt // mp ?
H3?Cho b (P) Lấy A
(P), từ A kẻ a // b thì vị
trí của a và (P) ntn? Lấy
A (P), từ A kẻ
a // b thì vị trí của a và (P)
ntn?
Từ đó nhận xét để đưa ra
ĐK đt // mp
H4?Cho a // (P).
Vẽ a (Q) (P) =
b.CM:a // b
1.Vị trí tương đối giữa đường thẳng và mp
a) a và (P) có 2 điểm chung phân biệt a (P)
b) a (P) = A a cắt (P) c) a (P) = a // (P)
Định nghĩa:
a // (P) a (P) =
2.Điều kiện để 1 đường thẳng song song với
1 mp
Định lí:
¿
a // b
b ⊂(P)
a ⊄(P)
⇒a // (P)
¿ { {
¿
Định lí 2: a // (P) b (P) : a // b HĐ1:Giả sử a b = I a (P) = I (vô
lí).Vậy a // b
Trang 2H5?Cho (P) // a, (Q) // a
và (P) (Q) = b Lấy M
b.CMR giao tuyến của
(M, a) với (P) và (Q)
trùng với b
H5?Làm thế nào để dựng
mp qua a và // b ?
H6? Gọi HS lên bảng làm
VD 2
H7?Gọi 1 HS trả lời
nhanh
H8? Gọi 1 HS trả lời
nhanh
H9?Nêu PP chứng minh
đt // mp?
H10?Gọi 1 HS đứng tại
chỗ trả lời Giải thích?
H11?Cho () // AB Các
Hệ quả 1:
¿
a // (P) a⊂(Q)
⇒(Q)∩(P)=b // a
¿ {
¿
Hệ quả 2:
¿ (P)≠ (Q)
(P)// a
(Q)// a
⇒(P)∩(Q)=b // a
¿ { {
¿
HĐ2:(M, a) (P) = b’ ; (M, a) (Q) = b”
b’ // a và b” // a b’ b” b Vậy b // a
3.Các ví dụ:
Ví dụ 1:Cho a chéo b CMR có duy nhất 1 mp
đi qua a và song song với b Giải: Lấy M a Từ M kẻ b’ // b mp(a, b’)
(P) // b
Nếu (Q) (P):a (Q) // b (P) (Q) =
a // b (trái gt)
Ví dụ 2:Cho tứ diện ABCD.Lấy M AB (P)
là mp qua M,song song với AC và BD Xác định td của (P) với tứ diện
(P) // AC (ABC) (P) = MN // AC (P) // BD (ABD) (P) = MF //BD (P) // AC (ACD) (P) = FE // AC (P) // BD (BCD) (P) = EN // BD Vậy (P) cắt hình tứ diện theo thiết diện là hbh MNEF
Bài tập:
Bài 24:
Các MĐ đúng: c, e
Bài 25:
Các MĐ đúng: b,d, f
Bài 26:
a) MN // BC
MN // (BCD) b) MN // (BCD)
(BCD) (DMN) = d // MN d // (ABC)
Trang 3mp nào chứa AB và cắt
() theo giao tuyến nào ?
Tương tự () // SC suy ra
kết quả gì ? Từ đó suy ra
thiết diện
H12?Gọi HS lên bảng
làm
Bài 27:
a) Có thể cắt tứ diện bằng một mặt phẳng
để thiết diện là hình thang
b) Có thể cắt tứ diện bằng một mặt phẳng
để thiết diện là hình bình hành
c) Có thể
Bài 28:
()//AB()(ABCD)
= MN // AB () // SC
() (SBC)
= MQ // SC () // AB
() (SAB)
= QP //AB () (SAD) = PN Vậy thiết diện là hình thang MNPQ
Bài 29 :
() // BD
() (ABCD) = MN // BD () // SA
() SAD) = NP // SA () (SAB) Thiết diện là ngũ giác MNPQR
D - RÚT KINH NGHIỆM