1. Trang chủ
  2. » Giáo Dục - Đào Tạo

28 đề phát triển đề thi minh họa 2020 2021 nhóm WORD toán đề số 28

23 2 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 23
Dung lượng 536,62 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Cho hàm số y f x  có bảng biến thiên như sau: Hàm số đã cho nghịch biến trên khoảng nào trong các khoảng dưới đây?. Đường cong trong hình dưới là đồ thị của một hàm số trong bốn hàm s

Trang 1

BỘ GIÁO DỤC & ĐÀO TẠO

-PHÁT TRIỂN ĐỀ MINH HỌA

MÃ ĐỀ: 28

KỲ THI TỐT NGHIỆP THPT NĂM 2021

MÔN THI: TOÁN Thời gian: 90 phút

Câu 1. Trong một hộp bút gồm có 8 cây bút bi, 6 cây bút chì và 10 cây bút màu Hỏi có bao nhiêu cách

Câu 3. Cho hàm số yf x  có bảng biến thiên như sau:

Hàm số đã cho nghịch biến trên khoảng nào trong các khoảng dưới đây?

A 2;0 B  2; 1 C 3; D  1; 

Câu 4. Cho hàm số yf x  có bảng biến thiên như hình dưới:

Giá trị cực đại của hàm số đã cho là:

Câu 5. Cho hàm số yf x  liên tục trên và có bảng xét dấu của  f x  như sau:

Hàm số f x  có bao nhiêu điểm cực trị?

Câu 7. Đường cong trong hình dưới là đồ thị của một hàm số trong bốn hàm số được liệt kê ở bốn

phương án A, B, C, D dưới đây Hỏi hàm số đó là hàm số nào?

Trang 2

ĐỀ THI THỬ: 2020-2021 NHÓM WORD 🙲 BIÊN SOẠN TOÁN THPT

a

5 3

Trang 3

Câu 20. Cho số phức z  2 i Điểm nào dưới đây là biểu diễn của số phức w iz trên mặt phẳng toạ

Câu 26. Trong không gian Oxyz, gọi là tâm của mặt cầu I  S x: 2y2z22x4z 1 0 Độ dài

đoạn OI (với là gốc tọa độ) bằngO

Câu 29. Có 12 tấm thẻ được đánh số từ 1 đến 12 Lấy ngẫu nhiên thẻ rồi cộng số ghi trên thẻ với 3 3

nhau Xác suất để kết quả thu được là một số chẵn bằng

12

14

13

12

Câu 30. Hàm số nào sau đây đồng biến trên tập xác định của nó

x

y e

yx y x 42x21

Câu 31. Cho hàm số yf x  có đạo hàm      2  Giá trị nhỏ nhất của

f x  x xx  x hàm số đã cho trên đoạn 1; 4 bằng

A f  1 B f  1 C f  2 D f  4

Câu 32. Tập nghiệm của bất phương trình là

2

41

33

x x

x

-

Trang 4

Đặt mua file word trọn bộ 30 đề minh họa chuẩn cấu trúc minh họa BGD

của nhóm Word Toán năm 2021

(Giá bản word 399k + Tặng chuyên đề ôn thi THPTQG 2021 nhóm ĐHSPHN)

☎ Admin Tiến: 0982563365 (Zalo 24/24)

☎ Admin Dũng: 0906044866 (Zalo 24/24)

https://tailieudoc.vn https://dethithuquocgia.com

Câu 33. Biết 1   2 Khi đó giá trị của tích phân bằng

Câu 35. Cho hình chóp S ABCD có đáy ABCD là hình vuông tâm O cạnh 2a Biết SA2a 3 và

vuông góc với đáy Khoảng cách giữa hai đường thẳng và bằng

Câu 37. Trong không gian với hệ tọa độ Oxyz, cho mặt cầu  S đi qua hai điểm A1;1; 2 , B 3;0;1 và

có tâm thuộc trục Ox Phương trình của mặt cầu  S là:

Câu 38. Trong không gian Oxyz, cho điểm A 1; 3;2 và mặt phẳng P :x 2y 3z  4 0, Đường

thẳng đi qua điểm và vuông góc với mặt phẳngA  P có phương trình là

Trang 5

A m2 B 0 m 2 C 0 D

2

m m

log xx 1 log xx  1 logm xx 1

nguyên dương khác của sao cho phương trình đã cho có nghiệm lớn hơn ?1 m x 2

32

Câu 42. Gọi số phức z a bi  , a b,  thỏa mãn z 1 1 và 1i z  1 có phần thực bằng 1

đồng thời không là số thực Khi đó z a b bằng:

chóp S ABC

3324

Câu 44. Một người muốn xây một cái bể chứa nước, dạng một khối hộp chữ nhật không nắp có thể tích

bằng 256 , đáy bể là hình chữ nhật có chiều dài gấp đôi chiều rộng Giá thuê nhân công để

3

3m

xây bể là 500000 đồng/m3 Nếu người đó biết xác định các kích thước của bể hợp lí thì chi phí thuê nhân công sẽ thấp nhất Hỏi người đó trả chi phí thấp nhất để thuê nhân công xây dựng bể

đó là bao nhiêu?

A 48 triệu đồng B 47 triệu đồng C 96 triệu đồng D 46 triệu đồng

Câu 45. Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng  P x: 2y z  4 0 và đường thẳng

Viết phương trình đường thẳng nằm trong mặt phẳng , đồng thời

Câu 46. Cho hàm số yf x  có bảng biến thiên đạo hàm như hình vẽ sau:

Hỏi số điểm cực trị tối đa của hàm y 2 f x 22x2021 bằng bao nhiêu?

Trang 6

Câu 47. Cho phương trình sin 2 2 cos   2 1 (1) Có

Câu 48. Cho hàm số bậc ba yf x  có đồ thị  C như hình vẽ

Biết rằng đồ thị hàm số đã cho cắt trục Ox tại ba điểm có hoành độ x x x1, ,2 3 theo thứ tự lập thành cấp số cộng và x3 x1 2 3 Gọi diện tích hình phẳng giới hạn bởi  C và trục Ox là , diện tích của hình phẳng giới hạn bởi các đường , , và

Câu 50. Trong không gian với hệ toạ độ Oxyz, cho mặt phẳng  P x y z:    4 0 và hai điểm

Gọi M là điểm di động trên (P) sao cho tam giác MAB vuông tại M Gọi

Trang 7

ĐÁP ÁN VÀ LỜI GIẢI CHI TIẾT

BẢNG ĐÁP ÁN

1.B 2.A 3.B 4.B 5.A 6.C 7.A 8.C 9.C 10.D

11.C 12.D 13.A 14.B 15.B 16.C 17.A 18.B 19.D 20.A

21.B 22.A 23.B 24.D 25.C 26.B 27.A 28.C 29.D 30.A

31.B 32.C 33.D 34.C 35.D 36.A 37.B 38.C 39.C 40.C

41.A 42.C 43.C 44.A 45.A 46.D 47.B 48.C 49.D 50.B

LỜI GIẢI CHI TIẾT

ĐỀ SỐ 28 PHÁT TRIỂN ĐỀ MINH HỌA THI TN 12- 2020-2021 Người làm : Nguyễn Thanh Hải

Facebook : Thanh Hải Nguyễn

Câu 3. Cho hàm số yf x  có bảng biến thiên như sau:

Hàm số đã cho nghịch biến trên khoảng nào trong các khoảng dưới đây?

Trang 8

Giá trị cực đại của hàm số đã cho là:

Lời giải

Chọn B

Câu 5. Cho hàm số yf x  liên tục trên và có bảng xét dấu của  f x  như sau:

Hàm số f x  có bao nhiêu điểm cực trị?

Câu 7. Đường cong trong hình dưới là đồ thị của một hàm số trong bốn hàm số được liệt kê ở bốn

phương án A, B, C, D dưới đây Hỏi hàm số đó là hàm số nào?

x y

-1

O

y

1 -1

Thế tọa độ điểm A0; 1  thỏa mãn; thế tọa độ điểm B 1;1 : 1 2.1 4.1 1 

Thế tọa độ điểm C1;1 thỏa mãn

Trang 9

Câu 8. Đồ thị hàm số 4 2 3 cắt trục hoành tại mấy điểm?

x x

  

 

   x 3Phương trình có nghiệm nên đồ thị cắt trục hoành tại điểm.2 2

Câu 9. Với là số thực dương tùy ý, a ln ea  bằng

a

5 3

Vậy tổng các nghiệm của phương trình 3x4 3x2 81 bằng 0

Câu 13. Nghiệm của phương trình 1 log 2x 1 3 là

Lời giải

Trang 10

Áp dụng công thức nguyên hàm cơ bản:  f x x d  4x32021 d x x 42021x C

Câu 15. Cho hàm số f x( ) sin 3 x1 Trong các khẳng định sau, khẳng định nào đúng?

Trang 11

Lời giải

Chọn D

Số phức z2   z1  6 8i  3 5i  9 13i

Vậy số phức liên hợp của số phức z2z1 là  9 13i

Câu 20. Cho số phức z  2 i Điểm nào dưới đây là biểu diễn của số phức w iz trên mặt phẳng toạ

Đặt mua file word trọn bộ 30 đề minh họa chuẩn cấu trúc minh họa BGD

của nhóm Word Toán năm 2021

(Giá bản word 399k + Tặng chuyên đề ôn thi THPTQG 2021 nhóm ĐHSPHN)

☎ Admin Tiến: 0982563365 (Zalo 24/24)

☎ Admin Dũng: 0906044866 (Zalo 24/24)

https://tailieudoc.vn https://dethithuquocgia.com

Câu 21. Một khối chóp có diện tích đáy bằng 60cm2 và chiều cao bằng 12cm Thể tích của khối chóp

Trang 12

Gọi là hình chiếu vuông góc của lên I A OzI0;0; 2.

Do là trung điểm của I AM nên M3; 1; 2 

Câu 26. Trong không gian Oxyz, gọi là tâm của mặt cầu I  S x: 2y2z22x4z 1 0 Độ dài

đoạn OI (với là gốc tọa độ) bằngO

Đường thẳng có một vectơ chỉ phương là  u1;3; 1 

Vì vuông góc với   P nên  P có một vectơ pháp tuyến là n u  1;3; 1 

Mặt phẳng  P qua M0; 1; 4  và có một vectơ pháp tuyến là n u  1;3; 1  có phương trình là x 0 3 y  1 z 40 x 3y z  7 0

Câu 28. Trong không gian Oxyz, mặt phẳng  P qua ba điểm A1;1;0 , B 0;1; 2 , C 0;0;0 có một

vectơ pháp tuyến là

A 2; 2;1 B 2; 2;1 C 2; 2;1  D 2; 2; 1 

Lời giải

Trang 13

GVSB: Dương Quá; GVPB: Cô Long

Chọn C

Ta có AB  1;0; 2 , AC   1; 1;0

Suy ra  P có một vectơ pháp tuyến là n AB AC, 2; 2;1 

Câu 29. Có 12 tấm thẻ được đánh số từ 1 đến 12 Lấy ngẫu nhiên thẻ rồi cộng số ghi trên thẻ với 3 3

nhau Xác suất để kết quả thu được là một số chẵn bằng

12

14

13

12

12

Trang 14

Từ bảng biến thiên ta thấy giá trị nhỏ nhất của hàm số đã cho trên đoạn 1; 4 bằng f  1

Câu 32. Tập nghiệm của bất phương trình là

2

41

33

x x

x

-

33

x x

x

-

Câu 35. Cho hình chóp S ABCD có đáy ABCD là hình vuông tâm O cạnh 2a Biết SA2a 3 và

vuông góc với đáy Khoảng cách giữa hai đường thẳng và bằng

Trang 15

a a

OC SA OH

305

C A

B H

Dựng AHA B

Trang 16

a AH

Câu 37. Trong không gian với hệ tọa độ Oxyz, cho mặt cầu  S đi qua hai điểm A1;1; 2 , B 3;0;1 và

có tâm thuộc trục Ox Phương trình của mặt cầu  S là:

Câu 38. Trong không gian Oxyz, cho điểm A 1; 3;2 và mặt phẳng P :x 2y 3z  4 0, Đường

thẳng đi qua điểm và vuông góc với mặt phẳngA  P có phương trình là

Trang 17

Để hàm số có một cực trị khi 2 0 2.

02

m m

m m

2

m m

log xx 1 log xx  1 logm xx 1

nguyên dương khác của sao cho phương trình đã cho có nghiệm lớn hơn ? 1 m x 2

x x t

x

BBT:

32

Câu 42. Gọi số phức z a bi  , a b,  thỏa mãn z 1 1 và 1i z  1 có phần thực bằng 1

đồng thời không là số thực Khi đó z a b bằng:

A a b  2 B a b 2 C a b 1 D a b  1

Lời giải

Trang 18

GVSB: Nguyễn Hữu Nam; GVPB: Nguyễn Thảo Linh

Chọn C

Theo giả thiết z 1 1 thì  2 2

a b Lại có 1i z  1 có phần thực bằng nên 1 a b 2

Giải hệ có được từ hai phương trình trên kết hợp điều kiện không là số thực ta được z a1,

0

a b b

 

 

  2Giải hệ có được từ hai phương trình trên ta được a1,b1

chóp S ABC

3324

60

S

Gọi M là trung điểm của BC Khi đó AMBC, SA BC Suy ra SMBC

Do đó góc giữa hai mặt phẳng SBC và ABC chính là góc SMA

Suy ra tam giác ABC đều có cạnh bằng a

Diện tích tam giác ABC

234

Trang 19

Câu 44. Một người muốn xây một cái bể chứa nước, dạng một khối hộp chữ nhật không nắp có thể tích

bằng 256 , đáy bể là hình chữ nhật có chiều dài gấp đôi chiều rộng Giá thuê nhân công để

3

3m

xây bể là 500000 đồng/m3 Nếu người đó biết xác định các kích thước của bể hợp lí thì chi phí thuê nhân công sẽ thấp nhất Hỏi người đó trả chi phí thấp nhất để thuê nhân công xây dựng bể

Diện tích cần xây là S2xh2xh2x2 2 2

Chi phí thuê nhân công thấp nhất khi diện tích xây dựng là nhỏ nhất và bằng Smin 96

Vậy giá thuê nhân công thấp nhất là 96.500000 48000000 đồng

Chú ý: Có thể sử dụng BĐT Cô si để tìm min, cụ thể

2

2562

Câu 45. Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng  P x: 2y z  4 0 và đường thẳng

Viết phương trình đường thẳng nằm trong mặt phẳng , đồng thời

Vectơ pháp tuyến của mặt phẳng  Pn P 1; 2;1

Vectơ chỉ phương của đường thẳng là d ud 2;1;3

Trang 20

Phương trình tham số của đường thẳng

1 2:

Suy ra giao điểm của đường thẳng và mặt phẳng d  PA1;1;1 Ta có: A 

Vectơ chỉ phương của đường thẳng là  u n P ,u d5; 1; 3  

Câu 46. Cho hàm số yf x  có bảng biến thiên đạo hàm như hình vẽ sau:

Hỏi số điểm cực trị tối đa của hàm  2  bằng bao nhiêu ?

2 2

Suy ra hàm số y g x   f x 22x có điểm cực trị.7

Suy ra hàm số yg x   f x 22x có tối đa 15 điểm cực trị

Suy ra hàm số y2 f x 22x 2021 cũng có tối đa 15 điểm cực trị

Suy ra hàm số  2  có tối đa điểm cực trị

Trang 21

f t 2 ln 2 3 ln 3 1 0,t  t   t

Suy ra hàm số f t  luôn đồng biến trên

Nên  3  f a  f b   a b sin2x m 2cosx 3 mco xs2 2cosx2

Câu 48. Cho hàm số bậc ba yf x  có đồ thị  C như hình vẽ

Biết rằng đồ thị hàm số đã cho cắt trục Ox tại ba điểm có hoành độ x x x1, ,2 3 theo thứ tự lập thành cấp số cộng và x3 x1 2 3 Gọi diện tích hình phẳng giới hạn bởi  C và trục Ox là , diện tích của hình phẳng giới hạn bởi các đường , , và

Ta có: “Gọi diện tích hình phẳng giới hạn bởi  C và trục Ox là ”S

Vây dựa vào hình ảnh, ta có: 2   3  

x x

f x dx  f x dx

Trang 22

Ta có: “diện tích S1 của hình phẳng giới hạn bởi các đường yf x 1, y f x 1,

Trang 23

Câu 50. Trong không gian với hệ toạ độ Oxyz, cho mặt phẳng  P x y z:    4 0 và hai điểm

Gọi M là điểm di động trên (P) sao cho tam giác MAB vuông tại M Gọi

Tâm của đường tròn (C) là hình chiếu vuông góc H của I lên mặt phẳng (P).

Toạ độ điểm H là nghiệm của hệ

Ngày đăng: 19/05/2021, 15:36

TỪ KHÓA LIÊN QUAN

🧩 Sản phẩm bạn có thể quan tâm