Luận văn được hình thành trên cơ sở: tìm hiểu cấu tạo và nguyên tắc hoạt động của hệ phổ kế gamma phông thấp - phòng thí nghiệm vật lý hạt nhân trường đại học Sư phạm thành phố Hồ Chí Mi
Trang 1BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC SƯ PHẠM THÀNH PHỐ HỒ CHÍ MINH
KHOA VẬT LÝ
LÊ THỊ MỘNG THUẦN
Người hướng dẫn: Thầy HOÀNG ĐỨC TÂM
LUẬN VĂN TỐT NGHIỆP ĐẠI HỌC
Chuyên ngành vật lý hạt nhân
Thành phố Hồ Chí Minh-tháng 5 năm 2009
Trang 2LỜI CẢM ƠN
Trong quá trình thực hiện luận văn, ngoài sự cố gắng và nỗ lực của bản thân, em
đã nhận được rất nhiều sự quan tâm, hướng dẫn và động viên của quý thầy cô, gia đình
và bạn bè Em xin gửi lời cảm ơn chân thành đến:
Thầy Hoàng Đức Tâm đã tận tình hướng dẫn những kiến thức chuyên môn và những kinh nghiệm quý báu giúp em hoàn thành luận văn
Các thầy phụ trách phòng thí nghiệm đã tạo điều kiện tốt nhất để em hoàn thành việc đo đạc thực nghiệm
Gia đình và tập thể lớp lý Cử Nhân K-31 đã động viên em trong suốt thời gian học đại học cũng như thời gian thực hiện luận văn này
Trang 3MỞ ĐẦU
Các nhân phóng xạ có ở khắp nơi trong môi trường sống của chúng ta Môi trường đang chịu tác động ngày càng lớn từ những hoạt động của con người như: quá trình công nghiệp hóa - hiện đại hóa, thăm dò, khai thác tài nguyên…Song song đó khoa học công nghệ đặc biệt là kỹ thuật hạt nhân ngày càng phát triển và hiện đại Và vấn đề về phóng xạ môi trường cũng là mối quan tâm hàng đầu Nghiên cứu phóng xạ môi trường bắt đầu bằng việc đo hoạt độ của các mẫu môi trường: đất, nước, bụi khí…
Có hai phương pháp xác định hoạt độ mẫu môi trường
Phương pháp tương đối: mẫu cần đo được đo cùng dạng hình học với mẫu chuẩn Tỉ số của diện tích đỉnh tương ứng với nguyên tố quan tâm trong hai phổ dùng để tính hoạt độ
Phương pháp tuyệt đối: dùng đường cong hiệu suất để xác định trực tiếp hoạt độ
Phương pháp tương đối cho kết quả chính xác cao nhưng việc làm mẫu chuẩn đòi hỏi mất nhiều thời gian và công sức Và càng khó khăn, tốn kém hơn khi phải chuẩn bị một loạt những mẫu chuẩn với những hoạt độ xác định để đo kèm với mẫu Do đó, nếu trong một phạm vi sai số cho phép thì phương pháp tuyệt đối - tính hoạt độ dựa vào đường cong hiệu suất - là một phương pháp tương đối hiệu quả, kinh tế và dễ thực hiện Luận văn này sẽ trình bày chi tiết về “Xác định hoạt độ của một số nguyên tố bằng phương pháp xây dựng đường cong hiệu suất”
Luận văn được hình thành trên cơ sở: tìm hiểu cấu tạo và nguyên tắc hoạt động của hệ phổ kế gamma phông thấp - phòng thí nghiệm vật lý hạt nhân trường đại học Sư phạm thành phố Hồ Chí Minh, từ đó xây dựng đường cong hiệu suất ghi của detector đối với mẫu khối hình trụ, và áp dụng vào xác định hoạt độ của một nguyên tố điển hình là 40K trong mẫu chuẩn đơn IAEA-RGK-1; mẫu chuẩn
đa nguyên IAEA-375 (vì hai mẫu này đã biết hoạt độ 40K do IAEA cung cấp), và một số mẫu đất Sau
đó đem so sánh với kết quả có sẵn để kiểm tra tính đúng đắn của đường cong hiệu suất cũng như phương pháp tính hoạt độ trực tiếp này Bố cục luận văn gồm:
Mở đầu : giới thiệu nội dung và mục đích đề tài
Chương I: Tóm tắt về cơ sở lý thuyết và tổng quan về ghi đo bức xạ
Chương II: Thực nghiệm: trình bày các bước xây dựng đường cong hiệu suất, tính toán hiệu suất detector cho mẫu khối hình trụ, các thao tác chuẩn bị mẫu, đo mẫu, và cách tính hoạt độ
40K bằng đường cong hiệu suất
Kết luận: tổng kết đề tài và một số nhận xét
Trang 4CHƯƠNG 1 CƠ SỞ LÝ THUYẾT VÀ TỔNG QUAN VỀ GHI ĐO
BỨC XẠ 1.1 Các nguồn phóng xạ
Các nguồn phóng xạ được chia làm hai loại: nguồn phóng xạ tự nhiên và nguồn phóng xạ nhân tạo Các nguồn phóng xạ tự nhiên có nguồn gốc từ Trái Đất và các tia vũ trụ Các nguồn phóng xạ nhân tạo do con người tạo ra bằng cách kích hoạt các hạt nhân trong lò phản ứng, sản phẩm của các phản ứng hạt nhân…Sau đây ta sẽ tìm hiểu chi tiết về các nguồn phóng xạ này
1.1.1 Các nguồn phóng xạ trong tự nhiên:
1.1.1.1 Bức xạ vũ trụ
Các bức xạ proton, alpha,…năng lượng cao từ không gian rơi vào khí quyển Trái Đất gọi là các tia vũ trụ sơ cấp Trên đường đi đến Trái Đất, chúng tương tác với bầu khí quyển và sinh ra các tia vũ trụ sơ cấp
Các tia vũ trụ sơ cấp
- Các tia vũ trụ sơ cấp được chia thành những nhóm sau:
Nhóm p gồm proton, deutron và trion
Nhóm gồm và 3
2He
Nhóm các hạt nhân nhẹ (Z= 3 5) gồm Lithium, Beryllium và Boron
Nhóm các hạt nhân trung bình (Z= 69) gồm Cacbon, Oxygen, Nitrogen và Flourine
Nhóm các hạt nhân nặng gồm các hạt nhân với Z 10
Nhóm các hạt nhân rất nặng gồm các hạt nhân với Z 20
Nhóm các hạt nhân siêu nặng gồm các hạt nhân với Z 30
Bảng 1-1Thành phần hóa học của các tia vũ trụ sơ cấp
Trang 5Hạt nhẹ Trung bình Nặng Rất nặng Siêu nặng
3-5 6-9
10
20
30
1 3.3
1 0.26
0.3*10-4
10-52.64
1 0.06 0.6*10-5
10-510.1
1 0.05
Với N/Nnặng là tỉ số giữa số hạt của nhóm đang xét so với số hạt của hạt nhân nặng Hai cột cuối ứng với số liệu thực nghiệm
Từ bảng trên ta thấy rằng các tia vũ trụ sơ cấp, trong vật chất của vũ trụ chủ yếu gồm các hạt proton và anpha Trong vật chất vũ trụ tỉ số N/Nnặng lớn hơn rất nhiều lần so với trong tia vũ trụ Ngược lại, thành phần các hạt siêu nặng và các hạt nhẹ trong tia vũ trụ lớn hơn rất nhiều lần so với vật chất trong vũ trụ
Các tia vũ trụ thứ cấp
Tia vũ trụ thứ cấp sinh ra do các tia vũ trụ sơ cấp tương tác với vật chất trong bầu khí quyển Tia
vũ trụ thứ cấp được chia thành ba phần:
Thành phần kích hoạt hạt nhân gồm các hạt hadron (pion, proton, neutron,)
Thành phần cứng gồm các hạt muon, sinh ra do sự phân rã của các hạt pion tích điện:
+ (1.1) Các muon năng lượng cao có khả năng đâm xuyên rất lớn do mất năng lượng rất ít đối với các quá trình ion hóa và bức xạ hãm trong môi trường
Thành phần mềm gồm các electron, psitron và gamma Tia gamma năng lượng cao được sinh ra đồng thời với các hạt hadron do quá trình phân rã hạt pion trung hòa:
o + (1.2) Các gamma năng lượng cao này khi xuyên qua môi trường, sinh các cặp electron-positron rồi các cặp eletron-positron này sinh ra các tia gamma hãm Quá trình này cứ xảy ra cho đến khi năng lượng các eletron và positron giảm đến cỡ 72 MeV
Các hạt sơ cấp có năng lượng rất lớn, sau khi được tạo ra, chúng tiếp tục ion hóa môi trường khí quyển Các hạt thứ cấp này hoặc bị hấp thụ, hoặc bay xuống mặt đất Cường độ các tia vũ trụ sơ cấp phụ thuộc vào độ cao của bầu khí quyển Thành phần hadron giảm rất nhanh theo chiều cao từ trên xuống Thành phần electron- photon có cường độ lớn ở độ cao lớn và bị hấp thụ rất nhanh, khi xuống mặt đất cường độ không đáng kể so với thành phần hạt muon
Trang 64,2 0,2 và 0,1 0,5 và 1,2 4,8 4,7 và 4,6 4,8 và 4,6 5,5 6,0 0,7 3,2 và 1,7 7,7 0,03 1,2 5,3
-
100 % 56% và 44%
1600 năm 2,382 ngày 3,05 phút 26,8 phút 19,8 phút 1,64*104 giây 22,3 năm 5,01 ngày 138,4 ngày
Trang 70,5 và 6,6 6,6 và 6,3 1,5
và 33,7% α
α
β trạng thái bền
4,0 0,002 1,6%
5,4 và 5,3 5,7 và 5,4 6,3 6,80,3 và 0,6 2,3 5,6 và 5,8 6,0 và 6,1 8,8 1,8
3,0*10-5 giây 3,05 phút
-
Ba họ phóng xạ có đặc điểm chung là: hạt nhân thứ nhất là đồng vị phóng xạ sống lâu Họ thorium với hạt nhân đầu tiên là 232Th với thời gian bán rã bằng 1.4*1010 năm nên hầu như thorium không giảm trong quá trình tồn tại của Trái Đất Hạt nhân đầu tiên 238U của họ uranium có thời gian sống 4.5*109 năm nên nó bị phân rã một phần, còn 235U có thời gian bán rã 7*108 năm nên phân rã đáng kể Vì vậy trong vỏ Trái Đất rất nhiều thorium, còn lượng 235U bé hơn 140 lần so với thorium Mỗi họ đều có một thành viên dưới dạng khí phóng xạ, chúng là các đồng vị khác nhau của nguyên tố radon: trong họ uranium khí 222Rn được gọi là radon; trong họ thorium, khí 220Rn được gọi là thoron và trong họ actinium khí 219Rn được gọi là actinion Radon là khí trơ, không tham gia bất kỳ phản ứng hóa học nào, là tác nhân gây ung thư hàng đầu trong các chất gây ung thư phổi Trong không khí radon và thoron ở dạng nguyên tử tự do, sau khi thoát ra từ vật liệu xây dựng, đất đá, chúng phân rã thành chuỗi các đồng vị phóng xạ con cháu, nguy hiểm nhất là 218Po
Trang 8Sản phẩm cuối cùng trong mỗi họ phóng xạ đều là chì: 206Pb trong họ uranium, 207Pb trong họ actinium và 208Pb trong họ thorium
Ngoài các họ phóng xạ trên, trong tự nhiên còn tồn tại một số đồng vị phóng xạ với số nguyên tử thấp Các đồng vị phóng xạ quan trọng nhất được liệt kê trong bảng 1.5
Bảng 1-5: Một số đồng vị phóng xạ với số nguyên tử thấp
Năng lượng bức xạ
(MeV) Hạt nhân
Độ giàu đồng vị (%)
T 1/2
(năm)
Hoạt độ riêng
K-40 V-50 Rb-87 Re-187 In-115 Pt-190 La-138 Nd-144 Sm-148 Hf-176
0.0118 0.25 27.9 62.9 95.8 0.013 0.089 23.9 11.27 2.6
1.3*1096*1054.8*10104.3*10106*10146.9*10111.12*10112.4*105
>10142.2*1010
31635 0.11 8.88*105 8.88*10-3 184.26 13.32 765.9 9.25 4.07 8.88*10-2
3.18
1.88 4.01 0.043
1.33 0.78 0.28 0.003 0.048 0.28
0.043
1.46 1.55
0.81
0.31
Một trong những nguồn đồng vị trên, 40K rất phổ biến trong môi trường Hàm lượng trung bình trong đất đá khoảng 27 g/kg; trong đại dương khoảng 380 mg/L; trong động vật, thực vật và cơ thể con người vào khoảng 1.7 g/kg
1.1.2 Các nguồn phóng xạ nhân tạo
Các nguồn đồng vị nhân tạo gồm các đồng vị phóng xạ phát ra các tia bức xạ anpha, bêta và gamma, các nguồn neutron phát ra theo các phản ứng hạt nhân (, n) hoặc (, n)
Trang 9Các chất đồng vị phóng xạ khi phân rã anpha hoặc bêta thường kèm theo phát gamma Do đó nguồn này có thể được coi là nguồn anpha, bêta hoặc gamma tùy theo mục đích sử dụng
Bảng 1-6: Các nguồn phóng xạ anpha, bêta và gamma thường dùng
1.2 Sơ lược về hệ phổ kế gamma
1.2.1 Tương tác của bức xạ gamma với vật chất và sự hình thành phổ
1.2.1.1 Tương tác của bức xạ gamma với vật chất:
Hiệu ứng quang điện
Hình 1-1: Hiệu ứng quang điện
Khi lượng tử gamma va chạm với electron quỹ đạo của nguyên tử, gamma biến mất, toàn bộ năng lượng của nó truyền hết cho electron, electron này bay ra khỏi nguyên tử được gọi là quang
Trang 10electron (photoelectron hình a, b ) Phần năng lượng dư ra chuyển thành động năng của quang electron bay ra Năng lượng dưới dạng động năng của quang electron được tính như sau:
Ee= E - b (1.1) Với E = h* là năng lượng photon tới
b là năng lượng liên kết của electron ở lớp vỏ nguyên tử trước khi bị bức ra
Khi electron ở lớp K bay ra để lại một lỗ trống, electron lớp ngoài có thể chuyển vào lấp đầy lỗ trống
và phát ra tia X đặc trưng (hình c), hoặc electron Auger (hình d)
Hiệu ứng quang điện không xảy ra với electron tự do vì không đảm bảo định luật bảo toàn năng lượng và động lượng.Thật vậy:
Định luật bảo toàn năng lượng:
1
e e
m hc
v c
1 1 1
e
E m c
v c
Trang 11Tiết diện hiệu ứng quang điện:
Gọi K, L, M lần lượt là năng lượng liên kết của electron ở lớp vỏ thứ K, L, M Ta có K> L> M
Hình 1-2: Tiết diện hiệu ứng quang điện
Ở miền năng lượng photon rất lớn E>> K thì hiện tượng quang điện chỉ xảy ra với lớp K với xác suất hấp thụ quang điện thấp và tuân theo quy luật 1
E
Khi E giảm dần đến K, tiết diện tuân theo quy luật 17 / 2
E
Khi E=K thì tiết diện đạt cực đại
Khi E tiếp tục giảm E< K thì hiện tượng quang điện không xảy ra với lớp K nữa mà xảy ra với lớp L với xác suất thấp, tại E=L thì xác suất cực đại Tương tự như vậy đối với lớp M…
Mặt khác tiết diện hấp thụ quang điện giảm nhanh theo năng lượng và tăng theo Z theo quy luật
Z5 Như vậy tiết diện hấp thu quang điện:
o photo Z7 / 25
E khi E lớn hơn K một ít (E K)
o photo Z5
E khi E>> K Hiệu ứng Compton:
Khi năng lượng gamma tới E>> K thì vai trò của hiệu ứng quang điện không còn đáng kể, hiệu ứng Compton bắt đầu Khi đó có thể bỏ qua năng lượng liên kết của electron, và tán xạ của gamma lên electron xem như tán xạ lên electron tự do
Trang 12Hình 1-3: Hiệu ứng Compton
Khi tán xạ, gamma truyền một phần năng lượng cho electron đồng thời gamma bị tán xạ Tia gamma sau tán xạ có bước sóng ’ lớn hơn bước sóng của tới Gia số tăng bước sóng phụ thuộc vào góc tán xạ như sau:
Trang 13Sau khi được tạo thành, electron mất năng lượng do ion hóa các phân tử môi trường, positron mang điện tích dương, khi gặp electron của nguyên tử sẽ hủy cặp tạo thành hai tia gamma có năng lượng bằng nhau và bằng 0.511 MeV
Sự hình thành phổ gamma:
Các quá trình tương tác nói trên dẫn đến sự hình thành các đỉnh trong phổ gamma như sau:
Hiệu ứng quang điện dẫn đến sự hấp thụ hoàn toàn năng lượng photon tới trên detector, do đó trong phổ gamma xuất hiện đỉnh hấp thụ toàn phần ứng với năng lượng E Đây chính là đỉnh Eđặc trưng của mỗi đồng vị Mỗi loại đồng vị có thể có 1, 2,… đỉnh hấp thụ toàn phần với những hiệu suất phát tương ứng Ví dụ 40K phát E= 1461 KeV với hiệu suất 10.67% ; 60Co phát hai gamma có hiệu suất phát cao nhất là 1173 KeV 99.97% và 1332 KeV 99.98%
Trong quá trình tán xạ tán xạ Compton, photon tới với năng lượng E chỉ mất một phần năng lượng, phần năng lượng còn lại chuyển thành năng lượng của photon tán xạ E’ (E’< E) Do đó xuất hiện phổ gamma liên tục bên miền năng lượng nhỏ hơn năng lượng E đặc trưng
Hiệu ứng tạo cặp dẫn đến sự hình thành hai lượng tử gamma có năng lượng 0.511 MeV Tùy theo từng trường hợp mà ta thấy trong phổ gamma xuất hiện các đỉnh sau đây:
o Cả hai lượng tử gamma đều bị hấp thụ hoàn toàn trong thể tích nhạy của detector: ta được đỉnh hấp thụ toàn phần E
o Một trong hai gamma hủy cặp thoát khỏi vùng nhạy của detector, ta thu được đỉnh thoát đơn có năng lượng 0.511 MeV
o Cả hai lượng tử hủy cặp thoát khỏi vùng nhạy của detector, ta thu được đỉnh thoát đôi có năng lượng 1.022 MeV
1.2.2 Các khối điện tử chủ yếu trong hệ phổ kế gamma
Như đã trình bày ở các phần trên, khi bức xạ gamma bay vào detector bán dẫn, tương tác của bức
xạ gamma với vật chất sẽ tạo nên các cặp điện tích electron-lỗ trống, dưới tác động của điện trường các điện tích này sẽ chuyển về các điện cực và tạo nên một dòng điện dạng xung Nhiệm vụ của các khối điện tử tiếp theo là xử lý các xung này để hình thành phổ gamma Sau đây là sơ đồ khối của hệ phổ kế gamma
Trang 14Hình 1-5: Sơ đồ khối hệ phổ kế gamma
Hình 1-6: Ống nhân quang điện
Khi gamma tương tác với chất nhấp nháy sẽ tạo ra electron tự do có động năng đủ lớn Những electron này sẽ kích thích những phân tử chất nhấp nháy, các phân tử này khi trở về trạng thái cơ bản
sẽ phát ra chớp sáng, tia sáng phát này đập vào photocathode gây ra hiệu ứng quang điện cho ra những photoelectron Các photoelectron này được gia tốc trong điện trường của các dynode, mỗi lần đập vào
Trang 15một dynode lại tạo ra electron thứ cấp, số electron tăng lên 25 lần sau mỗi lần đập Kết quả là sau khi đập vào n dynode, số electron được tăng lên M lần:
M= (a*V)n, với a=25 Tại anode các electron này tạo ra một xung dòng điện Xung dòng này tạo ra trên điện trở một xung điện áp có biên độ tỉ lệ với năng lượng tia gamma bị hấp thụ trong tinh thể nhấp nháy
ở lối ra
Năng lượng cần thiết để tạo ra một cặp electron-lỗ trống trong Ge là =2.96 (= 3.61 đối với Si) Phân biệt detetor bán dẫn Ge:
Theo xuất phát điểm ban đầu: là chất bán dẫn loại p hay n
Về mặt hình học thì có các kiểu đồng trục, kiểu hình giếng, hay kiểu plana (phẳng)
Hình 1-7: Các loại detector bán dẫn HPGe
(a) (b) (c)
o Dectector HPGe loại p kiểu đồng trục (hình a): Chất bán dẫn xuất phát là loại p Người ta tạo ra một lớp n+ dày khoảng 0.5 0.8 mm bằng phương pháp khuếch tán Li Khi sử dụng phải đựa điện áp cao, phân cực dương khoảng 25 KV kéo các cặp electron-lỗ trống tạo ra Loại này có hiệu suất giảm nhiều ở vùng năng lượng gamma thấp (dưới 100 KeV) do sự hấp thụ trên lớp chết
o Detector HPGe loại n, kiểu đồng trục (hình b): xuất phát từ chất bán dẫn loại n, người ta tạo ra lớp bề mặt p+ dày khoảng 0.3m bằng phương pháp cấy ion B Khi sử dụng cần đặt cao thế phân cực âm So với loại trên thì detector loại này hiệu suất ít bị giảm hơn ở vùng năng lượng thấp vì lớp chết p+ mỏng hơn
Trang 16o Detector hình giếng (hình c) Loại này có hiệu suất hình học cao nên thích hợp cho các phép đo
có hoạt độ nhỏ
o Detector phẳng (plana): hiệu suất giảm nhanh ở vùng năng lượng cao nên chỉ thích hợp để đo vùng năng lượng thấp
c.Các đặc trưng kỹ thuật của detector:
Độ phân giải năng lượng:
Độ phân giải năng lượng của detector cho biết khả năng detector có thể phân biệt hai đỉnh có năng lượng gần nhau trong phổ Nó được xác định bằng độ rộng ở giữa chiều cao (FWHM) của đỉnh hấp thụ toàn phần, nó có thể được biểu thị bằng keV đối với detector bán dẫn hoặc bằng phần trăm đối với detector nhấp nháy Độ phân giải năng lượng của detector còn phụ thuộc vào loại detector, thể tích detector và năng lượng tia gamma
Hình 1.8 trình bày phổ năng lượng gamma của nguồn 137Cs (có một đỉnh 661 KeV) và 60Co (có hai đỉnh 1173 keV và 1332 keV) được đo bằng detector HPGe và detector nhấp nháy NaI
Hình 1-8: Độ phân giải năng lượng
Ta có FWHM của hai loại detector trong bảng 1.7
Bảng 1-7: Độ phân giải năng lượng của các loại detector bán dẫn
FWHM (keV) Đỉnh năng lượng (keV)
Dectector HPGe Detector nhấp nháy NaI
661 1.4 50
Độ phân giải của detector bán dẫn tốt hơn nhiều, nên hiện nay detector loại này được sử dụng rộng rãi trong các hệ đo gamma
Độ phân giải thời gian của detector
Độ phân giải thời gian là khoảng thời gian mà detector cùng với hệ thống điện tử có thể phân biệt hai xung liên tiếp nhau theo thời gian, thời gian này càng bé thì độ phân giải thời gian càng tốt và
Trang 17detector càng có khả năng đếm với tốc độ lớn Độ phân giải của detector chủ yếu do thời gian chết của detector xác định
Hiệu suất ghi đỉnh quang điện:
Hiệu suất ghi đỉnh quang điện cũng là một đặc trưng quan trọng của detector Nó phụ thuộc vào loại detector, thể tích detector, cấu hình đo và năng lượng tia gamma
Hiệu suất ghi đỉnh quang điện được tính bằng tỉ số giữa số đếm của đỉnh hấp thụ quang điện mà detector ghi nhận được so với số tia gamma do nguồn phát ra theo mọi phương
Tỉ số đỉnh / Compton (peak/Compton):
Tỉ số này cho ta đánh giá khả năng của detector có thể phân biệt được các đỉnh yếu, có năng lượng thấp nằm trên nền Compton Peak/ Compton là tỉ số giữa chiều cao của đỉnh hấp thụ toàn phần (peak) và chiều cao của nền Compton tương ứng (thường lấy độ cao trung bình của nền Compton) Tỉ
số này càng cao thì càng có lợi cho phép đo, đặc biệt là đối với các phép đo có hoạt độ nhỏ và phổ gamma phức tạp Tỉ số này phụ thuộc vào thể tích detector
1.2.2.2 Khối tiền khuếch đại
Khối tiền khuếch đại được nối trực tiếp ngay sau detector Tín hiệu ở lối ra của detector có biên
độ rất bé, nhiệm vụ của khối tền khuếch đại là khuếch đại sơ bộ tín hiệu này nhưng vẫn đảm bảo tỉ số tín hiệu/ồn (S/N) Khối tiền khuếch đại có ý nghĩa rất quan trọng đối với chất lượng của hệ phổ kế, nó góp phần quyết định độ phân giải năng lượng của hệ Tùy loại detector mà người ta sử dụng một trong
ba loại tiền khuếch đại sau đây:
Tiền khuếch đại dòng điện
Tiền khuếch đại điện áp
Tiền khuếch đại điện tích
1.2.2.3 Khối khuếch đại chính
Khối này có nhiệm vụ khuếch đại tiếp xung ra từ khối tiền khuếch đại (thông thường nhỏ gơn 1V) lên đến khoảng giá trị thích hợp để có thể xử lý tiếp một cách dễ dàng và chính xác Ngoài ra trong khối này còn có các mạch tạo dạng xung nhằm cải thiện tỉ số tín hiệu/ồn (S/N) và ngăn ngừa sự chồng chập xung
Hình 1-9: Hình dạng xung ra sau tiền khuếch đại và khuếch đại chính
a b
Trang 181.2.2.4 Khối biến đổi tương tự - số (Analog to digtal converter)
Tín hiệu tương tự từ khối khuếch đại tuyến tính có biên độ V0 sẽ được đưa vào khối biến đổi tương tự-số Có nhiều biến đổi, kiểu biến đổi phổ biến nhất là kiểu Wilkinson, trình tự biến đổi như sau:
Hình 1-10: nguyên lý biến đổi tương tự -số kiểu Wilkinson
Biên độ tín hiệu vào V0 được so sánh với một điện áp tăng tuyến tính Vr
Khi nào Vr đạt tới bằng V0 thì xuất hiện một xung mở cổng Độ rộng của xung này bằng thời gian cần thiết để Vr đạt tới giá trị V0
Trong thời gian cổng được mở, các xung đồng hồ tần số cao được đi qua cổng và được đếm bởi máy đếm
Số xung đếm được Nc này tỉ lệ với biên độ tín hiệu V0 và xác định “địa chỉ” của tín hiệu : tại địa chỉ này trong bộ nhớ số đếm sẽ tăng thêm một đơn vị
Với nhiều lượng tử gamma lần lượt được biến đổi như vậy ta được một hình ảnh phân bố số xung theo biên độ xung, tức là một phổ số đếm theo năng lượng mà ta ghi nhận được
1.2.2.5 Khối phân tích biên độ đa kênh (MCA)
Máy phân tích biên độ đa kênh là hệ mà trong đó dãy năng lượng quan tâm được chia thành nhiều kênh năng lượng, mỗi kênh là một cửa sổ năng lượng từ Ei đến Ei + ∆E Kết quả là ta có một hàm phân bố số đếm trong một cửa sổ ∆E với mỗi giá trị năng lượng Ei
Máy phân tích biên độ đa kênh dựa trên cơ sở nguyên tắc biến đổi biên độ thành chuỗi số ADC (Analog to Digital Converter).(hình 1.11)
Các khối chức năng cơ bản của một MCA là ADC và bộ nhớ Khi một xung được ADC chuyển
từ tín hiệu biên độ sang dãy số, các sơ đồ kiểm tra của bộ nhớ sẽ tìm vị trí trong thang địa chỉ tương ứng với dãy số và thêm một đơn vị vào vị trí đó Như vậy một đơn vị được ghi vào ô địa chỉ ứng với biên độ xung vào, và khối đếm thứ i sẽ ghi thêm một đơn vị nếu xung vào có biên độ rơi vào kênh thứ i Sau thời gian đo ta có thể biểu diễn kết quả trên hệ trục tọa độ hai chiều: trục hoành là số kênh, trục tung là số đếm của từng kênh, tức là ta có một phổ năng lượng của các bức xạ vào
Trang 19Hình 1-11: Sơ đồ nguyên tắc MCA
Nội dung trong bộ nhớ sau khi ghi nhận được từ MCA được đưa vào máy tính có cài phần mềm
xử lý phổ để xử lý, kết quả được hiển thị lên màn hình máy tính
1.3 Các yếu tố ảnh hưởng đến hiệu suất ghi đỉnh
1.3.1 Sự phụ thuộc của hiệu suất ghi đỉnh vào năng lượng
Sự phụ thuộc của hiệu suất ghi đỉnh vào năng lượng được thể hiện trên hình 1.12 Hiệu suất giảm
ở vùng năng lượng thấp là do sự hấp thụ tia gamma thấp trên lớp chết mặt ngoài detector tăng lên Tại vùng năng lượng cao, hiệu suất giảm là do hạn chế về mặt thể tích của detector
Mỗi điểm trên đồ thị ứng với một đỉnh năng lượng Đường cong hiệu suất phụ thuộc năng lượng
có hai phần nằm hai phía của điểm cực đại như trên hình 1.12, ta cần phải xác định hệ số trong phương trình làm khớp của cả hai phần đó Để làm khớp ta biểu diễn E và theo thang logarit, khi đó đường làm khớp có dạng như sau:
ln() (%) = a + b*X + c*X2 +… (1.5) Với X= ln(E), Ec là giá trị năng lượng ứng với cực đại của đường cong hiệu suất
Trong vùng năng lượng E<Ec đường làm khớp có dạng bậc 2
E>Ec đường làm khớp có dạng tuyến tính bậc 1
Ta dùng phần mềm [sự phụ thuộc của hiệu suất đỉnh theo năng lượng] để làm khớp đường này một cách dễ dàng Các bước thực hiện xin xem phần phụ lục 3
Trang 20Hình 1-12: Đường cong hiệu suất phụ thuộc năng lượng ở độ cao 1cm
1.3.2 Hiệu ứng tổng cộng
Hiệu ứng này gây ra do sự ghi trùng phùng 2 hoặc nhiều tia gamma sinh ra trong quá trình dịch chuyển nối tầng từ các trạng thái kích thích về trạng thái cơ bản của hạt nhân Trong hình 1.13 ta thấy hai tia 1, và 2 trong dịch chuyển nối tầng của 60Co
Hình 1-13: Sự hình thành đỉnh tổng trong phổ gamma của Co-60
Hai tia gamma này xuất hiện trong khoảng thời gian cách nhau rất nhỏ khiến cho detector ghi như một tia có năng lượng bằng tổng năng lượng hai tia, dẫn đến hiệu suất ghi hai tia riêng rẽ giảm đi
và trên phổ xuất hiện thêm một đỉnh ứng với năng lượng tổng
1.3.3 Yếu tố hình học và hiện tượng tự hấp thụ
Yếu tố hình học gây ảnh hưởng đến hiệu suất detector bởi hình dạng của hộp đựng mẫu Ta có thể bỏ qua yếu tố này nếu hộp đựng mẫu chuẩn và mẫu đo như nhau
Trang 21Hiện tượng tự hấp thụ xảy ra khi tia gamma bị hấp thụ trong thể tích của mẫu Mức độ tự hấp thụ phụ thuộc vào hình học (bề dày, thể tích mẫu) và matrix (thành phần) của mẫu Để hiệu chỉnh ta có thể dùng phương pháp sau đây:
Dùng các dung dịch mẫu chuẩn đặt trong các hộp có dạng hình học như nhau nhưng chiều cao khác nhau
Xác định hiệu suất tương ứng với các mẫu ứng với các chiều cao h đó
Xác định các hệ số làm khớp , , f trong phương trình làm khớp (h) sau đây:
Hình 1-14: Hệ phổ kế gamma phông thấp trường ĐHSP TPHCM
Hệ phổ kế của trường ĐHSP có sơ đồ cấu tạo và nguyên tắc của hệ điện tử tuyến tính cũng tương
tự hệ phổ kế gamma đã trình bày ở 1.2, sử dụng detector bán dẫn tinh thể Ge siêu tinh khiết (HPGe) loại plana (hình phẳng) của hãng ORTEC Detector được nuôi ở nhiệt độ nitơ lỏng (77 K) Máy tính có cài phần mềm Maestro – 32 để thu nhận và xử lý phổ
1.4.2 Các thông số kỹ thuật
Ngày nhập: 12/12/2007
Model detector: Gem 15 P4
Model tiền khuếch đại: A257P
Tỉ số S/N khối tiền khuếch đại: 7082523
Model vỏ bọc H.V: 138 Em1
Trang 22 Đường kính detector: 5.12 cm
Chiều dài detector: 45 cm
Bề dày lớp tinh thể bất hoạt: 0.07 cm
Bề dày lớp nhôm 0.127cm
Độ phân giải năng lượng ở đỉnh 1.33 MeV của 60Co là 1.8 keV
Hiệu suất tương đối:15%
Tỉ số đỉnh/Compton: 46.1
1.4.3 Phông buồng chì
Ngoài sự đóng góp của ba hiệu ứng quang điện, Compton, tạo cặp trên phổ gamma, ta còn quan sát được nền phông phóng xạ Phông này gây bởi các nguyên nhân sau đây:
Tia vũ trụ gây ra các phản ứng hạt nhân trên khí quyển, đáng chú ý là các đỉnh 477.6 KeV của
7Be, và đỉnh 511 KeV do sự hủy cặp của + gây ra
Các tia gamma do các họ phóng xạ tự nhiên ( uranium, thorium, actinium) phát ra:
Dãy 232Th: 238.6 keV; 510.7 keV; 583.2 keV; 2614.5 keV
Dãy 238U: 185.9 keV; 295.2 keV; 351.9 keV; 609.3 keV; 1120.3 keV; 1764.5 keV
Dãy 235U: 143.8 keV; 185.7 keV
Đỉnh 1461 keV của 40K
Các chất phóng xạ có sẵn trong buồng chì che chắn detector như 210Pb phát ra bức xạ hãm Đối với hệ phổ kế gamma phông thấp dùng để đo mẫu môi trường thì vấn để che chắn để giảm phông là rất cần thiết Vì các mẫu môi trường có hoạt độ thấp, nếu giảm phông đến mức thấp nhất thì
sẽ đảm bảo số đếm ghi nhận được là của mẫu cần phân tích, kết quả sẽ chính xác hơn Do đó buồng chì phải được chế tạo bằng chì sạch và có thêm các lớp kim loại (như Cu, Cd) để ngăn tia X do chì phát ra trong hiệu ứng quang điện
Trang 23CHƯƠNG 2 THỰC NGHIỆM 2.1 Chuẩn bị
2.1.1 Nguồn đĩa chuẩn
Để xây dựng đường cong hiệu suất phụ thuộc năng lượng (hình 1.10), ta dùng nguồn chuẩn đĩa ( hình 2.1)
Nguồn chuẩn đĩa được dùng để chuẩn hiệu suất đỉnh cho những mẫu khối có thành phần và thể tích khác nhau Có 9 đồng vị phóng xạ được tích hợp trong đĩa này với những đỉnh gamma trong bảng 2.1
Bảng 2-1: Các nguyên tố trong nguồn đĩa chuẩn
Hạt nhân T 1/2 (ngày) E (keV)
Hiệu suất phát a (%)
Như vậy nguồn đĩa này có thể áp dụng cho vùng năng lượng gamma từ 80 keV 2 MeV
Hình 2-1: Nguồn đĩa chuẩn và giá để nguồn
Trang 24Hộp đựng nguồn gồm giá để nguồn, một thanh có thể điều chỉnh khoảng cách từ nguồn đĩa đến detector từ 0 10 cm
2.1.2 Phần mềm
Phần mềm thu nhận và xử lý phổ Maestro-32 kèm theo phần mềm xử lý số liệu chuyên dụng để tính hiệu suất ghi của detector, phần mềm này gồm những phần sau:
[Peak efficiency determination]: Tính toán hiệu suất đỉnh cho mỗi hạt nhân
[Efficiency as a function of energy]: Thành lập hàm hiệu suất phụ thuộc nănng lượng
[Least squares fitting calculation]: làm khớp bình phương tối thiểu
[Intergration of disk source efficiency]: Tính hiệu suất đỉnh của nguồn khối có hiệu chỉnh hiện tượng tự hấp thụ bằng cách lấy tích phân hiệu suất nguồn đĩa
Giao diện của phần mềm xử lý số liệu:
Hình 2-2: Giao diện phần mềm xử lý số liệu
Để biết chi tiết các thao tác tính toán xin xem các phần phụ lục 2 và 3
2.1.3 Thu thập và chuẩn bị mẫu đất
2.1.3.1 Nguyên tắc lấy mẫu đất
Vị trí lấy mẫu cần đáp ứng các yêu cầu sau:
Không bị biến động trong nhiều năm
Bằng phẳng hoặc khá bằng phẳng, độ dốc < 3%
Vùng mở không bị cỏ dại che phủ, không gần các tán cây lớn, tránh các khu xây dựng
Tránh các vùng có giun đất hoạt động mạnh hoặc vùng chăn thả động vật ăn cỏ
Không bị rửa trôi và dồn tụ khi mưa lớn
Tránh vùng có nhiều đá chưa phong hóa