1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Các phương pháp giải bài tập giải tích 12 nâng cao: Phần 2

66 9 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Các Phương Pháp Giải Bài Tập Giải Tích 12 Nâng Cao: Phần 2
Thể loại Tài liệu
Định dạng
Số trang 66
Dung lượng 12,51 MB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Nối tiếp nội dung phần 1 tài liệu Giải bài tập giải tích 12 nâng cao, phần 2 giới thiệu tới người đọc kiến thức cần nhớ và phương pháp giải các bài tập hàm số lũy thừa, hàm số mũ và hàm số logarit; nguyên hàm - Tích phân và ứng dụng; số phức. Mời các bạn cùng tham khảo.

Trang 1

a) Dinh nghia: Vdi a ?t 0, n e Z, luy t h t e bac n cua so a la so a", xac dinh bcfi

a° = 1; a" = — (a: cof so, n: so mu)

2 C a n b $ c n v a l u y thiifa v«Ji so m u hi^u ti

a) Dinh nghia: W6\ nguyen duotng, can bSc n cua so thUc a, k i h i ^ u

la so thirc b sao cho b" = a

• N/EI = b <:5> b" = a (n nguyen difong)

Ghi chu:

• Neu n le t h i m o i so' thuc a chi c6 mot can bac n

• Neu n chSn t h i m o i so' thUc duone a c6 h a i can bac n la >/a va - N/^

b) Tinh chat: Vdri a > 0, b > 0; m, n nguyen dUcfng va hai so' p, q tuy y

* 'Vab = '^.'</h

i ' - i W ( a > 0 )

* Neu t = ± t h i =: "/a" > P = -3- Q )

n m Dac biet Va ^ Va

3 L u y thijfa vori so m u htfu ti

Cho a la so thifc duong va r la so hCfu t i Gia suT r = ^ (trong do m la so nguyen, n la so nguyen ducfng) luy thifa cua a vdi so mu r la so a', xac

^ a " = ^ dinh bori:

Ghi chu: T i n h chat ciia luy thiTa vdi so mu hUu t i (cua so thi^c duong) c6

day dii t i n h chat nhuf luy thifa vdi so mu nguyen

J B A I T A P

L (Bdi 1, trang 75 SGK) Giai

a) Sai b) Dung c) Sai

2 (Bai 2, trang 75 SGK) Gidi

Trang 2

9 (Bdi 9, trang 78 SGK) Giai

Tif tinh chat cua iQy thifa vdl so mu nguyen dUcfng, ta c6

(Ta.Tb)" = (7a)".(7b)" = ab (vdi a > 0, b > 0, n nguyen duong)

Theo dinh nghia cSn h&c n cua mot 86' ta suy ra: Tab = Ta.Tb

10 (Bdi 10, trang 78 SGK) Giai a) Cdch 1:

74 + 273 - 74 - 273 = 7(73+1)' -7(73-1)'

= 73+ i | - 7 3 - i | = 73+ 1-73+ 1 = 2

Cdch 2:

Dat X = 74 + 273 - 74-273 > 0

Trang 3

Ta chufng m i n h d i n g thiJc (1), that vay

Cho a la so' thifc diTOng va a la so' v6 t i

Xet day so' hufu t i r i , r2, T„, ma limrn = a

K h i do day so thuc a"' , a'', a'° c6 gidi han xac dinh (khong phu

thuoc vao day (rn) da chon) Ta goi gidi han do l a luy thiia ciia so' mu ot K i hieU a"

a " = lima^"

Nhd:

- Luy thCra vdi so' mu 0 va so' mu nguyen a m k h i co so' a 0

- Luy thCfa vdi so' mu khong nguyen t h i co so' a > 0

2 C o n g t h i t c l a i k e p

C = A ( l + r)^' trong do A la so' tien gijfi

Trang 4

= â^(a ')''^ ' = ậa-^^' = â^-^^-' = á = a

17 (Bdi 17 trang 81 SGK) Gidi

Sau 5 n a m ngifcfi fíy t h u duac ca von l l n l a i la:

d) (x" + y " ) ' - 4" xy = , / x ^ + 2x''y" + y^" - 4x''ý'

Vay phufOng t r i n h da cho c6 hai nghiem x = 1 va x = 16

42 (Bdi 22 trang 82 SGK) Gidi

a) x ^ < 3 o 0 < x ^ < V3 0 - V 3 < x < V3

b) x'^ > 7 « X > W c) x'° > 2 o |x| >

d) x^ < 5 « X < ^

<=> X < - hoac X >

§ 3 L O G A R I T

I \ 6 l D U I \ c A i ^ I « i 6 ' 1- D i n h n g h i a : Cho a > 0 va a 1, b > 0, So thUc a de a" = b duac goi la

l o g a r i t ccf só a cua b K i hieu logab, nghia l i : logab = a c=> a" = b

Ta c6: logal = 0; logaa = 1

logaá' = b, Vb e K; á°^-''=: b, Vb e R, b > 0

Trang 5

2 T i n h c h a t : C h o so' dUOng a 1 va cac so dUcrng b, c

* Neu a > 1 t h i logab > log^c <s> b > c

* Neu 0 < a < 1 t h i logab > logaC <=> b < c

He qua: Cho so' difong a # 1 cdc s o ' dUcfng b, c

• Neu a > 1 t h i logab > 0 o b > 1

• Neu 0 < a < 1 t h i logab > 0 <:=> b < 1

• logab = logaC C=> b = C

3 C a c q u i tAc t i n h l o g a r i t

Cho so dircrng a 1 va cAc so di/ong b, c, t a c6:

• lOga(bc) = logab + logaC

• loga - = logab - lOgaC

He qua: V d i a, b la h a i so difong khac 1, ta c6:

• logab = — hay logab.logba = 1

• log c = — logaC (a 0; c > 0)

^" a

4 L o g a r i t t h a p p h a n

Logarit co s o 10 cua inQt s o dirong x difcfc goi la iogarit thap phan cua x

k i hieu Igx (hay l o g x )

* Logarit thap phan c6 day du cac t i n h chat cua logarit vdi ccf so lorn hem 1

^ B A I T A P •

Chon d)

24 (Bai 24 trang 89 + 90 SGK) Gidi

a) Sai b) Diing c) Sai d) Sai

a) loga (xy) = logaX + logay

log9

• logo, = 1 ^ « -0,42

log0,75

<=> 0,5 + X = 6 <=> X = 5,5

Trang 6

32. (Bdi 32 trang 93 SGK) Gidi

a) log8l2 - logglS + logg20 = logs~~ = logglG = log^,, 2' = ^

15 o

b) ^ log736 - log7l4 - 31og7 ^

= log? (6^)2 - log7l4 - l o g 7 ( 2 1 ^ ) ' = log72.3 - log72.7 - log73.7

= log72 + log73 - (log72 + log,?) - (Iog73 + log77)

a) log2 + log3 = log2.3 = log6

do log6 > log5

Vay log2 + log3 > log5

b) l o g l 2 - log5 = l o g — = log2,4

do log2.4 < log? Vay l o g l 2 - log5 < log?

c) 31og2 + log3 = log2'^ + logs = log2^3 = log24 21og5 = logS^ = log25

do log24 < l o g 2 5

v a y 31og2 + logs < 21og5 d) 1 + 21og3 = loglO + logS^ = l o g i c s ^ = log90

Do log90 > log27 Vay 1 + 21og3 > log27

1

a) logax = log«a%' x/c = logaa-'.b'

= logaá + log„b^ + logaC^ = 3 + 21og„b + - l o g c = 3 + 2.3 + - ( - 2 ) = 8

b) logaX = l0g« ^ logaâ + log, - log^

logsx = logaa" + log3b^ => logsx = logsậb'' => x = a*.b^

b) logox = 21og5a - 31og5b

=> logsx = logoá^ - loggb^ logsX = l o g 5 ^ => X = ^

a) log^gSO = log 5.10 = 2[log3 5 + log3lO]

Biet log3l5 = log33.5 = loggS + log35 = 1 + logaS Suy ra log35 = a - 1

Vay log ,| 50 = 2[a - 1 + p] = 2a + 2p - 2

b) Iog4l250 = log,, 5^2 = laogzS" + log22| = ^ [41og25 + 1| = 2a + |

38 (Bdi 38 trang 93 SGK) Gidi

a) l o g - + - l o g 4 + 41og72 = log2^^ + Iog(2')2 + log 2^ = log2^l2.2^ = l o g l

l b ) l o g ^ + ^logS6 + | l o g ^ = log(2^3-') + log(6')5 + log

Trang 7

c) log72 - 2\og~ + logN/108

= log 2-' - log(0,5^3) + log(0,5^32) ^ i o g l ^ | 5 _ 3 _ ^ i ^ g ^ = log —

39 (Bdi 39 trang 93 SGK) Gidi

So cdc chuf so cua M 3 1 k h i viet trong he thap phan b^ng so cac chuf so cua 2"

nen so cac chuf so cua M 3 1 la [31.1og2] + 1 = [9,31 + 1 = 10

Tuang tiS, so cac chC so cua M127 = 2^^'' - 1 k h i viet trong he thap phan la:

[127.1og2] + 1 = 38 + 1 = 39

So cdc chuf so cua Mi398269 k h i viet trong he thap phan la

[1398269.1og2] + 1 = 420921

41 (Bai 41 trang 93 SGK) Gidi

So t i e n ca von iSn l a i sau n qui \k

Vay sau 4 n a m , 6 t h a n g (4 nam, 2 qui) ngifdi gufi se c6 i t nha't 20 trieu tiT so

von 15 trieu dong ban dau)

(vi sau qui hai, ngifdi gijfi m d i nhan dUc/c lai)

3 L o g a r i t tu" n h i e n

L o g a r i t cof so e cua mot so diTcfng a difoc goi la logarit t i i nhien (hay logarit

ne-pe) cua so a K i hieu Ina

* Logarit tif n h i e n c6 day du t i n h chat cua logarit co so lorn hon 1

J B A I T A P

42 (Bdi 42 trang 97 SGK) Gidi

Sai tuf ln(2e) = Ine + Ine

Vi ln(2e) = ln2 + Ine ^ Ine + Ine

43 (Bdi 43 trang 97 SGK) Gidi

Trang 8

4 6 (Bai 45 trang 97 SGK) Gidi

Ti le t a n g trufdng m 6 i gicr ciia lohi v i khuS'n

Tii cong thufc S = Ạé''

300 = lOỌế'

^ ^ ^ l n _ 3 0 0 - l n l 0 0 ^ ]n3 ^

5 5

T i 1§ t a n g t r u d n g ciia loai v i khuan n^y la 21,97% m 5 i gid

Sau 10 gid, tii 100 con v i k h u a n se c6:

TiJf 100 con, de c6 200 con t h i thori gian c^n t h i e t l a

200 = lOỌê-^'^^'

, I n 2 0 0 - l n l 0 0 l n 2 o - , r : o •>,n u -

=>t= = « 3,15 gift = 3 gid 9 p h u t

0,2197 0,2197

46 (Bdi 46 trang 97 SGK) Gidi

T i le phan hiiy h a n g n a m ciia Pu^'^

Trong do S va A t i n h b k n g gam, t t i n h b&ng n a m

Vai 100 gam Pu^''^, t h d i gian cAn t h i e t de phan h u y con 1 gam la

1 = 10 e"'^''^^^'^^*''

] n l - j n l O ^ 82235 (nam)

-0,000028

Vay sau khoang 82235 n a m t h i 10 gam chat Pu^'*'' p h a n hiiy con 1 gam

§5 HAM SO MU VA HAM SO LOGARIT

I I \ O I D U I \ C A N M l I C ?

1 K h a i n i $ m v e h a m so m u v a h a m so logarit

* Cho a > 0 va a 1

- H a m só y = a" duoc goi la h a m só mu co só a

- H a m so y = logaX dJoc goi la h a m so logarit co so a

* H a m só y = á' va y = logaX l i e n tuc t a i m o i diem ma no duac xac d i n h

• Vxo e M, l i m a" = á^

* H a m s6 y = a" C O (3ao h a m la ý = á'.lna

* H a m so y = e" c6 dao h a m la ý = e"

* H a m so y = a"'"* c6 dao h a m la y ' = ú(x).a""'\lna

* H a m sd' y = logaU(x) (vdi u(x) > 0) c6 dao h a m ý =

* H a m só y = Inu(x) (vdi u(x) > 0) c6 dao h a m y ' =

Dac bi$t: y = I n i x | (vdfi m o i x 0) t h i y ' = —

ú(x) uix).lna ú(x) u(x)

y = I n I u(x) I (vdfi m o i u(x) 0) t h i y ' = — —

- Nhm phia t r e n true hoanh

- N h a n true hoanh la t i e m can ngang

- N k m ben p h a i true tung

- N h a n true tung la t i ^ m can diJng

Dang dS thi

1

0

Trang 9

^ B A I T A P

47 (Bdi 47 ti-ang 11 SGK) Gidi

a) Khi nhiet do ciia nUdc la 100"C thi luc do P = 760

49 (Bai 49 trang 112 SGK) Gidi

a) y = (x - De'" ^ y' = e'^ + (x - l).2e''' = e'^ (1 + 2x - 2) - (2x - l)e'^

y' = - (e" + e-")' = ^ (e" - e"^)

50 (Bdi 50 trang 182 SGK) Gidi

a) Ham so y = - dong bien tren R (vi ccJ s6' - > D

H^m s6' y = .>/2 + V3 nghich bien tr§n M (vi co so V2 + Vs < 1)

51 (Bdi 51 trang 112 SGK) Gidi

a) - Ham so y = (x/2 )" xac dinh tren R

- Ham so dong bien tren R (ca so J2 > 1)

Do thi hkm so:

- Di qua cdc diem (0; 1); (1; ^); (2; 2)

- N^m phia tren true hoanh

- Nhan true hoanh lam tiem can ngang

b) Ham so' y = [3) xac dinh tren

- Nam phia tren true hoanh

- Nhan true hoanh la tiem can ngang

52 (Bdi 52 trang 112 SGK) Gidi

'2-^1

I ' 3j V 9j

y 2-

3 Nhac manh phat ra tCf loa 6,8.10** 88 dB

4 Tieng may bay phan liic 2,3.10'^ 124 dB

53 (Bdi 53 trang 113 SGK) Gidi

, , ln(l + 3x) 31n(l + 3x) ln(l + 3x) ^ , ^ a) hm = lim = 3iim = 3.1 = 3

, ln(l + x^) , b) Vi lim x-.a 5 x^ = 1 , ln(l + x') , xln(l + x') ^ nen hm = hm 5 = 0.1 = 0

Trang 10

55 (Bdi 55 trang 113 SGK) Gidi

a) H ^ m so y = logaX nghich bien t r e n (0; +x)

- Nkm bgn phdi true tung

- N h a n true tung la difdng t i | m ean diJng

- N l i m ben phSi true tung

- N h $ n true tung la t i 0 m can dufng

§6 HAM SOLUYTHLfA

1 K h a i n i ^ m h a m so l u y thxia

- H a m so luy thCfa la h a m so' dang y = x" (trong do a la h a n g so')

- H a m s6' y = x°, v6i a khong nguyen xdc d i n h t r e n (0; +oo)

2 D a o h a m c u a h a m so l u y thvta

- H a m so y = x" (vdi a e K) c6 dao h^m y' = a x " " '

- H a m so' y = u°(x) (v6i a G K) C6 dao ham y' = a u ° ' kx).u'(x)

3 V a i n e t ve su" b i e n t h i e n do thi h a m so l u y thtifa

* H ^ m so luy thiTa y = x" (vdi a 0) x^c dinh t r e n (0; +x)

* H a m so dong bien t r e n (0; +t3o) n§'u a > 0 v^ nghieh bien t r e n (0; +x)

neu a < 0

• Do t h i h a m so qua ( 1 ; 1) vdfi moi a

Mot s6 dang dd thi

O

1

M B 4 I T A P

m. (Bdi 57 trang 117 SGK) Gidi

Gia sijf (Ci) va (Cj) Ian lucft la do t h i cac h ^ m so y = x" va y = x" (a, p c6 the

- 2 h o a c - | ) Tren do t h i ta thay vdi x e (1; + x )

Do t h i (C2) d phia tren do t h i (Ci)

Nghla la k h i x > 1 ta eo bat d^ng thijfc

x" > x° o p > a

Do do j3 = - - va a = - 2

2 Vay (C2) la do t h i h a m so y = x 2

Trang 11

( 2 ^ ) ' x ' - 2 \ ( x ' ) ' 2 M n 2 x ' - 2 \ 2 x 2''(xln2-.2)

^' = , = = 5

y ' ( l ) = 2(ln2 - 2) « 2,61

60 (Bai 60, trang 117 SGK) Gidi

a) Goi ( C i ) va (C2) M n lugt la do t h i cdc h ^ m so y = ax^ va y =

M(xo; yo) la d i e m bat k i D i e m doi xufng ciia M qua true t u n g la M'(-xo; yo),

ta c6:

/ J N

M e (Ci) o yo = a"" o yo = M ' e ( C )

Dieu nay chufng to ( C i ) va (C^) doi xiifng nhau qua true tung

b) Goi (C,'j) va ( C 4 ) Ian luot la do t h i cae h a m so y = log^x va y = logj x

Goi M(xo; yo) la diem bat ki.* Diem doi xutng cua M qua true hoanh la M"(xo; -yo)

Ta CO M e (C3) <=> yo = l o g a X o c=> y„ = - log, x„ o M " e (C4)

a

D i e u n ^ y chufng to (C;J), ( C 4 ) do'i xufng nhau qua true hoanh

61 (Bai 61, trang 118 SGK) Gidi

^ a) H a m so y = logonx xdc d i n h t r e n (0; +oc) y'

• H a m so' nghich bien t r e n (0; + « )

Do t h i h a m so:

- D i qua di§m ( 1 ; 0); (0,5; 1)

- N a m ben p h a i true tung

- N h a n true tung la t i e m can dufng

a) Can cuf vao do t h i , ta c6: logo,5X > 0

.3-<=> 0 < X < 1

•(ling v6i phan do t h i d phia tren true hoanh)

I b) - 3 < logo.sx < - l c : > 2 < x < 8

(lifng vdi nhufng diem t r e n do t h i c6 tung do thuoe niifa khoang (-3; -1))

2 (Bdi 62, trang 118 SGK) Gidi

- H a m so y = (yfSY xae d i n h t r e n R

~ H a m so y = (^f3)'' dong bien t r e n K

Do t h i h a m so:

- D i qua diem (0; 1); ( 1 ; Vs )

- N ^ m phia t r e n true hoanh

- N h a n true hoanh la t i e m can ngang

a) ( ^ / 3 ) ' ' < l c ^ x < 0 (ufng v6i edc diem tren do t h i c6 tung

do nho hcfn hay b k n g 1)

b) ( S ) " > 3 o X > 2

(ufng v d i cAc diim t r g n do t h i c6 tung dp 16n hofn 3)

Trang 12

§7 PHLfdNG TRINH M O V A LOGARIT

1 + PhUcfng trinh mu cat ban: a" = m

• Neu m < 0 t h i phiforng t r i n h a" = m v6 nghi#m

• Neu m > 0 t h i phu'cfng t r i n h a" = m <=> x = l o g e m

+ Phitcfng trinh logarit cd ban: log^x = m

• logaX = m <=> a"' = X ( d i l u k i e n xac d i n h x > 0)

* Co the sijf dung c^ch dSt bien sS' phu

* Phiicfng phap logarit hoa

* Suf dung t i n h d6ng bien hay nghich bien ciia h ^ m so'

2 b) 2"'-^''^' = 4 « 2"'-'"*' = 2' » x ' - 3x + 2 = 2

Vay phuong t r i n h c6 nghi$m x = 0

64. (Bdi 64, trang 124 SGK) Giai

a) log2[x(x - 1)] = 1 (1)

fx < 0 Vdi d i l u k i f n x(x - 1) > 0

[x > 1

(1) <=> x(x - 1) = 2' » x^ - x - 2 = 0 <=> X = - 1 hoac x = 2 (thoa dieu ki?n)

V$y phuong t r i n h c6 h a i nghi$ra x = - 1 x = 2

o x = - 1 h o a c X = 2 (cau a) <» x = 2 Vay phUdng t r i n h c6 n g h i e m x = 2

65. (Bdi 65, trang 124 SGK) Giai

a) Theo gia t h i e t k h i d = 0 thi F 53 (kHz)

k h i d - 12 t h i F 160 (kHz)

K a " = 5 3 (1)

K a ' ' = 160 (2) Tif (1) suy r a k = 53

12

o a" = 3,019 <^ 121oga = log3,019 o 121oga * 0,480

o loga * 0,04 <:=> a « 10°'^^ * 1,096

b) G i a i phiiOng t r i n h k a ^ = F

<=> logKa"' = logF a- logK + loga** = logF loga'' = logF - logK

<=> dloga = logF - log53 o d = - — - ( l o g F - log53)

Trang 13

6T (Bdi 67, trang 124 SGK) Gidi

a) logzx + log4X = logi N/3 ( D i ^ u k i e n x > 0)

Vay n g h i e m ciia phUcfng t r i n h l a x = 0

69 (Bdi 69, trang 124 SGK) Gidi

a) log^x^ - 201og7x + 1 = 0 Dieu k i e n x > 0

1

o 91og-x - 201ogx2 + 1 = 0 91og^x - lOlogx + 1 = 0

Dat t = logx, ta c6 phi/ofng t r i n h

2t 4 (2 + t) Dat t = log2X, t a c6 phifong t r i n h :

1 + t 3 ( 3 + t )

o 6t(3 + t ) = 4(1 + t)(2 + t ) 18t + et"* = 4(t^ + 3t + 2)

o 6t^ + 18t - 4t^ - 12t - 8 = 0 <o 2t^ + 6t - 8 = 0 c:>t^ + 3 t - 4 = 0 c = > t = l hoac t = - 4

Trang 14

Phiitfng trinh c6 hai nghiem x = — va x =

-7 0 (Bdi -70, trang 125 SGK) Gidi

x = - l o g 3 2 - l (thda dieu ki#n)

Phuong trinh c6 hai nghiem x = 2 va x = -(log32 + 1)

Ta chufng m i n h phifcfng t r i n h k h o n g c6 n g h i e m n^o k h a c

- Ham so 7 = 2" dong bien tren K

- Ham so' y = 3 - X nghich bien tren R

Do do 2" < 3 - X tren khoang (-oo; 1)

Khong CO gia t r i nao ciia x thoa phiTcfng trinh da cho

Vay phuorng trinh da cho c6 nghiem duy nhat la x = 1

b) log2X = 3 - X. Dilu ki^n xdc dinh x > 0

D l t h a y x = 2 l a n g h i e m duy n h a t c u a phiTcfng t r i n h (vi log22 = 3 - 2<=>l = l)

Ta chufng m i n h p h U c f n g t r i n h k h o n g c6 n g h i e m n a o k h a c

- Ham so' y = log2X dong bien tren (0; +<»)

- Ham so y = 3 - X nghich bien tren (0; +oo)

• Vdri X > 2, log2X > log22 log2X > 1

V 6 i x > 2 , 3 - x < 3 - 2 o 3 - x < l

Do do log2X > 3 - x

Phifang trinh da cho khong c6 nghiem tren (2; +x)

• Vdi 0 < X < 2, log2X < log22 o log2X < 1

V d i 0 < x < 2 , 3 - x > 3 - 2 < = > 3 - x > l

Phi/cfng t r i n h da c h o k h o n g c6 n g h i e m t r e n (0; 2)

Vay p h u a n g t r i n h da c h o c6 n g h i f m duy n h a t l a x = 2

Trang 15

§8 HE PH J O N G TRiNH MU VA LOGARIT

BUNG C A I \

Gidi he phucmg trinh mu vk logarit ta dung cdc phufcfng phdp the, cong dai

so, dat phu

Xet phiJong trinh (2) log4X + log4y = 1 + log49

<=> log4X.y = log44.9 oxy = 36

4- 2 X + 4 - 2 y ^ Q 5 ( 4 )

Tii phifcfng trinh (3): y = 1 - x

The vao phifang trinh (4): 4-^" + 4-2'^-"' = 0,5 o 4-2" + 4'\4'^'' = 0,5

• Tir do: X = - (thoa dilu kien)

Vay tap nghiem cua he phiTcfng trinh Ik S =

b) log2(9 - 2") = 10'°^='-'" ( 2 )

H Vdi dieu kien x < 3

^ ( 2 ) o logaO - 2") = 3 - X o log2(9 - 2") = log22'-''

H Phuong trinh c6 nghiem x = 0

m 7iogx _ giogx+i ^ 3 5iogx-i _ i3_7iogx-i ( 3 )

B Vdi dieu kien x > 0

B (3) « + 13.7'°^-^ = 3.5'"^"^ + 5'°^*'

B ^ ylogx ^ 2^ ^logx _ 3 gi^g, ^ g

• 7 5

Trang 16

<=> logx = 2 <=> logx = loglO^

<=> X = 100 (thoa dieu kien)

Vay phuong trinh c6 nghiem x = 100

d) 6^ + 6''^^ = 2" + 2"^! + 2"*'

o 2''.3'' + 6.2^3'' = 2^+2.2" + 4.2"

o 7.2''.3'' = 7 2 " « 3" = 1 (do 7.2" > 0)

o X = 0

Nghiem phiTOng trinh lA x = 0

75 (Bdi 75, trang 127 SGK) Gidi

o X = log382 - log381 o X = log382 - 4 (th6a dieu ki0n)

V|[y tap n g h i l m cua phiictng t r i n h la S = {log328; log382 - 4)

t > 0

o t = 0 hoac t = 25

t = 0 hoac t = 25

• t = 0; log2(-x) = 0 o - x = l o x = - l (thda d i l u kien)

• t = 25; log2(-x) = 25 o - X = 2^^ o X = -2^^ (th6a dieu ki$n), V$y tap nghi$m cua phuctog t r i n h la S = (-2^^ -1}

Vdri d i l u kien x > 0

(4) ^ 3"*«'".32 +3'°^*".3'2 = o 3'°*«".(32 +3'^) = 4 ^

^/3

V3 l3 <=> log4X = l o g a - ^ 3 v 3

o X = 4 (thda digu ki§n)

V|ly tap nghiSm cua phifcfng t r i n h la S = (4

76 (Bai 76, trang 127 SGK) Gidi

Trang 17

X = - 1 la mot nghiem cua phuong t r i n h

Ta chijfng m i n h phufong t r i n h (1) k h o n g c6 nghiem nao khac, t h a t vay

Trang 18

D i l u n^y chiJng to tren khodng ( - 1 ; + « ) phuong t r i n h (1) khong c6 nghiem

Vay X = - 1 1^ n g h i e m duy nha't cua phUong t r i n h da cho

f T T Y f TtV

b) s i n - + c o s - = 1 ( 2 )

\ y 5J

D l t h a y x = 2 l a m o t n g h i e m cua phifcfng t r i n h v i s i n ' - + cos' - = 1

Ta chtJng m i n h phUcfng t r i n h ( 2 ) khong c6 n g h i e m n^o kh^c, t h a t vky do

3 + log.,y = log2 5 ( l + 31ogsx) ( 2 )

V d i dieu ki§n x > 0 , y > 0

log2 2^ + log2 y = log2 5 + 31og2 x [logj 8y = log^ 5 + Slogg x b) ( I I )

logjxy = log6l0 logaSy = log2 5.x^

xy = 10 8y = 5x^

§9 BAT P H l / d N G TRINH M O V A L O G A R I T

I l>fOI DUIVG CAM NH6

G i i i b a t phuong t r i n h mO b a t phiTong t r i n h logarit, c i n nhdf cdc h ^ r a so

y = a" y = log^x dong b i e n k h i a > 1 n g h i c h b i e n k h i 0 < a < 1

4

Trang 19

81 (Bai 81, trang 129 SGK) Gidi

a) loggOx - 1) < 1 (1) Dieu kien xac dinh 3x - 1 > 0

logsOx - 1) < 1

<=> logsCSx - 1) < logsS 3x - 1 < 5 (do tinh dong bien ciia h^m so logarit

CO so 5)

(1) » '3x - 1 > 0 3x - 1 < 5 x<2 ^ 3 o - < X < 2

Vay tap nghiern ciia bat phiTOng trinh 1^: S =

b) log, (5x -1) > 0 (2) Dieu ki|n xdc dinh 5x - 1 > 0

Vay t$p nghi^m cua phifcrng trinh la S =

c) logo,5(x^ - 5x + 6) > -1 (3) Dieu ki|n xdc dinh x^ - 5x + 6 > 0

logo,5(x' - 5x + 6) > -1

o logo.5(x^ - 5x + 6) > logo.50,5'' o x^ - 5x + 6 < 2 (do tinh nghich bieii

ciia ham so logarit co so 0,5)

x' - 5x + 6 > 0 Jx^ - 5x + 6 > 0 x' - 5x + 6 < 2 jx' - 5x + 4 < 0

Tap nghi^m bat phUdng trinh da cho la S = 3' 2)

I (Bdi 82, trang 130 SGK) Gidi

a) logogX + logggX - 2 < 0 Dilu kien xac dinh x > 0

Dat t = logo.sx

Ta c6: t'' + t - 2 < 0 » -2 < t < 1 <=> (1)

l t < l

• t > -2 o logo.sx > -2 o logo,5X > logo.sO.S"^ <=> logo.sx > logo,54

<=> x < 4 (do tinh nghich bien ciia ham so logarit co so 0,5)

• t < 1 <=> logo.sx < logo,50,5 <=> X > 0,5 (do tinh nghich bien ciia h^m so logarit CO so' 0,5) fx<4 1

83 (Bai 83, trang 130 SGK) Gidi

-Vs < X < -2

1 <x < \[5

Dieu kien xdc dinh x^ - 6x + 5 > 0 2 - x > 0

Trang 20

86 (Bai 86, trang 130 SGK) Gidi

a) A = 92'<'K3'l + 41og,,2 _ g2Iog34 Q41og8,2 _ g41og34 g j 2 1 o g „ 2

I Vay l o g 2 3 > log34

(Bdi 88, trang 130 SGK) Gidi

I c la canh huyen, a va b 1^ h a i canh goc vuong cua tarn giac vuong nen a >

b > 0, c > 0

Ta CO a^ + b^ = c^ (Pitago)

=^ a^ = c^ - b^ = (c - b)(c + b)

I log„a^ = loga(c - b)(c + b) (do b + c > 0, c - b > 0)

=> 21ogaa = log,(c - b) + loga(c + b) => log„(c - b) + log3(c + b) = 2

+ — - — = 2 => loge+ba + logc-bB = 21ogc-ba.log,.^ba

loge-ba l o g „ b a

Trang 21

so g6c ciia tiep tuyen tai A

y'(0) = i = tga (a = OBA)

Trong tam gidc OBA, tga

-Suy ra OB = 20A =

OA 1

OB " 2

ln2 Di§n tich AOAB la:

93 (Bdi 93, trang 131 SGK) Gidi

3^.t^ - 4.3h + 3 ^ = 0

A' = {2.3^f - 3 * 3 ^ = 4 3 ^ ° - 3^' = 3^°i4 - 3 ) = 3^°

V A ^ = 3 ^ _ 2 3 ° + 3 ' _ 3 3 ' _ o 2 , _ 2 3 ' - 3 ' _ 3 ' _ _ 3

3 « ^ " 3 ^ = "^ ~ ^ ^ ¥ ^ t = 3 - ^ <=> 3^" = 3 - '3 2 x D - 2 o 2x = - 2 c=> x = - 1

t = 3 - ' o 3 ' " = 3 - ^ o 2x = - 3 <=> X = - -

Vay tap nghiem cua phuong trinh la S =•{-—; if-

Trang 22

94 (Bai 94, trang 132 SGK) Giai

t = 3 < » 3 " = 3 c ^ x = l (thoa dieu kif n)

Nghif m phucfng trinh da cho la x = 1

Vay nghiem phiicfng trinh da cho la x = 3

95 (Bdi 95, trang 132 SGK) Giai

4" - 3" = 1 (1)

Dl thay x = 1 la nghiem phifomg trinh (vi 4^- 3' = 1)

Ta chufng minh phiiomg trinh (1) khong c6 nghiem nac khac, that vay

= 1 (1) C 5 1 -

nghich bien tren

Tren khoang (-co; 1), phuofng trinh (1) khong c6 nghiem

Vay phiicfng trinh da cho c6 nghiem x = 1

98 (Bai 96, trang 132 SGK) Giai

log^ix - y) = 5 - log2(x + y)

^) (I) \x - log4

= - 1

(1) (2) logy - log3

Dieu ki#n xac dinh x > y > 0

(1) o log2(x - y) = log22^ - log2(x + y)

o log2(x - y) + log2(x + y)log22®

o log2(x - y)(x + y) = 2*^ o x^ - y2 = 32

(2) <=> logx - log4 = -logy + log3

<r> logx + logy = log4 + log3

o logxy - logl2 C5> xy = 12

Trang 23

t < l

5 < t < 6

5 < 6^ < 6 logg5 < X < 1 ' V a y t a p n g h i e m c i i a bS't phi/ong t r i n h S = ( - « ; 0 ] u [loggS; 1) c) l o g , ( x ' - 6 x + 18) + 21og5(x - 4) < 0 (*)

5

h a y - l o g 5 ( x ^ - 6 x + 18) + log5(x - 4 ) " < 0

( x - 4 ) ^

l o g ' x^ - 6 x + 18 < 0

(3)

G i a i b a t p h i i o m g t r i n h :

(1) X " - 6 x + 18 > 0 d u n g v d i m o i x e 5

( 2 ) x - 4 > 0 <= > 4

Trang 24

Vay t$p nghi|m bat phifong t r i n h la S = (4; + « )

BAI TAP TRAC NGHIEM KHACH QUAN^

Dieu ki§n xac d i n h x - 4 > 0

logo,4(x - 4) + logo,40,4 > 0 c:> logo,40,4(x - 4) > 0

Vay x - 4 > 0 x > 4 X - 4 < 2,5

0,4(x - 4) < 1 ' Vay tap n g h i e m bat phifang t r i n h S = (4; 6,5]

101. (Bdi 101, trang 132 SGK) Gidi

'10

103. (Bdi 103, trang 133 SGK)

Chon (C)

Gidi

(0,5)log225 + Iog2(l,6) = log2252 +log2(l,6)

= log25.1,6 = log28 = log22^' = 3

104. (Bdi 104, trang 133 SGK) Gidi

= (4 + log2l5)(log2l5 - 2) - log2l5.(2 + log2l5)

= 21og2l5 + log2'l5 - 8 - 21og2l5 + log^l5 = - 8

105. (Bdi 105, trang 133 SGK) Gidi

Tap n g h i e m bat phUcfng t r i n h [ 1 ; +oo)

106. (Bdi 106, trang 133 SGK) Gidi

Tii d o t h i t a c6 neu x > 0 t h i a" > c'' > b* => a > c > b

109. (Bdi 109, trang 134 SGK) Gidi

Chon (C)

Tii do t h i t a CO a > 1, b > 1, c < 1

K h i X > 1 t h i logaX > logbX > 0 => log^a < logxb => a < b

Vay b > a > c

Trang 25

110 (Bdi 110, trang 134 SGK) Giai

1 D i n h nghia: Cho h a m so' f xac d i n h t r e n tap K

Ham so F duqfc goi nguyen ham cua f tren K neu F'(x) = Rx) v6i moi x e K

2 T i n h chat: Gia siJf ham so F la mpt nguyen ham ciia ham so f tren K, k h i do:

a) Vdi moi hkng so C, ham so y = F(x) + C cung la mot nguyen ham f, tren K

b) NgiT^c l a i v d i mfii nguyen h^m G ciia f t r e n K t h i ton t a i mpt h k n g so C sao cho G(x) = F(x) + C vdi moi x e K

K i hieu Jf(x)dx de chi mpt nguyen ham bS't k i cua f

•' k b) fcoskxdx = + C

•' k c) fc'"'dx= + C

•' k d) fa-dx - - ^ + C ( 0 < a ? l )

Trang 26

Thii' bling each lay dao h a m cua (A), (B), (C), ro r a n g

( - X C O S X + sinx + C)' = -(cosx - xsinx) + eosx = xsinx

4 (Bai 4, trang 141 SGK) Gidi

Diing v i - Vx 1^ mot nguyen h ^ m ciia f

§2 M O T S O P H a d N G PHAP T I M N G U Y E N HAM

1 Phtfcfng p h a p doi b i e n so Cho h ^ m so u = u(x) c6 dao ham lien tuc tren K va ham so' f(u) lien tuc sao cho |f[u(x)] xdc d i n h t r e n K

K h i do neu F la mpt nguyen h a m ciia f, nghia la |f(u)du = F(u) + C t h i Jf[u(x)].u'(x)dx = F[u(x)] + C

G h i g o n jf(u).du = F(u) + C

-2 PhiTorng p h a p lay n g u y e n ham tuTng p h a n

Neu u, V Ik hai h ^ m so c6 dao h ^ m lien tuc t r e n K t h i Judv = uv - jvdu

Trang 27

2 Dat u = X => du = dx

Do d6 J2xsinxdx = uv - vdu = -2xcosx + J2cosxdx = -2xcosx + 2sinx + C i

Vay jf(x)dx = x^sin2x - [-2xcosx + 2sin2x + C i l

= x^sm2x + 2xcos2x - 2sin2x + C c) ftx) = x.e"

Dat u = X =5> du = dx

dv = eMx => V = e"

jf (x)dx = JeMx = Jiidv = uv - Jvdu = xe" - Je'dx xe" - + C

d) fix) = x^ln(2x) Dat u - ln(2x) =o du = - d x

= ^ } ~ ^ ^ = o = ^-t^" ^ C = itan(3x + 2) + C 3-'cos'^(3x + 2) 3-'cos-u 3 3

X X

cl)f(x)=:sin^3^os-Dat u = sin • du = —cos^x

3 3

JiF(x)dx = 3j|sin^|cos|dx= 3fuMu= 3-^ + C= - W | + C

8- (Bdi 8, trang 145 SGK) Gidi

\

a) f(x) = X' 18 - - 1

Dat u = — - 1 => du =

18 Jf(x)dx = 6 j -

Trang 28

JxeM^' = xe' - e" + Cj (Bai tap 6 c))

Vay |f (x)dx = x^e" - Slx^e" - 2(xe'' - e") + C]

= x^e'' - Sx^e" + 6xe^ - 6e" + C

d) f(x) =

Dat u = V 3 x - 9 ^ du = ^

2u => dx = 2"du 3 .—du = - fue-du

D^t u = sinx => du = cosxdx

^ iF(x)dx = Jsin'' xcosxdx = Ju'' du = ^ + C = — + C d) f(x) = xcos(x')

Dat u = x^ => du = 2xdx ff(x)dx = jxcos(x^)dx = — 2x.cos(x^)dx

1 Dinh nghia: Cho ham so f lien tuc tren K va a, b la hai so' bat k i thupc K,

neu F la mpt nguyen ham cua K t h i hi|u so F(b) - F(a) diiac gpi la tich

phan cua f tiT a den b, k i hieu la f(x)dx (a, b la hai can ciia tich phan, a la can dudi, b la can tren)

• Neu a < b, ta goi J^f(x)dx la tich phSn ciia f tren doan [a; b]

• Neu F la m6t nguyen ham ciia f tren K t h i

f f(x)dx = F(x)|

a

2 Dinh It: Cho ham so y = f(x), lien tuc va kh6ng am tren doan [a; b] k h i d6

di^n tich S ciia hinh thang cong gidri han bdi do t h i h a m so y = f(x), true hoanh va hai diidng t h i n g x = a, x = b la

S = £f(x)dx

Trang 29

Tich phan nky hkng di^n tich hinh

thang ABCD gidi han hdi do thi ham

so y = 7^ + 3 , true hoknh va cac difdng y = ^ + 3

S = 1(2 + 5).6 = 21 (dvdt)

2 Vay ^ 3 dx = 21

b) xldx

Tich phan n^y hkng tong di^n tich

eac tam giae OAB va OCD gidi han

bdi do thi h^m so y = I x l , true hoanh

I Tich phan nay b^ng dien tich gidi han

I bdi do thi h^m so' y = v 9 - x ^ hay

+ y^ = 9 (niifa dudng trbn tam O, b^n kinh 3), v^ true hoknh, cae dudng thing

^ 13 (Bdi 13, trang 153 SGK) Gidi

a) [nx)dx la di^n tich hinh thang cong gidi han bdi d6 thi h^m so y = fix),

true hoanh va cae difdng t h i n g x = a, x = b nen:

j['f (x)dx > 0

b) Dat h(x) = fix) - g(x) khi do h(x) > 0 (do fix) > g(x))

TheoeSua) jfh(x)dx > 0=:> £[f(x) - g(x)]dx > 0 ^ j['f(x)dx - £g(x)dx > 0 Vay j['f(x)dx > j['g(x)dx

14 (Bdi 14, trang 153 SGK) Gidi

a) Quang dudng vat di chuyen trong khoang thd; gian tiT t = 0 den t = 3n (don vi giay) la

Trang 30

b) Goi to Ik thcfi d i ^ m vat dtrng l a i

Turc la V(to) = 0 160 - lOto = 0 => to = 16

Quang dirdng vat di chuyen trong khoang t h d i gian tii t h d i diem t = 0 den

16. (Bdi 16, trang 153 SGK) Gidi

a) Goi V{t) la van toe ciia vien dan

1)

2u

" 5 "1 r _ 1 2 _ 5 ~ 4 8

Trang 31

Dat u = x + l = > d u = dx

dv - e^dx => V = e"

| ' ( X 4 DeMx = (x ^ De" jVdx = (x + l)e'

= [(1 + De' - (0 + l)e"l - Ic' e"l = 2e - 1 o + 1 c) £e''cosxdx

Dat u = cosx du = - sinxdx

D o d o f e " s i n x d x = (e"sinx) fe"cosxdx = (e"sinx) C

Suy ra 2C = (e^cosx)' + ( e s i n x ) " = (e'cosrr - e'cosO) +

e' + 1 Vay J^e^ cosxdx - -

i3at u = 5 - 4co:ji du = 4siui(lt u(0) = 5 - 4cos0 = 1; u(;t) - 5 - 4cosTt = 5 + 4 = 9 , 5(5- 4cost)-sintdt = f u ' d u

Trang 32

P , r C O S X ,

•e) h~.—dx

j l + sinx Dat u = 1 + sinx =:> du = cosxdx u(Oj = 1 + sinO = 1

Trang 33

~ 3 ' '9 ^ 9 ~ ' ' 9 '

§5 CfNG DUNG CUA TICH PHAN DE TINH

DIEN TICH HlNH PHANG

x = h(y) (g, h l a hai h a m lien tuc tren [c; d] va hai dudng t h i n g y = c, y = d la

S = (• g(y) - h(y) dy

Ngày đăng: 02/05/2021, 13:12

🧩 Sản phẩm bạn có thể quan tâm

w